博碩士論文 108827019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:18.190.152.38
姓名 葉姿昀(Tzu-Yun Yeh)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 根據腦電圖分析虛擬實境中的干擾對專注力的影響
(The effect of interference in attention under 3D virtual reality environments: An EEG study)
相關論文
★ 足弓指標參數之比較分析★ 運用腦電波研究中風病人的復健成效 與持續情形
★ 重複間斷性Theta爆發刺激對手部運動之腦波的影響★ Amylose mediated electricity production of Staphylococcus epidermidis for inhibition of Cutibacterium acnes growth
★ 使用虛擬實境系統誘發事件相關電位P300之研究★ 虛擬實境誘發體感覺事件相關電位P300之動態因果模型研究
★ 使用GPU提升事件相關電位之動態因果模型的運算效能★ 基於動態因果模型之老化相關的運動網路研究
★ 應用腦電圖預測中風病人復健情況★ 以益智遊戲進行空間工作記憶訓練在事件相關電位P3上的影響
★ 基於虛擬實境復健之中風後運動網路功能性重組研究★ 應用腦電圖與相關臨床因子預測中風病人復原之研究
★ 中風復健後與虛擬實境物理參數 相關的動作網絡重組★ 以運動指標預測復健成效暨設計復健方針
★ 運用時頻轉換分析方法研究 工作記憶訓練之人類大腦可塑性★ 中風患者在復健後的大腦神經連結的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 連續表現任務(Continuous performance task , CPT)是一種評估注意力相關問題的臨床試驗。在CPT過程中,行為數據(如反應時間、正確率)和神經元訊號數據(如P3振幅)都可以被測量,並用於提供與注意力有關的疾病的診斷。過去研究指出注意力測驗中,腦波中P300振幅越高表示注意力越集中。在頻域方面,也有研究指出在注意力下降時Theta頻帶(4-7Hz) 會提高,Beta頻帶(13-30Hz)會降低,及theta/beta比值會增加。通常,CPT是在控制良好的實驗環境下給予受試者的,沒有考慮到可能意外發生的干擾的影響。在這項研究中,我們通過使用虛擬實境(virtual reality ,VR)來構建一個具有多種干擾模式的教室場景,研究環境干擾是否會對注意力產生影響。
我們招募了30名健康男性受試者。他們被要求在三維VR環境下執行GO/NO-GO任務,測試中GO條件為數字1後面為0時要按下板機,NO-GO條件則是1後面不為0而不要按板機,GO的發生機率為20%,藉此發生注意力P300波,本研究在整個任務過程中以500Hz的採樣率記錄了6通道EEG(Cz,Pz,C3,C4,FCz,CPz)和2通道EOG,並分析在執行專注力試驗時的腦波資料做時域和頻域訊號的比較。分析結果顯示,在比較NO-GO試驗時,當受試者注意目標時(即"GO"的條件),干擾的呈現導致了Pz電極P3振幅和所有電極β功率的顯著增加,但 Cz 處的 P3 幅度和 Cz、FCz 處的 theta 功率顯著降低。與無干擾試驗相比,在 go 條件下的干擾試驗中,所有電極的 theta 和 beta 功率顯著更大。 對於NO-GO條件,與無干擾相比,干擾增強了所有電極的 beta 功率。GO和NO-GO條件之間 P3 幅度的差異驗證了該 VR 系統探測注意力的有效性。增強 theta 和 beta 功率表明環境干擾引起了更多與注意力相關的神經元資源。
總之,環境干擾會影響注意力的神經元活動,這一發現可用於設計治療方案,以提高注意力相關疾病的治療效果。
摘要(英) The Continuous Performance Task (CPT) is a clinical trial that assesses attention-related problems. During CPT, behavioral data (such as reaction time, accuracy) and neuronal signal data (such as P3 amplitude) can be measured and used to provide a diagnosis of attention-related disorders. Previous studies have shown that higher P300 amplitude in brain waves indicates higher attention in attention tests.In terms of frequency domain, it has also been suggested that the Theta band (4-7Hz) increases and Beta band (13-30Hz) decreases when attention decreases, and theta/beta ratio increases. Usually, CPT is given to subjects under a well-controlled experimental environment and does not take into account the effect of interference which may occur un-expectedly. In this study, we examine whether the environmental interference can have any impact on attention by using virtual reality (VR) to construct a classroom scene with multiple modes of interferences.
We recruited 30 healthy male subjects. They were asked to perform a GO/NO-GO task in a 3D VR environment, where the GO condition was to press the board when the number 1 was followed by 0, and the NO-GO condition was not to press the board when the number 1 was not followed by 0. The probability of GO was 20%, whereby a P300 wave of attention occurred.In this study, six channels of EEG (Cz, Pz, C3, C4, FCz, CPz) and two channels of EOG were recorded at a sampling rate of 500 Hz throughout the task, and brain wave data were analyzed for comparison of time domain and frequency domain signals during the execution of the attention test. The analytic results exhibited that, when compared with the no-go conditions, the presents of interferences resulted in significant increase in P3 amplitudes at Pz and the beta power of all channels but significant decrease in P3 amplitudes at Cz and the theta power at Cz and FCz when the subjects have payed attention on the cues (i.e. the “go” condition). When compared with no interference trials, the theta and beta power at all channels were significantly greater in interference trials under the go condition. For no-go conditions, the interference enhanced the beta power at all channels when compared with no interference.
The differences in P3 amplitudes between go and no-go conditions validated the efficacy of this VR system to probe the amount of attention. The enhancement of the theta and beta power with inference suggested that environmental distractions elicited greater attention-related neuronal resources.
In conclusion, the environmental interference can affect the neuronal activities for attention and this finding can be used to design the therapeutic protocol to promote the treatment efficacy of attention-related disorders.
關鍵字(中) ★ 虛擬實境
★ P300
★ 注意力
★ 連續表現任務
關鍵字(英) ★ virtual reality
★ P300
★ attention
★ CPT(continuous performance task)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 背景知識與文獻回顧 1
1-1 腦電波 1
1-1-1 腦波的分類 1
1-1-2 腦波的量測 2
1-2 事件相關電位與時頻分析 3
1-2-1 Event Related Potential 3
1-2-2 EEG與注意力的關係 4
1-2-3 GO/NO-GO實驗 5
1-2-4 GO/NO-GO實驗在腦波頻帶的表現 6
1-3 Attention Deficit Hyperactivity Disorder 6
1-3-1 ADHD病因、症狀與治療方式 6
1-3-2 ADHD與ERP的關係 7
1-3-3 ADHD與頻帶間的關係 8
1-3-4 ADHD在VR中的研究 9
1-4 研究目的 10
第二章 儀器設備與研究方法 11
2-1 儀器設備 11
2-2 研究方法 11
2-2-1 受試者招募 11
2-2-2 遊戲設計與干擾 11
2-2-3 腦電位位置 13
2-3 資料分析與統計 14
2-3-1 資料預處理與分析ERP 14
2-3-2 時頻分析與統計 17
第三章 實驗結果 21
3-1 行為結果 21
3-2 ERP波形 22
3-3 時頻圖(evoked) 24
3-4 時頻圖(induced) 72
第四章 討論與結論 88
4-1 注意力在P300上的表現 88
4-2 注意力在各頻帶上的表現 89
4-2-1 evoked響應 90
4-2-2 induced響應 92
4-3 結論 93
第五章 未來展望 94
參考文獻 95
參考文獻 Adams, R., Finn, P., Moes, E., Flannery, K., & Rizzo, A. S. (2009). Distractibility in Attention/Deficit/ Hyperactivity Disorder (ADHD): the virtual reality classroom. Child Neuropsychol, 15(2), 120-135. doi:10.1080/09297040802169077
Aoki, F., Fetz, E. E., Shupe, L., Lettich, E., & Ojemann, G. A. (1999). Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin Neurophysiol, 110(3), 524-537. doi:10.1016/s1388-2457(98)00064-9
Ashmead, J. (2010). Morlet wavelets in quantum mechanics, arXiv:1001.0250. Retrieved from https://ui.adsabs.harvard.edu/abs/2010arXiv1001.0250A
Banaschewski, T., & Brandeis, D. (2007). Annotation: what electrical brain activity tells us about brain function that other techniques cannot tell us - a child psychiatric perspective. J Child Psychol Psychiatry, 48(5), 415-435. doi:10.1111/j.1469-7610.2006.01681.x
Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin Neurophysiol, 114(2), 171-183. doi:10.1016/s1388-2457(02)00362-0
Barry, R. J., Johnstone, S. J., & Clarke, A. R. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clin Neurophysiol, 114(2), 184-198. doi:10.1016/s1388-2457(02)00363-2
Bauer, M., Oostenveld, R., Peeters, M., & Fries, P. (2006). Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci, 26(2), 490-501. doi:10.1523/jneurosci.5228-04.2006
Baumeister, J., Barthel, T., Geiss, K. R., & Weiss, M. (2008). Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr Neurosci, 11(3), 103-110. doi:10.1179/147683008x301478
Behzadnia, A., Ghassemi, F., Chermahini, S. A., Tabanfar, Z., & Taymourtash, A. (2018). The neural correlation of sustained attention in performing conjunctive continuous performance task: an event-related potential study. Neuroreport, 29(11), 954-961. doi:10.1097/wnr.0000000000001062
Belyavin, A., & Wright, N. A. (1987). Changes in electrical activity of the brain with vigilance. Electroencephalography and Clinical Neurophysiology, 66(2), 137-144. doi:https://doi.org/10.1016/0013-4694(87)90183-0
Bioulac, S., Lallemand, S., Rizzo, A., Philip, P., Fabrigoule, C., & Bouvard, M. P. (2012). Impact of time on task on ADHD patient′s performances in a virtual classroom. Eur J Paediatr Neurol, 16(5), 514-521. doi:10.1016/j.ejpn.2012.01.006
Blackwood, D. H., & Muir, W. J. (1990). Cognitive brain potentials and their application. Br J Psychiatry Suppl(9), 96-101.
Bresnahan, S. M., & Barry, R. J. (2002). Specificity of quantitative EEG analysis in adults with attention deficit hyperactivity disorder. Psychiatry Res, 112(2), 133-144. doi:10.1016/s0165-1781(02)00190-7
Bresnahan, S. M., Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2006). Quantitative EEG analysis in dexamphetamine-responsive adults with attention-deficit/hyperactivity disorder. Psychiatry Res, 141(2), 151-159. doi:10.1016/j.psychres.2005.09.002
Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull, 132(2), 180-211. doi:10.1037/0033-2909.132.2.180
Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D., & Cohen, J. D. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci U S A, 97(4), 1944-1948. doi:10.1073/pnas.97.4.1944
Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., Clasen, L. S., . . . Rapoport, J. L. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Jama, 288(14), 1740-1748. doi:10.1001/jama.288.14.1740
Chapman, R. M., & Bragdon, H. R. (1964). Evoked Responses to Numerical and Non-Numerical Visual Stimuli while Problem Solving. Nature, 203(4950), 1155-1157. doi:10.1038/2031155a0
Chatrian, G., Lettich, E., & Nelson, P. L. (1985). Ten Percent Electrode System for Topographic Studies of Spontaneous and Evoked EEG Activities. American Journal of Electroneurodiagnostic Technology, 25, 83-92.
Clancy, T. A., Rucklidge, J. J., & Owen, D. (2006). Road-crossing safety in virtual reality: a comparison of adolescents with and without ADHD. J Clin Child Adolesc Psychol, 35(2), 203-215. doi:10.1207/s15374424jccp3502_4
Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., Brown, C. R., & Croft, R. J. (2003). Effects of stimulant medications on the EEG of children with Attention-Deficit/Hyperactivity Disorder Predominantly Inattentive type. Int J Psychophysiol, 47(2), 129-137. doi:10.1016/s0167-8760(02)00119-8
Cohen, M. X. (2011). Error-related medial frontal theta activity predicts cingulate-related structural connectivity. Neuroimage, 55(3), 1373-1383. doi:10.1016/j.neuroimage.2010.12.072
Cooper, N. R., Croft, R. J., Dominey, S. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int J Psychophysiol, 47(1), 65-74. doi:10.1016/s0167-8760(02)00107-1
DeFrance, J. F., Smith, S., Schweitzer, F. C., Ginsberg, L., & Sands, S. (1996). Topographical analyses of attention disorders of childhood. Int J Neurosci, 87(1-2), 41-61. doi:10.3109/00207459608990752
Deiber, M. P., Hasler, R., Colin, J., Dayer, A., Aubry, J. M., Baggio, S., . . . Ros, T. (2020). Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. Neuroimage Clin, 25, 102145. doi:10.1016/j.nicl.2019.102145
DeLaRosa, B. L., Spence, J. S., Motes, M. A., To, W., Vanneste, S., Kraut, M. A., & Hart, J., Jr. (2020). Identification of selection and inhibition components in a Go/NoGo task from EEG spectra using a machine learning classifier. Brain Behav, 10(12), e01902. doi:10.1002/brb3.1902
Dockstader, C., Cheyne, D., & Tannock, R. (2010). Cortical dynamics of selective attention to somatosensory events. Neuroimage, 49(2), 1777-1785. doi:10.1016/j.neuroimage.2009.09.035
Donkers, F. C., & van Boxtel, G. J. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn, 56(2), 165-176. doi:10.1016/j.bandc.2004.04.005
Durston, S., Hulshoff Pol, H. E., Schnack, H. G., Buitelaar, J. K., Steenhuis, M. P., Minderaa, R. B., . . . van Engeland, H. (2004). Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry, 43(3), 332-340. doi:10.1097/00004583-200403000-00016
Fallgatter, A. J., Ehlis, A. C., Seifert, J., Strik, W. K., Scheuerpflug, P., Zillessen, K. E., . . . Warnke, A. (2004). Altered response control and anterior cingulate function in attention-deficit/hyperactivity disorder boys. Clin Neurophysiol, 115(4), 973-981. doi:10.1016/j.clinph.2003.11.036
Fallgatter, A. J., Wiesbeck, G. A., Weijers, H. G., Boening, J., & Strik, W. K. (1998). Event-related correlates of response suppression as indicators of novelty seeking in alcoholics. Alcohol Alcohol, 33(5), 475-481. doi:10.1093/alcalc/33.5.475
Faraone, S. V., & Mick, E. (2010). Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am, 33(1), 159-180. doi:10.1016/j.psc.2009.12.004
Fisher, T., Aharon-Peretz, J., & Pratt, H. (2011). Dis-regulation of response inhibition in adult Attention Deficit Hyperactivity Disorder (ADHD): an ERP study. Clin Neurophysiol, 122(12), 2390-2399. doi:10.1016/j.clinph.2011.05.010
Frodl, T., & Skokauskas, N. (2012). Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand, 125(2), 114-126. doi:10.1111/j.1600-0447.2011.01786.x
Funderud, I., Lindgren, M., Løvstad, M., Endestad, T., Voytek, B., Knight, R. T., & Solbakk, A. K. (2012). Differential Go/NoGo activity in both contingent negative variation and spectral power. PLoS One, 7(10), e48504. doi:10.1371/journal.pone.0048504
Gao, Y., Wang, Q., Ding, Y., Wang, C., Li, H., Wu, X., . . . Li, L. (2017). Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions. Front Hum Neurosci, 11, 34. doi:10.3389/fnhum.2017.00034
Garavan, H., Ross, T. J., Murphy, K., Roche, R. A., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage, 17(4), 1820-1829. doi:10.1006/nimg.2002.1326
Greven, C. U., Bralten, J., Mennes, M., O′Dwyer, L., van Hulzen, K. J., Rommelse, N., . . . Buitelaar, J. K. (2015). Developmentally stable whole-brain volume reductions and developmentally sensitive caudate and putamen volume alterations in those with attention-deficit/hyperactivity disorder and their unaffected siblings. JAMA Psychiatry, 72(5), 490-499. doi:10.1001/jamapsychiatry.2014.3162
Hamidi, M., Slagter, H. A., Tononi, G., & Postle, B. R. (2009). Repetitive Transcranial Magnetic Stimulation Affects behavior by Biasing Endogenous Cortical Oscillations. Front Integr Neurosci, 3, 14. doi:10.3389/neuro.07.014.2009
Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev, 25(6), 465-476. doi:10.1016/s0149-7634(01)00027-6
Hoogman, M., Bralten, J., Hibar, D. P., Mennes, M., Zwiers, M. P., Schweren, L. S. J., . . . Franke, B. (2017). Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry, 4(4), 310-319. doi:10.1016/s2215-0366(17)30049-4
İnce, R., Adanır, S. S., & Sevmez, F. (2020). The inventor of electroencephalography (EEG): Hans Berger (1873-1941). Childs Nerv Syst. doi:10.1007/s00381-020-04564-z
Isiten, H. N., Cebi, M., Sutcubasi Kaya, B., Metin, B., & Tarhan, N. (2017). Medication Effects on EEG Biomarkers in Attention-Deficit/Hyperactivity Disorder. Clin EEG Neurosci, 48(4), 246-250. doi:10.1177/1550059416675232
Itagaki, S., Yabe, H., Mori, Y., Ishikawa, H., Takanashi, Y., & Niwa, S. (2011). Event-related potentials in patients with adult attention-deficit/hyperactivity disorder versus schizophrenia. Psychiatry Res, 189(2), 288-291. doi:10.1016/j.psychres.2011.03.005
Jeck, D. M., Qin, M., Egeth, H., & Niebur, E. (2019). Unique objects attract attention even when faint. Vision Res, 160, 60-71. doi:10.1016/j.visres.2019.04.004
Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci, 30(7), 317-324. doi:10.1016/j.tins.2007.05.001
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci, 4, 186. doi:10.3389/fnhum.2010.00186
Johnstone, S. J., Barry, R. J., Markovska, V., Dimoska, A., & Clarke, A. R. (2009). Response inhibition and interference control in children with AD/HD: a visual ERP investigation. Int J Psychophysiol, 72(2), 145-153. doi:10.1016/j.ijpsycho.2008.11.007
Johnstone, S. J., Pleffer, C. B., Barry, R. J., Clarke, A. R., & Smith, J. L. (2005). Development of Inhibitory Processing During the Go/NoGo Task: A Behavioral and Event-Related Potential Study of Children and Adults. Journal of Psychophysiology, 19(1), 11-23. doi:10.1027/0269-8803.19.1.11
Jonkman, L. M., Kemner, C., Verbaten, M. N., Koelega, H. S., Camfferman, G., vd Gaag, R. J., . . . van Engeland, H. (1997). Event-related potentials and performance of attention-deficit hyperactivity disorder: children and normal controls in auditory and visual selective attention tasks. Biol Psychiatry, 41(5), 595-611. doi:10.1016/s0006-3223(96)00073-x
Keil, A., Müller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. J Neurosci, 19(16), 7152-7161. doi:10.1523/jneurosci.19-16-07152.1999
Kim, S., Liu, Z., Glizer, D., Tannock, R., & Woltering, S. (2014). Adult ADHD and working memory: neural evidence of impaired encoding. Clin Neurophysiol, 125(8), 1596-1603. doi:10.1016/j.clinph.2013.12.094
Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 52, 3-6.
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev, 53(1), 63-88. doi:10.1016/j.brainresrev.2006.06.003
Ko, L. W., Komarov, O., Hairston, W. D., Jung, T. P., & Lin, C. T. (2017). Sustained Attention in Real Classroom Settings: An EEG Study. Front Hum Neurosci, 11, 388. doi:10.3389/fnhum.2017.00388
Koehler, S., Lauer, P., Schreppel, T., Jacob, C., Heine, M., Boreatti-Hümmer, A., . . . Herrmann, M. J. (2009). Increased EEG power density in alpha and theta bands in adult ADHD patients. J Neural Transm (Vienna), 116(1), 97-104. doi:10.1007/s00702-008-0157-x
Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577. doi:10.1017/s0048577201990559
Larsson, H., Chang, Z., D′Onofrio, B. M., & Lichtenstein, P. (2014). The heritability of clinically diagnosed attention deficit hyperactivity disorder across the lifespan. Psychol Med, 44(10), 2223-2229. doi:10.1017/s0033291713002493
Lau-Zhu, A., Fritz, A., & McLoughlin, G. (2019). Overlaps and distinctions between attention deficit/hyperactivity disorder and autism spectrum disorder in young adulthood: Systematic review and guiding framework for EEG-imaging research. Neurosci Biobehav Rev, 96, 93-115. doi:10.1016/j.neubiorev.2018.10.009
Lazzaro, I., Anderson, J., Gordon, E., Clarke, S., Leong, J., & Meares, R. (1997). Single trial variability within the P300 (250-500 ms) processing window in adolescents with attention deficit hyperactivity disorder. Psychiatry Res, 73(1-2), 91-101. doi:10.1016/s0165-1781(97)00107-8
Liebrand, M., Kristek, J., Tzvi, E., & Krämer, U. M. (2018). Ready for change: Oscillatory mechanisms of proactive motor control. PLoS One, 13(5), e0196855. doi:10.1371/journal.pone.0196855
Lin, S. C., & Nicolelis, M. A. (2008). Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence. Neuron, 59(1), 138-149. doi:10.1016/j.neuron.2008.04.031
Luck, S. J. (2014). An introduction to the event-related potential technique: MIT press.
Luck, S. J., & Kappenman, E. S. (2011). The Oxford handbook of event-related potential components: Oxford university press.
Mallat, S. (2008). A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way: Academic Press, Inc.
Marquardt, L., Eichele, H., Lundervold, A. J., Haavik, J., & Eichele, T. (2018). Event-Related-Potential (ERP) Correlates of Performance Monitoring in Adults With Attention-Deficit Hyperactivity Disorder (ADHD). Front Psychol, 9, 485. doi:10.3389/fpsyg.2018.00485
McCormick, D. A., McGinley, M. J., & Salkoff, D. B. (2015). Brain state dependent activity in the cortex and thalamus. Curr Opin Neurobiol, 31, 133-140. doi:10.1016/j.conb.2014.10.003
Meador, K. J., Ray, P. G., Echauz, J. R., Loring, D. W., & Vachtsevanos, G. J. (2002). Gamma coherence and conscious perception. Neurology, 59(6), 847-854. doi:10.1212/wnl.59.6.847
Meyers, J., McCutcheon, V. V., Pandey, A. K., Kamarajan, C., Subbie, S., Chorlian, D., . . . Porjesz, B. (2019). Early Sexual Trauma Exposure and Neural Response Inhibition in Adolescence and Young Adults: Trajectories of Frontal Theta Oscillations During a Go/No-Go Task. J Am Acad Child Adolesc Psychiatry, 58(2), 242-255.e242. doi:10.1016/j.jaac.2018.07.905
Miller, D. C., Kavcic, V., & Leslie, J. E. (1996). ERP changes induced by methylphenidate in boys with Attention Deficit Hyperactivity Disorder. Journal of Attention Disorders, 1(2), 95-113. doi:10.1177/108705479600100203
Nakao, T., Radua, J., Rubia, K., & Mataix-Cols, D. (2011). Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry, 168(11), 1154-1163. doi:10.1176/appi.ajp.2011.11020281
Nguyen, D. P., & Lin, S.-C. (2014). A frontal cortex event-related potential driven by the basal forebrain. eLife, 3, e02148-e02148. doi:10.7554/eLife.02148
Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clin Neurophysiol, 122(11), 2185-2194. doi:10.1016/j.clinph.2011.03.030
Näätänen, R. (1988). Implications of ERP data for psychological theories of attention. Biol Psychol, 26(1-3), 117-163. doi:10.1016/0301-0511(88)90017-8
Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG: Oxford University Press, USA.
Ogrim, G., Kropotov, J., & Hestad, K. (2012). The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: sensitivity, specificity, and behavioral correlates. Psychiatry Res, 198(3), 482-488. doi:10.1016/j.psychres.2011.12.041
Pandey, A. K., Kamarajan, C., Manz, N., Chorlian, D. B., Stimus, A., & Porjesz, B. (2016). Delta, theta, and alpha event-related oscillations in alcoholics during Go/NoGo task: Neurocognitive deficits in execution, inhibition, and attention processing. Prog Neuropsychopharmacol Biol Psychiatry, 65, 158-171. doi:10.1016/j.pnpbp.2015.10.002
Parsons, T. D., Bowerly, T., Buckwalter, J. G., & Rizzo, A. A. (2007). A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child Neuropsychol, 13(4), 363-381. doi:10.1080/13825580600943473
Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 110(11), 1842-1857. doi:10.1016/s1388-2457(99)00141-8
Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band — an electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1), 39-46. doi:https://doi.org/10.1016/S0167-8760(96)00066-9
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., . . . Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
Picton, T. W., & Hillyard, S. A. (1974). Human auditory evoked potentials. II. Effects of attention. Electroencephalogr Clin Neurophysiol, 36(2), 191-199. doi:10.1016/0013-4694(74)90156-4
Picton, T. W., Hillyard, S. A., Krausz, H. I., & Galambos, R. (1974). Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol, 36(2), 179-190. doi:10.1016/0013-4694(74)90155-2
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol, 118(10), 2128-2148. doi:10.1016/j.clinph.2007.04.019
Pollak, Y., Weiss, P. L., Rizzo, A. A., Weizer, M., Shriki, L., Shalev, R. S., & Gross-Tsur, V. (2009). The utility of a continuous performance test embedded in virtual reality in measuring ADHD-related deficits. J Dev Behav Pediatr, 30(1), 2-6. doi:10.1097/DBP.0b013e3181969b22
Sarter, M., Givens, B., & Bruno, J. P. (2001). The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev, 35(2), 146-160. doi:10.1016/s0165-0173(01)00044-3
Satterfield, J. H., Schell, A. M., & Nicholas, T. (1994). Preferential neural processing of attended stimuli in attention-deficit hyperactivity disorder and normal boys. Psychophysiology, 31(1), 1-10. doi:10.1111/j.1469-8986.1994.tb01018.x
Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., & Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clin Neurophysiol, 118(1), 98-104. doi:10.1016/j.clinph.2006.09.003
Segalowitz, S. J., Dywan, J., & Unsal, A. (1997). Attentional factors in response time variability after traumatic brain injury: an ERP study. J Int Neuropsychol Soc, 3(2), 95-107.
Senderecka, M., Grabowska, A., Gerc, K., Szewczyk, J., & Chmylak, R. (2012). Event-related potentials in children with attention deficit hyperactivity disorder: an investigation using an auditory oddball task. Int J Psychophysiol, 85(1), 106-115. doi:10.1016/j.ijpsycho.2011.05.006
Shaw, P., Malek, M., Watson, B., Sharp, W., Evans, A., & Greenstein, D. (2012). Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol Psychiatry, 72(3), 191-197. doi:10.1016/j.biopsych.2012.01.031
Shaw, P., Sharp, W. S., Morrison, M., Eckstrand, K., Greenstein, D. K., Clasen, L. S., . . . Rapoport, J. L. (2009). Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. Am J Psychiatry, 166(1), 58-63. doi:10.1176/appi.ajp.2008.08050781
Shi, T., Li, X., Song, J., Zhao, N., Sun, C., Xia, W., . . . Tomoda, A. (2012). EEG characteristics and visual cognitive function of children with attention deficit hyperactivity disorder (ADHD). Brain and Development, 34(10), 806-811. doi:https://doi.org/10.1016/j.braindev.2012.02.013
Smith, J. L., Johnstone, S. J., & Barry, R. J. (2008). Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition. Clin Neurophysiol, 119(3), 704-714. doi:10.1016/j.clinph.2007.11.042
Spencer, T. J., Brown, A., Seidman, L. J., Valera, E. M., Makris, N., Lomedico, A., . . . Biederman, J. (2013). Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J Clin Psychiatry, 74(9), 902-917. doi:10.4088/JCP.12r08287
Sur, S., & Sinha, V. K. (2009). Event-related potential: An overview. Ind Psychiatry J, 18(1), 70-73. doi:10.4103/0972-6748.57865
Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-Potential Correlates of Stimulus Uncertainty. Science, 150(3700), 1187-1188. doi:10.1126/science.150.3700.1187
Swann, N., Poizner, H., Houser, M., Gould, S., Greenhouse, I., Cai, W., . . . Aron, A. R. (2011). Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson′s disease. J Neurosci, 31(15), 5721-5729. doi:10.1523/jneurosci.6135-10.2011
Tatum, W. O. (2014). Ellen R. Grass Lecture: extraordinary EEG. Neurodiagn J, 54(1), 3-21.
Towle, V. L., Bolaños, J., Suarez, D., Tan, K., Grzeszczuk, R., Levin, D. N., . . . Spire, J.-P. (1993). The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalography and Clinical Neurophysiology, 86(1), 1-6. doi:https://doi.org/10.1016/0013-4694(93)90061-Y
Tsai, M. L., Hung, K. L., & Lu, H. H. (2012). Auditory event-related potentials in children with attention deficit hyperactivity disorder. Pediatr Neonatol, 53(2), 118-124. doi:10.1016/j.pedneo.2012.01.009
van Mourik, R., Oosterlaan, J., Heslenfeld, D. J., Konig, C. E., & Sergeant, J. A. (2007). When distraction is not distracting: a behavioral and ERP study on distraction in ADHD. Clin Neurophysiol, 118(8), 1855-1865. doi:10.1016/j.clinph.2007.05.007
WELCH, B. L. (1947). THE GENERALIZATION OF ‘STUDENT′S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED. Biometrika, 34(1-2), 28-35. doi:10.1093/biomet/34.1-2.28
Wiersema, R., van der Meere, J., Roeyers, H., Van Coster, R., & Baeyens, D. (2006). Event rate and event-related potentials in ADHD. J Child Psychol Psychiatry, 47(6), 560-567. doi:10.1111/j.1469-7610.2005.01592.x
Woltering, S., Jung, J., Liu, Z., & Tannock, R. (2012). Resting state EEG oscillatory power differences in ADHD college students and their peers. Behav Brain Funct, 8, 60. doi:10.1186/1744-9081-8-60
Woltering, S., Liu, Z., Rokeach, A., & Tannock, R. (2013). Neurophysiological differences in inhibitory control between adults with ADHD and their peers. Neuropsychologia, 51(10), 1888-1895. doi:10.1016/j.neuropsychologia.2013.06.023
Wood, D. R., Reimherr, F. W., Wender, P. H., & Johnson, G. E. (1976). Diagnosis and treatment of minimal brain dysfunction in adults: a preliminary report. Arch Gen Psychiatry, 33(12), 1453-1460. doi:10.1001/archpsyc.1976.01770120057005
Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Atten Percept Psychophys, 72(8), 2031-2046. doi:10.3758/app.72.8.2031
Wróbel, A. (2000). Beta activity: a carrier for visual attention. Acta Neurobiol Exp (Wars), 60(2), 247-260.
Yuk, V., Dunkley, B. T., Anagnostou, E., & Taylor, M. J. (2020). Alpha connectivity and inhibitory control in adults with autism spectrum disorder. Mol Autism, 11(1), 95. doi:10.1186/s13229-020-00400-y
Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156(1), 238-246. doi:10.1016/j.neuroscience.2008.06.061
指導教授 陳純娟(Chun-Chuan Chen) 審核日期 2021-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明