參考文獻 |
Ahel, I., Korencic, D., Ibba, M., and Soll, D. (2003) Trans-editing of mischarged tRNAs. Proc. Natl. Acad. Sci., 100, p.15422–15427.
Albers, S. and Czech, A. (2016) Exploiting tRNAs to Boost Virulence. Life 6(4) p.1-15
Alexander, R.W. (2013) tRNA Synthetases. Encyclopedia of Biological Chemistry (Second Edition). Academic Press, p.441-444.
Bartholow, T. G., Sanford, B. L., Cao, B., Schmit, H. L., Johnson, J. M., Meitzner, J., Bhattacharyya, S., Musier-Forsyth, K., and Hati, S. (2014) Strictly Conserved Lysine of Prolyl-tRNA Synthetase Editing Domain Facilitates Binding and Positioning of Misacylated tRNAPro. Biochemistry, 53, p.1059 –1068.
Becker, H.D., Roy, H., Moulinier, L., Marie-He´le`ne M., Keith, G. and Kern, D. (2000) Thermus thermophilus Contains a Eubacterial and an Archaebacterial Aspartyl-tRNA Synthetase. Biochemistry, 39 p.3216-3230.
Burke, B., Yang, F., Chen, F., Stehlin, C., Chan, B. and Musier-Forsyth, K. (2000) Evolutionary coadaptation of the motif 2–acceptor stem interaction in the class II prolyl-tRNA Synthetase system. Biochemistry, 39, 15540–15547.
Burke, B., Lipman, R.S., Shiba, K., Musier-Forsyth, K. and Hou, Y.M. (2001) Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA Synthetase. J. Biol. Chem., 276, p.20286–20291.
Burke, B., An S, Musier-Forsyth K. (2008) Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis. Biochim. Biophys. Acta, 1784 pp.1222-1225.
Chang, C.P., Lin, G., Chen, S.J., Chiu, W.C., Chen, W.H., and Wang C.C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. The Journal of Biological Chemistry, 283, p.30699-30706.
Clark, R.L., and Neidhardt, F.C. (1990) Roles of the Two Lysyl-tRNA Synthetases of Escherichia coli: Analysis of Nucleotide Sequences and Mutant Behavior. Journal of Bacteriology, 172(6), p.3237-3243.
Cochrane, R. V. K., Norquay, A. K. & Vederas, J. C. (2016) Natural products and their derivatives as tRNA synthetase inhibitors and antimicrobial agents. Med.chem.comm., 7, p.1535–1545.
Crepin, T., Yaremchuk, A., Tukalo, M. and Cusack, S. (2006) Structures of Two Bacterial Prolyl-tRNA Synthetases with and without a Cis-Editing Domain. Structure, 14, pp.1511–1525.
Cusack S, Hartlein M, Leberman R. (1991) Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res., 19, p.3489-3498.
Cusack, S. (1995) Eleven down and nine to go. Nat. Struct. Biol., 2(10), p.824–831.
Cusack, S., Yaremchuk, A., Krikliviy, I., and Tukalo, M. (1998) tRNAPro anticodon recognition by Thermus thermophiles prolyl-tRNA synthetase. Structure, 6, p.101-108
Dewan, V., Reader, J., and Forsyth, K. M. (2014) Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top. Curr.Chem., 344, p.293–329.
Fang, P., Yu, X., Jeong, S., Mirando, A., Chen, K., Chen, X., Kim, S., Francklyn, C.S., Guo, M. (2015) Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase. Nat. Commun., 6, p.6402.
Feng, L., Stathopoulos, C., Ahel, I., Mitra, A., Tumbula-Hansen, D., Hartsch, T., Söll, D. (2002) Aminoacyl-tRNA formation in the extreme thermophile Thermus thermophilus. Extremophiles, 6, p.167–174.
Giege´, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res., 26, p.5017-5035.
Gilbart, J., Perry, C.R., and Slocombe, B. (1993) High-Level Mupirocin Resistance in Staphylococcus aureus: Evidence for Two Distinct Isoleucyl-tRNA Synthetases. Antimicrobial Agents and Chemotherapy, p. 32-38.
Green, N.J., Grundy, F.J., and Henkin, T.M. (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS Lett., 584(2), p.318–324.
Hall, B.G. (2013) Building Phylogenetic Trees from Molecular Data with MEGA. Mol. Biol. Evol., 30(5), p.1229–1235.
Hasegawa, T. and Yokogawa, T. (2000) Escherichia coli proline tRNA: Structure and recognition sites for prolyl-tRNA synthetase. Nucleic acids Symp. Ser., 44, p.7-8.
Hou, Y.M. (1997) Discriminating among the discriminator bases of tRNAs. Chem. Biol., 4, p.93-96.
Jeremy M Berg, John L Tymoczko, and Lubert Stryer. (2002) Biochemistry, 5th edition. New York: W H Freeman.
Ji, X., Zou, J., Peng, H., Stolle, A.S., Xie, R., Zhang, H., Peng, B., Mekalanos, J.J., Zheng, J. (2019) Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhances their bactericidal activity. Proc Natl Acad Sci.,116(19), p.9578-9585.
Kwon, N.H., Fox, P.L. & Kim, S. (2019) Aminoacyl-tRNA synthetases as therapeutic targets. Nat Rev Drug Discov., 18, p.629–650.
Lee, J., Joshi, N., Pasini, R., Dobson, R.C.J., Allison, J., Leustek, T. (2016) Inhibition of Arabidopsis growth by the allelopathic compound azetidine-2-carboxylate is due to the low amino acid specificity of cytosolic prolyl-tRNA synthetase. The Plant Journal, 88, p. 236–246.
Leveque, F., Gazeau, M., Fromant, M., Blanquet, S., Plateau, P. (1991) Control of Escherichia coli Lysyl-tRNA Synthetase Expression by Anaerobiosis. Journal of Bacteriology, p.7903-7910.
Liu, H., Peterson, R., Kessler, J. and Musier-Forsyth,K. (1995) Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro. Nucleic Acids Res., 23, 165–169.
Meyer-Schuman, R. and Antonellis, A. (2017) Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. Human Molecular Genetics, 26, p.114–127.
Milligan, J.F. and Olke C. Uhlenbeck. (1989) Synthesis of Small RNAs Using T7 RNA Polymerase. Methods in enzymology,180, p.60.
Musier-Forsyth, K., and Schimmel, P. (1999) Atomic Determinants for Aminoacylation of RNA Minihelices and Relationship to Genetic Code Acc. Chem. Res., 32, p.368-375.
Musier-Forsyth, K., Burke, B., and Cusack, S. (2005) The Aminoacyl-tRNA synthetase: Prolyl-tRNA Synthtease (Chapter 15). Landes Bioscience, p.149-161
Nakama, T., Nureki, O. & Yokoyama, S. (2001) Structural basis for the recognition of isoleucyl- adenylate and an antibiotic, mupirocin, by isoleucyl- tRNA synthetase. J. Biol. Chem., 276, p.47387–47393.
Novoa, E.M., Camacho, N., Tor, A., Wilkinson, B., Moss, S., Marín-García, P., Azcárate, I.G., Bautista, J.M., Mirando, A.C., Francklyn, C.S., Varon, S., Royo, M., Cortés, A., Ribas de Pouplana,L. (2014) Analogs of natural aminoacyltRNA synthetase inhibitors clear malaria in vivo. Proc. Natl Acad. Sci., 111, p.5508-5517.
Partow, S., Siewers, V., Bjørn, S., Nielsen, J., & Maury, J. (2010). Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast, 27(11), p.955–964.
Pe´rez-Roth, E., Lo´pez-Aguilar, C., Alcoba-Florez, J., and Me´ndez-A´lvarez. S. (2006) High-Level Mupirocin Resistance within Methicillin-Resistant Staphylococcus aureus Pandemic Lineages. Antimicrobial Agents and Chemotherapy, 50(9), p. 3207–3211.
Putzer, H., Brakhage, A.A., and Grunberg-Manago, M. (1990) Independent Genes for Two Threonyl-tRNA Synthetases in Bacillus subtilis. Journal of Bacteriology, 172 (8), p. 4593-4602.
Rajendran, V., Kalita, P., Shukla, H., Kumar, A., Tripathi, T. (2018) Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. International Journal of Biological Macromolecules, 111, p. 400-414.
Ray P. S., Sullivan J. C., Jia J., Francis J., Finnerty J. R. and Fox P. L. (2011) Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol., 1, p.437-447.
Stehlin,C., Burke,B., Yang,F., Liu,H., Shiba,K. And Musier-Forsyth, K. (1998) Species-specific differences in the operational RNA code for aminoacylation of tRNA(Pro). Biochemistry, 37, p.8605–8613.
Sun, J., Shao, Z., Zhao, H., Nair, N., Wen, F., Xu, J. H., & Zhao, H. (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and bioengineering, 109(8), p.2082–2092.
Sueoka, N. and Kano-Sueoka, T. (1964) A Specific Modification of Leucyl-sRNA of Escherichia coli after Phage T2 Infection. Proc. Natl Acad. Sci., 52(6), pp. 1535-1540.
Soufiane, B. and Jean-Charles, C. (2013) Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiol Lett, 341, p.127–137.
Vargas-Rodriguez O. and Musier-Forsyth K. (2013) Exclusive use of trans-editing domains prevents proline mistranslation. J. Biol. Chem., 20, p.14391–14399.
Vecchione J.J. and Sello, J.K. (2010) Regulation of an Auxiliary, Antibiotic-Resistant Tryptophanyl-tRNA Synthetase Gene via Ribosome-Mediated Transcriptional Attenuation. Journal of Bacteriology, 192(4), p. 3565–3573.
Weiss, S.B., Wen-Tah H., Foft, J.W., Scherberg, N.H. (1968) Transfer RNA coded by the T4 bacteriophage genome. Biochemistry, 61, p.114-121.
Woese, C.R., Olsen, G.J., Ibba, M., Soll, D. (2000) Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiology and Molecular Biology Reviews, p. 202–236.
Wong, F.C., Beuning, P.J., Silvers, C. and Musier-Forsyth, K. (2003) An Isolated Class II Aminoacyl-tRNA Synthetase Insertion Domain Is Functional in Amino Acid Editing. The Journal of Biological Chemistry, 278(52), pp. 52857–52864.
Wright, M., Boonyalai, N., Tanner, J.A., Hindley, A.D., Miller, A.D. (2006) The duality of LysU, a catalyst for both Ap4A and Ap3A Formation. FEBS Journal,273, p. 3534–3544.
Yaremchuk, A.D., Boyarshin, K.S., Tukalo, M.A. (2012) Prolyl-tRNA synthetase from Thermus thermophilus is eukaryotic-like but aminoacylates prokaryotic tRNAPro. Biopolymers and cell, 28(6), p.434–440.
Yokozawa, J., Okamoto, K., Kawarabayasi Y., Kuno, A., Hasegawa T. (2003) Molecular recognition of proline tRNA by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1. Nucleic Acids Research Supplement No. 3, p.247-248.
Zhang, H., Huang, K., Li, Z., Banerjei, L., Fisher, K.E., Grishin, N.V., Eisenstein, E., and Herzberg, O. (2000) Crystal structure of YbaK protein from Haemophilus influenzae (HI1434) at 1.8 A° resolution: functional implications. Proteins, 40, p.86–97. |