參考文獻 |
[1] Greenhouse gas emissions: Understanding global warming potentials, United States Environmental Protection Agency. Available: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials
[2] C. A. Grande and A. E. Rodrigues, Biogas to Fuel by Vacuum Pressure Swing Adsorption I. Behavior of Equilibrium and Kinetic-Based Adsorbents, Industrial & Engineering Chemistry, vol. 46, pp. 4595–4605, 2007.
[3] Q. Sun , H. Li, J. Yan, L Liu, Z. Yu and X. Yu, Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrding and utilisation, Renewable and Sustainable Energy Reviews, vol. 51, pp. 521-532, 2015.
[4] 蘇忠楨, 農業推廣諮詢:畜牧業沼氣利用推廣, 國立臺灣大學動物科學技術學系。 Available: http://ntucae.blog.ntu.edu.tw/2012/12/31/n96_01/
[5] I. V. Yentekakis and G. Goula, Biogas Management: Advanced Utilization for Production of Renewable Energy and Added Value Chemicals, Frontiers in Environmental Science, vol. 5, 2017.
[6] E. Martín-Hernandez, L.S. Guerras and M. Martín, Optimal technology selection for the biogas upgrading to biomethane, Journal of Cleaner Production, vol. 267, p. 122032, 2020.
[7] 楊立群, 趨向成熟的技術,生物天然氣的純化與應用, 工業局石化產業高值化推動專案, 2017. Available: https://www.pipo.org.tw/Hr/article_more?id=13
[8] 洪凡, 郭家倫, 參加第一屆中歐生物天然氣高峰論壇赴大陸報告,核能研究所, 2016.
[9] 謝宗翰, 以石安牧場為例,打造農畜牧業的循環經濟, 城市發展, 第22冊, 76-87頁, 2017.
[10] 台灣電力股份有限公司,火力電廠環境保護。 Available: http://www.taipower.com.tw/tc/page.aspx?mid=216.
[11] 張素美, 歐盟氣候目標與再生能源發展─2030 年溫室氣體減量至少 40%,再生能源至少 27%, 能源知識庫, 2016.
[12] M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert and T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renewable Energy, vol. 85, pp. 1371-1390, 2016.
[13] R. Augelletti, M. Conti and M. C. Annesini, Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide, Journal of Cleaner Production, vol. 140, pp. 1390-1398, 2017.
[14] S. Sircar, Pressure swing adsorption, Industrial & engineering chemistry research, vol. 41, pp. 1389-1392, 2002.
[15] M. P. S. Santos, C. A. Grande and A. E. Rodrigues, Pressure Swing Adsorption for Biogas Upgrading. Effect of Recycling Streams in Pressure Swing Adsorption Design, Industrial & Engineering Chemistry, pp. 974-985, 2011.
[16] R. T. Yang, Gas Separation by Adsorption Process, vol. 1, Imperial College, London, 1997.
[17] S. U. Rege and R. T. Yang, A Simple Parameter for Selection an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[18] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[19] W. H. McAdams, Heat Transmission, 3rd ed., McGraw Hill, New York, 1954.
[20] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
[21] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, London, 1988.
[22] W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[23] P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[24] P. E. Jahromi, S. Fatemi, A.Vatani, J. A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[25] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[26] R. T. Yang and S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[27] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[28] A. Fuderer and E. Rudelstorfer, Selective Adsorption Process, US Patent 3986849, 1976.
[29] P. H. Turnock and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[30] S. Farooq and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[31] E. Glueckauf and J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[32] J. A. A. Gibson, A. V. Gromov, S. Brandani and E. E. Campbell, Comparison of amine-impregnated mesoporous carbon with microporous activated carbon and 13X zeolite for biogas purification, Journal of Porous Materials, vol. 24, pp. 1473-1479, 2017.
[33] H. H. Heck, M. L. Hall, R. dos Santos and M. M. Tomadakis, Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X, Separation Science and Technology, vol. 53, pp. 1490-1497, 2017.
[34] F. Gholipour and M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling, The Journal of Supercritical Fluids, vol. 111, pp. 47-54, 2016.
[35] M. Mofarahi and S. M. Salehi, Pure and Binary Adsorption Isotherms of Ethylene and Ethane on Zeolite 5A, Adsorption, vol. 19, pp. 101-110, 2013.
[36] J. A. C. Silva, K. Schumann and A. E. Rodrigues, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite, Microporous and Mesoporous Materials, vol. 158, pp. 219-228, 2012.
[37] S. Cavenati, C. A. Grande and A. E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.
[38] X. Peng and D. Cao, Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas, AIChE Journal, vol. 59, pp. 2928-2942, 2013.
[39] L. Sigot, G. Ducom, B. Benadda and C. Labouré, Comparison of Adsorbents for H2S and D4 Removal for Biogas Conversion in a Solid Oxide Fuel Cell, Environmental Technology, vol. 37, pp. 86-95, 2016.
[40] A. J. Cruz, J. Pires, A. P. Carvalho and M. B. D. Carvalho, Physical Adsorption of H2S Related to the Conservation of Works of Art: The Role of the Pore Structure at Low Relative Pressure, Adsorption, vol. 11, pp. 569-576, 2005.
[41] M. M. Tomadakis, H. H. Heck, M. E. Jubran and K. Al-Harthi, Pressure-Swing Adsorption Separation of H2S from CO2 with Molecular Sieves 4A, 5A, and 13X, Separation Science and Technology, vol. 46, pp. 428-433, 2011.
[42] K. G. Wynnyk, B. Hojjati and R. A. Marriott, High-Pressure Sour Gas and Water Adsorption on Zeolite 13X, Industrial & Engineering Chemistry Research, vol. 57, pp. 15357-15365, 2018.
[43] A. Alonso-Vicario, J. R. Ochoa-Gómez, S. Gil-Río, O. Gómez-Jiménez-Aberasturi, C. A. Ramírez-López, Torrecilla-Soria, J. and A. Domínguez, Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites, Microporous and Mesoporous Materials, vol. 134, pp. 100-107, 2010.
[44] L. Sigot, M. F. Obis, H. Benbelkacem, P. Germain and G. Ducom, Comparing the performance of a 13X zeolite and an impregnated activated carbon for H2S removal from biogas to fuel an SOFC: Influence of water, International Journal of Hydrogen Energy, vol. 41, pp. 18533-18541, 2016.
[45] T. Tsujiguchi, Y. Miyashita, Y. Osaka and A. Kodama, Influence of Contained Water Vapor on Performance of Simulated Biogas Separation by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 49, pp. 251-256.
[46] S. N. Vyas, S. R. Patwardhan, I. Gupta and V. Burra, Bulk Separation and Purification of CH4/CO2 mixtures on 4A/13X molecular sieves by using pressure swing adsorption, Separation Science and Technology, vol. 26, pp. 1419-1431, 1991.
[47] C. A. Grande and A. E. Rodrigues, Layered Vacuum Pressure-swing Adsorption for Biogas Upgrading, Industrial & engineering chemistry research, vol. 46, pp. 7844-7848, 2007.
[48] M. P. S. Santos, C. A. Grande and A. E. Rodrigues, Dynamic Study of the Pressure Swing Adsorption Process for Biogas Upgrading and Its Responses to Feed Disturbances, Industrial & Engineering Chemistry Research, vol. 52, pp. 5445-5454, 2013.
[49] J. A. Thompson, Acid Gas Adsorption on Zeolite SSZ-13:Equilibrium and dynamic behavior for natural gas applications, AIChE Journal, vol. 66, article e16549, 2020.
[50] S. Hosseinpour, S. Fatemi, Y. Mortazavi, M. Gholamhoseini and M.T. Ravanchi, Performance of CaX zeolite for separation of C2H6, C2H4, and CH4 by adsorption process; capacity, selectivity, and dynamic adsorption measurements, Separation Science and Technology, vol. 46, pp. 349-355, 2010.
[51] G. M. Nam, B. M. Jeong, S. H. Kang, B. K Lee, and D. K. Choi, Equilibrium Isotherms of CH4, C2H6, C2H4, N2, and H2 on Zeolite 5A Using a Static Volumetric Method, Journal of Chemical & Engineering Data, vol. 50, pp. 72-76, 2005.
[52] C. A. Grande, S Roussanaly, R. Anantharaman, K. Lindqvist, P. Singh, and J. Kemper, CO2 Capture in Natural Gas Production by Adsorption Processes, Energy Procedia, vol. 114, pp. 2259-2264, 2017.
[53] D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
[54] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[55] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, New Jersey, 2007.
[56] E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[57] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[58] D. F. Fairbanks and C. R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[59] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw Hill, New York, 2005.
[60] N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[61] G. Carta and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[62] J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, John Wiley & Sons, New Jersey, 2008.
[63] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, in Perry′s Chemical Engineers′ Handbook, 7th ed., McGraw Hill, New York, 1997.
[64] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic Study of Diffusion in Molecular-sieving Carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[65] H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecular Sieves, Langmuir, vol. 19, pp. 393-405, 2003.
[66] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[67] Y. Park, Y. Ju, D. Y. Park and C. H. Lee, Adsorption Equilibria and Kinetics of Six Pure Gases on Pelletized Zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2, Chemical Engineering Journal, vol. 292, pp. 348-365, 2016.
[68] M. I. Hossain, C. E. Holland, A. D. Ebner and J. A. Ritter, Mass Transfer Mechanisms and Rates of CO2 and N2 in 13X Zeolite from Volumetric Frequency Response, Industrial & Engineering Chemistry Research, vol. 58, pp. 21679–21690, 2019.
[69] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[70] Fluid Controls Institute Inc., Recommended Voluntary Standard Formulas for Sizing Control Valves, FCI 62-1, May 1962.
[71] R. C. Patel and C. J. Karamchandani, Element of Heat Engines, Eighteenth Edition, Acharya Book Depot, Vadodara, 1994.
[72] A. Golmakani, S. Fatemi and J. Tamnanloo, CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[73] 林柏瑋, 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究, 國立中央大學,碩士論文, 民國109年.
[74] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學,碩士論文, 民國104年.
[75] J. M. Smith and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw Hill, New York, 1987.
[76] K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[77] M. J. Ahmed, A. H. A. K. Mohammed and A. A. H. Kadhum, Experimental and theoretical studies of equilibrium isothermsfor pure light hydrocarbons adsorption on 4A zeolite, Korean Journal of Chemical Engineering, vol. 27, pp. 1801-1804, 2010.
[78] E. Khoramzadeh, M. Mofarahi and C. H. Lee, Equilibrium Adsorption Study of CO2 and N2 on Synthesized Zeolites 13X, 4A, 5A, and Beta, Journal of Chemical & Engineering Data, vol. 64, pp. 5648-5664, 2019. |