博碩士論文 108324062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.15.232.244
姓名 田鎮豪(Chen-Hao Tien)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附程序從鋼鐵業轉爐氣及高爐氣中分離純化一氧化碳
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鋼鐵製造產業在煉鋼的過程中會產生煉焦爐氣(coke oven gas, COG)、高爐氣(blast furnace gas, BFG)以及轉爐氣(Linz-Donawitz converter gas, LDG),其中轉爐氣的熱值較煉焦爐氣低,且對於此三種氣體中其含有最高的一氧化碳組成比例。而一氧化碳經分離純化可作為合成化學的基礎原料,其經濟價值高,且能達到循環經濟的效應。
本研究擬模擬以變壓吸附法(pressure swing adsorption, PSA)分離轉爐氣進料及高爐氣進料中之一氧化碳,以沸石5A及PU-1作為吸附劑。轉爐氣氣體組成為1.4%氫氣、61.5%一氧化碳、21.3%二氧化碳及15.8%氮氣,而高爐氣氣體組成為2.76%氫氣、20.78%一氧化碳、21.27%二氧化碳及55.19%氮氣,其中雖然PU-1具有較高的一氧化碳吸附量以及一氧化碳對氮氣之選擇性,但其一氧化碳對二氧化碳之選擇性較低,故以兩階段雙塔六步驟PSA程序分離轉爐氣及高爐氣。沸石5A及PU-1分別為第一階段PSA及第二階段PSA之吸附劑,第一階段PSA程序目的為分離二氧化碳,產生含有較低二氧化碳濃度之產品氣,並將其作為第二階段PSA程序之進料,分離純化高濃度之一氧化碳。以轉爐氣及高爐氣為進料時,塔底產物一氧化碳純度分別為96.29%及95.25%,且回收率分別為77.94%及66.65%。
最後本研究以銅離子改質之Cu(I)AC作為吸附劑從轉爐氣中分離純化一氧化碳,由於其具有高的一氧化碳吸附量、一氧化碳對二氧化碳之選擇性以及一氧化碳對氮氣之選擇性,因此以一階段三塔九步驟PSA程序分離轉爐氣。因轉爐氣中的氫氣含量相較其他成分低,故於模擬中,氫氣的含量可以併入氮氣含量中,故本研究以16.9%二氧化碳、18.3%氮氣及64.8%一氧化碳作為進料。經過實驗設計分析後可得到最佳操作條件,在步驟1/4/7時間120秒、步驟2/5/8時間48秒、步驟3/6/9時間30秒、塔長80公分、進料壓力1.95 atm、同向減壓壓力0.4 atm及抽真空壓力0.05 atm的操作條件下,能得到塔底產物一氧化碳純度為95.08 %,且回收率為90.17%。
摘要(英) The steelmaking industry generates coke oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz converter gas (LDG) during the steelmaking process. The heating value of LDG is lower than that of COG, and it contains the highest proportion of CO among the three gases. After separation and purification, CO can be used as the raw material of synthetic chemistry, which has high economic value. It can also achieve the goal of circular economy.
In this study, pressure swing adsorption (PSA) was applied to separate LDG and BFG by simulation study. The composition of LDG was 1.4% H2, 21.3% CO2, 15.8% N2, and 61.5% CO. Furthermore, the composition of BFG was 2.76% H2, 21.27% CO2, 55.19% N2, and 20.78% CO. The zeolite 5A and PU-1 are used to separate and purify CO. PU-1 has high CO adsorption amount and CO/N2 selectivity. However, it has low CO/CO2 selectivity. So a two stage two-bed six-step pressure swing adsorption process for LDG and BFG was designed. The zeolite 5A and PU-1 were adsorbents of the first stage PSA and the second stage PSA, respectively. The first stage PSA process was applied to separate CO2 from LDG and BFG. The outlet stream from the first stage PSA contains low concentration CO2 is taken as the inlet of the second stage PSA process. The second stage PSA process was applied to separate and purify CO from LDG and BFG. When LDG and BFG are taken as the inlet of the PSA process, this study showed that the bottom product CO purity of 96.29% and 95.25% with the recovery of 77.94% and 66.65%, respectively.
Finally, the copper modified adsorbent of Cu(I)AC can be used to separate and purify CO from LDG due to its high CO adsorption amount, CO/CO2 selectivity and CO/N2 selectivity. Therefore, a single-stage three-bed nine-step pressure swing adsorption process for LDG was designed. Because the H2 concentration is much lower than other components in LDG, H2 concentration can be lumped into N2 concentration in this study. The composition of LDG was assumed 16.9% CO2, 18.3% N2, and 64.8% CO, which is taken as the inlet of PSA process. After simulation analysis and design of experiments, this study showed that the bottom product has a CO purity of 95.08% with a recovery of 90.17%, while at step 1/4/7 time 120 s, step 2/5/8 time 48 s, step 3/6/9 time 30 s, bed length 80 cm, feed pressure 1.95 atm, cocurrent depressurization pressure 0.4 atm, and vacuum pressure 0.05 atm.
關鍵字(中) ★ 變壓吸附程序
★ 轉爐氣
★ 高爐氣
★ 一氧化碳
關鍵字(英) ★ Pressure swing adsorption
★ Linz-Donawitz converter gas
★ blast furnace gas
★ Carbon monoxide
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xi
第一章、緒論 1
第二章、簡介及文獻回顧 6
2-1 吸附之簡介 6
2-2 PSA程序之發展及改進 8
2-3 文獻回顧 13
第三章、假設及理論 16
3-1 基本假設 16
3-2 統治方程式 17
3-3 質傳模式 21
3-4 等溫吸附平衡關係式 26
3-5 參數推導 27
3-5-1軸向分散係數(Axial dispersion coefficient) 27
3-5-2熱傳係數 29
3-6 邊界條件與流速 31
3-6-1 邊界條件與節點流速 31
3-6-2 閥公式 32
3-7 求解步驟 33
3-8 吸附劑與其選擇性 36
第四章、模擬驗證 38
4-1 製程描述 38
4-2 模擬驗證所需參數 41
4-3 模擬驗證結果 42
第五章、兩階段雙塔六步驟之四成分轉爐氣分離程序 43
5-1 吸附劑吸附能力比較 43
5-2 製程描述 50
5-3 模擬所需參數 52
5-4 模擬結果 54
第六章、兩階段雙塔六步驟之四成分高爐氣分離程序 56
6-1 吸附劑吸附能力比較 56
6-2 製程描述 60
6-3 模擬所需參數 61
6-4 模擬結果 62
第七章、一階段三塔九步驟之三成分轉爐氣分離程序 64
7-1 吸附劑吸附能力比較 64
7-2 製程描述 67
7-3 模擬所需參數 68
7-4 模擬結果 69
第八章、實驗設計求最佳化結果 70
8-1 變異數分析(Analysis of Variance, ANOVA) 71
8-1-1 殘差分析圖 74
8-1-2 回歸分析 76
8-1-3 實驗設計之最佳化結果 77
8-2 以模擬程序驗證實驗設計之最佳化結果 78
第九章、結論 79
符號說明 81
參考文獻 86
附錄 92
附錄A、流速之估算方法 92
參考文獻 [1] 黃啟峰, 潘子欽, 台灣鋼鐵業能源效率與能源轉型分析, 燃燒季刊, 105期, 73-87頁, 2019.
[2] 吳展維, 林佩勳, 副產燃氣優質化利用, 燃燒季刊, 71期, 3-14頁, 2010.
[3] 劉曉勤, 馬正飛, 姚虎卿, 變壓吸附法回收高爐氣中CO的研究, 化學工程, 31卷, 6期, 54-57頁, 2003.
[4] 戴服管, 游家驪, 我國工業廢氣中的一氧化碳及其利用, 化學進展, 1期, 29-54頁, 1990.
[5] A. D. Evans, M. S. Cummings, R. Luebke, M. S. Brown, S. Favero, M. P. Attfield, F. Siperstein, D. Fairen-Jimenez, K. Hellgardt, R. Purves, D. Law and C. Petit, Screening Metal−Organic Frameworks for Dynamic CO/N2 Separation Using Complementary Adsorption Measurement Techniques, Ind. Eng. Chem. Res., vol. 58, pp. 18336−18344, 2019.
[6] 陳耀壯, 李潔, 王磊, 熊國炎, CO分離提純技術研究進展, 山東化工, 43卷, 9期, 35-37頁, 2014.
[7] N. N. Dutta and G. S. Patil, Developments in CO separation, Gas Separ. Purif., vol. 9, no. 4, pp. 277-283, 1995.
[8] N. Maruoka and T. Akiyama, Heat Recovery of LDG by Utilizing Latent Heat and Reaction Heat for Producing Methanol, ISIJ Int., vol. 42, no. 11, pp. 1189-1195, 2002.
[9] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[10] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
[11] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, London, 1988.
[12] W. Choi, W. Kwon, Y. Yeo, H. Lee, H. K. Song and B. Na, OptimalOperation of the Pressure Swing Adsorption (PSA) Process for CO2 Recovery, Korean J. Chem. Eng., vol. 20, pp. 617-623, 2003.
[13] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[14] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Sep. Purif. Technol., vol. 193, pp. 91-102, 2018.
[15] P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption, US Patent 3155468, 1964.
[16] B. K. Na, H. L. Lee, K. K. Koo, and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Ind. Eng. Chem. Res., vol. 41, pp. 5498-5503, 2002.
[17] K. Chihara and M. Suzuki, Air Drying by Pressure Swing Adsorption, J. Chem. Eng. Jpn., vol. 16, pp. 293-299, 1983.
[18] J. J. Collins, Air Separation by Adsorption, US Patent 4026680, 1975.
[19] S. J. Doong and R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, React. Polym., vol. 6, pp. 7-13, 1987.
[20] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE J., vol. 50, pp. 2904-2914, 2004.
[21] E. Rudelstorfer and A. Fuderer, Selective Adsorption Process, US Patent 3986849, 1976.
[22] H. Kim, M. Sohail, K. Yim, Y. C. Park, D. H. Chun, H. J. Kim, S. O. Han and J. H. Moon, Effective CO2 and CO Separation Using [M2(DOBDC)] (M = Mg, Co, Ni) with Unsaturated Metal Sites and Excavation of Their Adsorption Sites, ACS Appl. Mater. Interfaces, vol. 11, pp. 7014-7021, 2019.
[23] C. Xue, W. Hao, W. Cheng, J. Ma and R. Li, Effects of pore size distribution of activated carbon (AC) on CuCl dispersion and CO adsorption for CuCl/AC adsorbent, Chem. Eng. J., vol. 375, article 122049, 2019.
[24] Y. Xie, J. Zhang, J. Qiu, X. Tong, J. Fu, G. Yang, H. Yan and Y. Tang, Zeolites Modified by CuCI for Separating CO from Gas Mixtures Containing CO2, Adsorption, vol. 3, pp. 27-32, 1996.
[25] L. Q. Zhu, J. L. Tu and Y. J. Shi, Separation of CO-CO2-N2 Gas Mixture for High-Purity CO by Pressure Swing Adsorption, Gas Separ. Purif., vol. 5, pp. 173-176, 1991.
[26] H. Miyajima, Improved Purge Step in Pressure Swing Adsorption for CO Purification, Adosrption, vol. 11, pp. 625-630, 2005.
[27] Y. B. Chen, P. Ning, Y. C. Xie, Y. H. Chen, H. Sun and Z. Y. Liu, Pilot-Scale Experiment for Purification of CO from Industrial Tail Gases by Pressure Swing Adsorption, Chin. J. Chem. Eng., vol. 16, pp. 715-721, 2008.
[28] C. T. Chou and C. Y. Chen, Carbon Dioxide Recovery by Vacuum Swing Adsorption, Sep. Purif. Technol., no. 39, pp. 51-65, 2004.
[29] P. H. Turnock and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE J., vol. 17, pp. 335-342, 1971.
[30] R. T. Yang and S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE J., vol. 31, pp. 1829-1842, 1985.
[31] S. Farooq and D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chem. Eng. Sci., vol. 45, pp. 107-115, 1990.
[32] E. Glueckauf and J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, J. Chem. Soc., pp. 1315-1321, 1947.
[33] S. Farooq and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model, Ind. Eng. Chem. Res., vol. 29, pp. 1084-1090, 1990.
[34] N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chem. Eng. Sci., vol. 34, pp. 325-336, 1979.
[35] G. Carta and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chem. Eng. Sci., vol. 53, pp. 3483-3488, 1998.
[36] J. Karger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, Wiley, New York, 1992.
[37] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, J. Phys. Chem., vol. 73, pp. 3679-3685, 1969.
[38] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, in Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[39] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic study of diffusion in molecular-sieving carbon, J. Chem. Eng. Jpn., vol. 7, pp. 151-157, 1974.
[40] H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecular sieves, Langmuir, vol. 19, pp. 393-405, 2003.
[41] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[42] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[43] E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, J. Gas Chromatogr., vol. 3, pp. 222-227, 1965.
[44] D. F. Fairbanks and C. R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Ind. Eng. Chem., vol. 42, pp. 471-475, 1950.
[45] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[46] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[47] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chem. Eng. Sci., vol. 2, pp. 1-13, 1953.
[48] R. T. Yang, Adsorbents: Fundamentals and Applications, Wiley, New Jersey, 2003.
[49] S. U. Rege and R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Sep. Sci. Technol., vol. 36(15), pp. 3355-3365, 2001.
[50] A. Abdeljaoued, F. Relvas, A. Mendes and M. H. Chahbani, Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells, J. Environ. Chem. Eng., vol. 6, pp. 338-355, 2018.
[51] J. M. Smith and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill Inc., New York, 1987.
[52] 耿雲峰, 唐偉, 張佳平, 謝有暢, 以PU-1為吸附劑的變壓吸附分離CO新技術, 中國煤炭加工與綜合利用技術戰略研討會論文集, 77-79頁, 2004.
[53] Y. Park, Y. Ju, D. Park and C. H. Lee, Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2, Chem. Eng. J., vol. 292, pp. 348-365, 2016.
[54] S. Ahn, Y. W. You, D. G. Lee, K. H. Kim, M. Oh and C. H. Lee, Layered two- and four-bed PSA processes for H2 recovery from coal gas, Chem. Eng. Sci., vol. 68, pp. 413-423, 2012.
[55] Y. Zhou, Y. Shen, Q. Fu and D. Zhang, CO Enrichment from Low-Concentration Syngas by a Layered-Bed VPSA Process, Ind. Eng. Chem. Res., vol. 56, pp. 6741-6754, 2017.
[56] Y. C. Xie, N. Y. Bu, J. Liu, J. G. Qiu, G. Yang, N. F. Yang, and Y. Q. Tang, Adsorbents for Use in The Separation of Carbon Monoxide and Unsaturated Hydrocarbons from Mixed Gases, US Patent 4917711, 1990.
[57] G. M. Nam, B. M. Jeong, S. H. Kand, B. K. Lee and D. K. Choi, Equilibrium Isotherms of CH4, C2H6, C2H4, N2, and H2 on Zeolite 5A Using a Static Volumetric Method, J. Chem. Eng. Data, vol. 50, pp. 72-76, 2005.
[58] 鄭筑勻, 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析, 國立中央大學, 碩士論文, 2019.
[59] K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明