博碩士論文 107821603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.15.235.196
姓名 盧曼里(Luqman Fikri Amrullah)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Recognition of tRNA His isoacceptors by human HisRS isoforms★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P
★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii★ tRNA aminoacylation by a naturally occurring mini-AlaRS
★ Functional Repurposing of C-Ala Domains★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Prolyl-tRNA synthetase (ProRS)是一群古老的酵素, 負責將胺基酸連接到相對應的 tRNAPro 以進行蛋白質合成。 ProRS包含三個保守序列域(1-3)。根據蛋白質序列及結構,ProRS可分為兩種類型:真核/古細菌類型(E-type),其特點是含有一個C端延伸域(CTD);原核類型(P-type),其特徵是在保守序列域 2 和 3 之間存在一個插入序列 (INS)。E-type ProRS 主要存在於古細菌、真核生物(細胞質和植物細胞器)、和一些細菌中,而 P-type ProRS 是存在於大多數細菌和真核生物的線粒體中。ProRS的親緣演化分析顯示,幾乎所有細菌都含有一個P-type ProRS和一個P-type tRNAPro。然而,蘇雲金芽孢桿菌(B. thuringiensis)包含兩種類型的 ProRS,P-type (BtProRS1) 和 E-type ProRS (BtProRS2) ,但是只含一個P-type tRNAPro。 BtProRS1 包含一個 INS 但缺少一個 CTD。相反地,BtProRS2 包含 CTD ,但缺少 INS。為了研究這兩種 ProRS 的 tRNA 特異性,我們使用酵母菌 ProS2 剔除株來進行互補測定,並使用純化的 BtProRS 和 tRNAsPro 做胺醯化測定。我們的結果顯示 BtProRS1 和 BtProRS2 都可以提供酵母菌線粒體所需的 ProRS活性,這表示這兩種酵素都可以將酵母線粒體的 P-type tRNAPro 胺醯化,達到足以維持正常線粒體功能的水平。不幸的是,我們純化的BtProRS1 和 BtProRS2 都都無法有效地胺醯化酵母菌 tRNAPro、大腸桿菌tRNAPro 或 BttRNAPro。進一步的親緣演化分析顯示,並非所有芽孢桿菌屬都含有兩種類型的 ProRS,我們將進一步討論這一發現的生物學意義。
摘要(英) Prolyl-tRNA synthetase (ProRS) is an enzyme that activates proline and attaches it to tRNAPro for protein synthesis. ProRS belongs to class IIa aminoacyl-tRNA synthetase, containing three conserved sequence domains (motifs 1-3). Based on functional domains, ProRS itself is divided into two types: eukaryotic/archaea-like type (E-type), which is characterized by the presence of a C-terminal extension domain (CTD), and prokaryotic-like type (P-type), which is characterized by the presence of an insertion domain (INS) between motifs 2 and 3. E-type ProRSs are primarily found in archaea, eukaryotes (cytoplasm and plant organelle), and some bacteria, while P-type ProRSs are found in most bacteria and mitochondria of eukaryotes. Phylogenetic analysis of ProRS showed that almost all bacteria contain one P-type ProRS and one P-type tRNAPro. However, the bacterium Bacillus thuringiensis contains both types of ProRS, a P-type (BtProRS1) and an E-type ProRS (BtProRS2), and a P-type tRNAPro. BtProRS1 contains an INS but lacks a CTD. On the contrary, BtProRS2 contains a CTD but lacks an INS. To investigate the tRNA specificities of these two ProRS enzymes, a heterologous complementation assay using a yeast ProS2 knockout strain and an aminoacylation assay using purified BtProRSs and tRNAsPro as substrates were carried out. We demonstrated herein that both BtProRS1 and BtProRS2 could rescue the yeast mitochondrial ProRS KO strain, suggesting that both enzymes can charge the P-type yeast mitochondrial tRNAPro to a level sufficient to maintain normal mitochondrial function. Unfortunately, neither BtProRS1 nor BtProRS2 charged yeast total tRNA, E. coli total tRNA, or BttRNAPro. Further phylogenetic analysis revealed that not all Bacillus species contain both types of ProRS. The biological significance of this finding will be further discussed.
關鍵字(中) ★ tRNA合成酶
★ 芽孢桿菌
★ 水平基因轉移
★ 蛋白質合成
★ 轉譯
★ tRNA
關鍵字(英) ★ aminoacyl-tRNA synthetase
★ Bacillus
★ horizontal gene transfer
★ protein synthesis
★ translation
★ tRNA
論文目次 ABSTRACT i
ABSTRACT (in Chinese) ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENT iv
LIST OF FIGURES vi
ABBREVIATION vii
CHAPTER 1. INTRODUCTION 1
1.1 Protein synthesis in prokaryotes 1
1.2 Aminoacyl-tRNA synthetase 1
1.3 Two types of Prolyl-tRNA synthetase 2
1.4 Different ProRSs types recognize different tRNAsPro 3
1.5 Bacillus thuringiensis carrying two types of ProRS and one types of tRNAPro 4
1.6 Specific aim 5
1.7 Hypothesis 5
CHAPTER 2. MATERIALS AND METHODS 6
2.1 Phylogenetic analysis of ProRSs 6
2.2 Plasmid construction of Bacillus thuringiensis ProRSs and tRNAPro genes 6
2.3 Heterologous complementation assay for mitochondrial ProRS activity 7
2.4 Purification of Bacillus thuringiensis ProRSs 7
2.5 In vitro transcription of tRNAPro 8
2.6 In vitro aminoacylation assay 8
2.7 Sequencing the gene encoding Bacillus thuringiensis ProRSs 9
CHAPTER 3. RESULTS 10
3.1 B. thuringiensis contains two distinct ProRSs and one P-type tRNAPro 10
3.2 Heterologous complementation assays for mitochondrial ProRS activity 11
3.3 Purification of B. thuringiensis ProRSs and tRNAsPro substrates 12
3.4 In vitro aminoacylation assays 13
CHAPTER 4. DISCUSSION 14
4.1 B. thuringiensis has two types of ProRSs and one P-type tRNAPro 14
4.2 Both P-type BtProRS1 and E-type BtProRS2 can recognize P-type tRNAPro, in vivo 15
4.3 Both BtProRSs are inactive in vitro 16
4.4 The E-type ProRS was acquired via horizontal gene transfer. Such a scenario occurred
only in some Bacillus species. 17
4.5 Both BtProRSs functions remain canonical 17
REFERENCES 19
APPENDIX A 41
APPENDIX B 42
APPENDIX C 43
APPENDIX D 45
參考文獻 Ahel, I., Korencic, D., Ibba, M., and Soll, D. (2003) Trans-editing of mischarged tRNAs. Proc. Natl. Acad. Sci., 100, p.15422–15427.
Albers, S. and Czech, A. (2016) Exploiting tRNAs to Boost Virulence. Life 6(4) p.1-15
Alexander, R.W. (2013) tRNA Synthetases. Encyclopedia of Biological Chemistry (Second Edition). Academic Press, p.441-444.
Bartholow, T. G., Sanford, B. L., Cao, B., Schmit, H. L., Johnson, J. M., Meitzner, J., Bhattacharyya, S., Musier-Forsyth, K., and Hati, S. (2014) Strictly Conserved Lysine of Prolyl-tRNA Synthetase Editing Domain Facilitates Binding and Positioning of Misacylated tRNAPro. Biochemistry, 53, p.1059 –1068.
Becker, H.D., Roy, H., Moulinier, L., Marie-He´le`ne M., Keith, G. and Kern, D. (2000) Thermus thermophilus Contains a Eubacterial and an Archaebacterial Aspartyl-tRNA Synthetase. Biochemistry, 39 p.3216-3230.
Burke, B., Yang, F., Chen, F., Stehlin, C., Chan, B. and Musier-Forsyth, K. (2000) Evolutionary coadaptation of the motif 2–acceptor stem interaction in the class II prolyl-tRNA Synthetase system. Biochemistry, 39, 15540–15547.
Burke, B., Lipman, R.S., Shiba, K., Musier-Forsyth, K. and Hou, Y.M. (2001) Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA Synthetase. J. Biol. Chem., 276, p.20286–20291.
Burke, B., An S, Musier-Forsyth K. (2008) Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis. Biochim. Biophys. Acta, 1784 pp.1222-1225.
Chang, C.P., Lin, G., Chen, S.J., Chiu, W.C., Chen, W.H., and Wang C.C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. The Journal of Biological Chemistry, 283, p.30699-30706.
Clark, R.L., and Neidhardt, F.C. (1990) Roles of the Two Lysyl-tRNA Synthetases of Escherichia coli: Analysis of Nucleotide Sequences and Mutant Behavior. Journal of Bacteriology, 172(6), p.3237-3243.
Cochrane, R. V. K., Norquay, A. K. & Vederas, J. C. (2016) Natural products and their derivatives as tRNA synthetase inhibitors and antimicrobial agents. Med.chem.comm., 7, p.1535–1545.
Crepin, T., Yaremchuk, A., Tukalo, M. and Cusack, S. (2006) Structures of Two Bacterial Prolyl-tRNA Synthetases with and without a Cis-Editing Domain. Structure, 14, pp.1511–1525.
Cusack S, Hartlein M, Leberman R. (1991) Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res., 19, p.3489-3498.
Cusack, S. (1995) Eleven down and nine to go. Nat. Struct. Biol., 2(10), p.824–831.
Cusack, S., Yaremchuk, A., Krikliviy, I., and Tukalo, M. (1998) tRNAPro anticodon recognition by Thermus thermophiles prolyl-tRNA synthetase. Structure, 6, p.101-108
Dewan, V., Reader, J., and Forsyth, K. M. (2014) Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top. Curr.Chem., 344, p.293–329.
Fang, P., Yu, X., Jeong, S., Mirando, A., Chen, K., Chen, X., Kim, S., Francklyn, C.S., Guo, M. (2015) Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase. Nat. Commun., 6, p.6402.
Feng, L., Stathopoulos, C., Ahel, I., Mitra, A., Tumbula-Hansen, D., Hartsch, T., Söll, D. (2002) Aminoacyl-tRNA formation in the extreme thermophile Thermus thermophilus. Extremophiles, 6, p.167–174.
Giege´, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res., 26, p.5017-5035.
Gilbart, J., Perry, C.R., and Slocombe, B. (1993) High-Level Mupirocin Resistance in Staphylococcus aureus: Evidence for Two Distinct Isoleucyl-tRNA Synthetases. Antimicrobial Agents and Chemotherapy, p. 32-38.
Green, N.J., Grundy, F.J., and Henkin, T.M. (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS Lett., 584(2), p.318–324.
Hall, B.G. (2013) Building Phylogenetic Trees from Molecular Data with MEGA. Mol. Biol. Evol., 30(5), p.1229–1235.
Hasegawa, T. and Yokogawa, T. (2000) Escherichia coli proline tRNA: Structure and recognition sites for prolyl-tRNA synthetase. Nucleic acids Symp. Ser., 44, p.7-8.
Hou, Y.M. (1997) Discriminating among the discriminator bases of tRNAs. Chem. Biol., 4, p.93-96.
Jeremy M Berg, John L Tymoczko, and Lubert Stryer. (2002) Biochemistry, 5th edition. New York: W H Freeman.
Ji, X., Zou, J., Peng, H., Stolle, A.S., Xie, R., Zhang, H., Peng, B., Mekalanos, J.J., Zheng, J. (2019) Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhances their bactericidal activity. Proc Natl Acad Sci.,116(19), p.9578-9585.
Kwon, N.H., Fox, P.L. & Kim, S. (2019) Aminoacyl-tRNA synthetases as therapeutic targets. Nat Rev Drug Discov., 18, p.629–650.
Lee, J., Joshi, N., Pasini, R., Dobson, R.C.J., Allison, J., Leustek, T. (2016) Inhibition of Arabidopsis growth by the allelopathic compound azetidine-2-carboxylate is due to the low amino acid specificity of cytosolic prolyl-tRNA synthetase. The Plant Journal, 88, p. 236–246.
Leveque, F., Gazeau, M., Fromant, M., Blanquet, S., Plateau, P. (1991) Control of Escherichia coli Lysyl-tRNA Synthetase Expression by Anaerobiosis. Journal of Bacteriology, p.7903-7910.
Liu, H., Peterson, R., Kessler, J. and Musier-Forsyth,K. (1995) Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro. Nucleic Acids Res., 23, 165–169.
Meyer-Schuman, R. and Antonellis, A. (2017) Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. Human Molecular Genetics, 26, p.114–127.
Milligan, J.F. and Olke C. Uhlenbeck. (1989) Synthesis of Small RNAs Using T7 RNA Polymerase. Methods in enzymology,180, p.60.
Musier-Forsyth, K., and Schimmel, P. (1999) Atomic Determinants for Aminoacylation of RNA Minihelices and Relationship to Genetic Code Acc. Chem. Res., 32, p.368-375.
Musier-Forsyth, K., Burke, B., and Cusack, S. (2005) The Aminoacyl-tRNA synthetase: Prolyl-tRNA Synthtease (Chapter 15). Landes Bioscience, p.149-161
Nakama, T., Nureki, O. & Yokoyama, S. (2001) Structural basis for the recognition of isoleucyl- adenylate and an antibiotic, mupirocin, by isoleucyl- tRNA synthetase. J. Biol. Chem., 276, p.47387–47393.
Novoa, E.M., Camacho, N., Tor, A., Wilkinson, B., Moss, S., Marín-García, P., Azcárate, I.G., Bautista, J.M., Mirando, A.C., Francklyn, C.S., Varon, S., Royo, M., Cortés, A., Ribas de Pouplana,L. (2014) Analogs of natural aminoacyltRNA synthetase inhibitors clear malaria in vivo. Proc. Natl Acad. Sci., 111, p.5508-5517.
Partow, S., Siewers, V., Bjørn, S., Nielsen, J., & Maury, J. (2010). Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast, 27(11), p.955–964.
Pe´rez-Roth, E., Lo´pez-Aguilar, C., Alcoba-Florez, J., and Me´ndez-A´lvarez. S. (2006) High-Level Mupirocin Resistance within Methicillin-Resistant Staphylococcus aureus Pandemic Lineages. Antimicrobial Agents and Chemotherapy, 50(9), p. 3207–3211.
Putzer, H., Brakhage, A.A., and Grunberg-Manago, M. (1990) Independent Genes for Two Threonyl-tRNA Synthetases in Bacillus subtilis. Journal of Bacteriology, 172 (8), p. 4593-4602.
Rajendran, V., Kalita, P., Shukla, H., Kumar, A., Tripathi, T. (2018) Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. International Journal of Biological Macromolecules, 111, p. 400-414.
Ray P. S., Sullivan J. C., Jia J., Francis J., Finnerty J. R. and Fox P. L. (2011) Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol., 1, p.437-447.
Stehlin,C., Burke,B., Yang,F., Liu,H., Shiba,K. And Musier-Forsyth, K. (1998) Species-specific differences in the operational RNA code for aminoacylation of tRNA(Pro). Biochemistry, 37, p.8605–8613.
Sun, J., Shao, Z., Zhao, H., Nair, N., Wen, F., Xu, J. H., & Zhao, H. (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and bioengineering, 109(8), p.2082–2092.
Sueoka, N. and Kano-Sueoka, T. (1964) A Specific Modification of Leucyl-sRNA of Escherichia coli after Phage T2 Infection. Proc. Natl Acad. Sci., 52(6), pp. 1535-1540.
Soufiane, B. and Jean-Charles, C. (2013) Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiol Lett, 341, p.127–137.
Vargas-Rodriguez O. and Musier-Forsyth K. (2013) Exclusive use of trans-editing domains prevents proline mistranslation. J. Biol. Chem., 20, p.14391–14399.
Vecchione J.J. and Sello, J.K. (2010) Regulation of an Auxiliary, Antibiotic-Resistant Tryptophanyl-tRNA Synthetase Gene via Ribosome-Mediated Transcriptional Attenuation. Journal of Bacteriology, 192(4), p. 3565–3573.
Weiss, S.B., Wen-Tah H., Foft, J.W., Scherberg, N.H. (1968) Transfer RNA coded by the T4 bacteriophage genome. Biochemistry, 61, p.114-121.
Woese, C.R., Olsen, G.J., Ibba, M., Soll, D. (2000) Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiology and Molecular Biology Reviews, p. 202–236.
Wong, F.C., Beuning, P.J., Silvers, C. and Musier-Forsyth, K. (2003) An Isolated Class II Aminoacyl-tRNA Synthetase Insertion Domain Is Functional in Amino Acid Editing. The Journal of Biological Chemistry, 278(52), pp. 52857–52864.
Wright, M., Boonyalai, N., Tanner, J.A., Hindley, A.D., Miller, A.D. (2006) The duality of LysU, a catalyst for both Ap4A and Ap3A Formation. FEBS Journal,273, p. 3534–3544.
Yaremchuk, A.D., Boyarshin, K.S., Tukalo, M.A. (2012) Prolyl-tRNA synthetase from Thermus thermophilus is eukaryotic-like but aminoacylates prokaryotic tRNAPro. Biopolymers and cell, 28(6), p.434–440.
Yokozawa, J., Okamoto, K., Kawarabayasi Y., Kuno, A., Hasegawa T. (2003) Molecular recognition of proline tRNA by prolyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1. Nucleic Acids Research Supplement No. 3, p.247-248.
Zhang, H., Huang, K., Li, Z., Banerjei, L., Fisher, K.E., Grishin, N.V., Eisenstein, E., and Herzberg, O. (2000) Crystal structure of YbaK protein from Haemophilus influenzae (HI1434) at 1.8 A° resolution: functional implications. Proteins, 40, p.86–97.
指導教授 王健家(Chien-Chia Wang) 審核日期 2021-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明