參考文獻 |
1. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720-731.
2. Ahmed, S. N., Brown, D. A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 1997, 36, 10944-10953.
3. Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 2006, 47, 1597-598.
4. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46-50
5. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 2014, 510, 172-175.
6. Field, K. A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. USA 1995, 92, 9201-9205.
7. Dinic, J., Riehl, A., Adler, J. & Parmryd, I. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Sci. Rep. 2015, 5, 10082.
8. Gupta, N. & DeFranco, A. L. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol. Biol. Cell 2003, 14, 432-444.
9. Teissier, E. & Pecheur, E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur. Biophys. J. 2007, 36, 887-899.
10. Dick, R. A., Goh, S. L., Feigenson, G. W. & Vogt, V. M. HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl. Acad. Sci. USA 2012, 109, 18761-18766.
11. Sezgin, E., Levental, I., Mayor, S., & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017, 18, 361-374.
12. Fan, Z. A., Tsang, K. Y., Chen, S. H. & Chen, Y. F. Revisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes. Sci. Rep. 2016, 6, 31470.
13. Lee, J. H. et al. Thermal Fluctuation and Elasticity of Lipid Vesicles Interacting with Pore-Forming Peptides. Phys. Rev. Lett. 2010, 105, 038101.
14. Periyasamy, P. C. et al. Nanomaterials for the Local and Targeted Delivery of Osteoarthritis Drugs. J. Nanomater. 2012, 2012, 673968.
15. Shaw, T. R., Glosh, S. & Veatch, S. L. Critical Phenomena in Plasma Membrane Organization and Function. Annu. Rev. Phys. Chem. 2021, 72, 51-72.
16. Veatch S. L. From small fluctuations to large-scale phase separation: lateral organization in model membranes containing cholesterol. Semin. Cell Dev. Biol. 2007, 18, 573-582
17. Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 2004 33, 269-295
18. Semrau, S. & Schmidt, T. Membrane heterogeneity – from lipid domains to curvature effects. Soft matter. 2009, 5, 3174-3186.
19. Veatch, S. L & Keller, S. L. Separation of Liquid Phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol. Biophys. J. 2003, 85, 3074-3083.
20. Heberle, F. A. et al. Comparison of Three Ternary Lipid Bilayer Mixtures: FRET and ESR Reveal Nanodomains. Biophys. J. 2010, 99, 3309-3318.
21. Pathak, P. & London, E. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains. Biophys. J. 2015, 109, 1630-1638.
22. Sezgin, E. et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 2012, 7, 1042-1051.
23. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA. 2007, 104, 3165-3170
24. Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 2008, 3, 287-293.
25. Smith, A. R. H., Veatch, S. L. & Keller, S. L. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta Biomembr. 2009, 1788, 53-63
26. Smith, A. R. H. et al. Line Tensions, Correlation Lengths, and Critical Exponents in Lipid Membranes Near Critical Points. Biophys. J. 2008, 95, 236-246.
27. Li, G. Wang, Q. Kakuda, S. & London, E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J. Lipid Res. 2020, 61, 758-766.
28. Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 2008, 9, 543-556.
29. Chernomordik, L. V. & Kozlov, M. M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 2008, 15, 675-683.
30. Israelachvili, J. N. & Wennerstroem, H. Entropic Forces between Amphiphilic Surfaces In Liquids. J. Phys. Chem. A. 1992, 96, 520-531.
31. Aeffner, S., Reusch, T., Weinhausen, B. & Salditt, T. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc. Natl. Acad. Sci. USA. 2012, 15, 1609-1618.
32. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 2006, 7, 631-643.
33. Walls, A. C. et al. Structure, Function, and Antigenicity of the SARSCoV-2 Spike Glycoprotein. Cell. 2020, 182, 1284-1294.
34. Malinin, V. S., Frederik, P. & Lentz, B. R. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys. J. 2002, 82, 2090-2100.
35. Yang, S. T., Kiessling, V. & Tamm, L. K. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion. Nat. Commun. 2016, 7, 11410.
36. Heberle, F. A. & Feigenson, G. W. Phase Separation in Lipid Membranes. Cold Spring Harb. Perspect. Biol. 2011, 3, a004630.
37. Scott, H. L. et al. On the Mechanism of Bilayer Separation by Extrusion, or Why Your LUVs Are Not Really Unilamellar. Biophys. J. 2019, 117, 1-6.
38. Carvalho, P. M. et al. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front. Chem. 2018, 6, 237.
39. Gibbons, D. L. et al. Visualization of the Target-Membrane-Inserted Fusion Protein of Semliki Forest Virus by Combined Electron Microscopy and Crystallograph. Cell. 2003, 114, 573-583.
40. Komorowski, K. et al. Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering. Biophys. J. 2018, 114, 1908-1920.
41. Wasan, E. K. et al. A multi-step lipid mixing assay to model structural changes in cationic lipoplexes used for in vitro transfection. Biochim. Biophys. Acta Biomembr. 1999, 1461, 27-46
42. Wu, L. et al. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110-5139.
43. Wilschut, J., Duzgune. N., Fraley, R. & Papahadjopoulos, D. Studies on the Mechanism of Membrane Fusion: Kinetics of Calcium Ion Induced Fusion of Phosphatidylserine Vesicles Followed by a New Assay for Mixing of Aqueous Vesicle Contents. Biochemistry 1980, 19, 6011-6021.
44. Li, T., Senesi, A. J. & Lee, B. Small Angle X‑ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128-11180.
45. Pabst, G. et al. Structural analysis of weakly ordered membrane stacks. J. Appl. Cryst. 2003, 36, 1378-1388
46. Pabst, G., Rappolt, M., Amenitsch, H. & Laggner, P. Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high quality x-ray data. Phys. Rev. E. 2000, 62, 4000-4009.
47. Olsen, B. T. et al. The Structural Basis of Cholesterol Accessibility in Membranes.
Biophys. J. 2013, 105, 1838-1847.
48. Kollmitzer, B., Heftberger, P., Rappoltb, M., & Pabst, G. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter. 2013, 9, 10877-10884.
49. Aeffner, S., Reusch, T., Weinhausen, B., & Salditt, T. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc. Natl. Acad. Sci. USA. 2012, 15, 1609-1618.
50. Pan, J., Nagle, S. T., & Nagle J. F. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys. Rev. E. 2009, 80, 021931.
51. Risselada, H. J. Membrane Fusion Stalks and Lipid Rafts: A Love-Hate Relationship. Biophys. J. 2017, 112, 1-4.
52. Heftberger, P. et al. In Situ Determination of Structure and Fluctuations of Coexisting Fluid Membrane Domains. Biophys. J. 2015, 108, 854-862.
53. Leikin, S. L. et al. Membrane Fusion: Overcoming of the Hydration Barrier
and Local Restructuring. J. Theor. Biol. 1987, 129, 411-425.
54. Nussio, M. R. et al. Nanoscale structure of lipid domain boundaries. Soft Matter. 2010, 6, 2193-2199.
55. Smith, A. R. H., Machta, B. B. & Keller S. L. Experimental Observations of Dynamic Critical Phenomena in a Lipid Membrane. Phys. Rev. Lett. 2012, 108, 265702.
56. Palmieri, B. & Safran, S. A. Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes. Phys. Rev. E. 2013, 88, 032708.
57. Heberle, F. A. et al. Bilayer Thickness Mismatch Controls Domain Size in Model Membranes. J. Am. Chem. Soc. 2013, 135, 6853-6859.
58. Cornella, C. E. et al. Direct imaging of liquid domains in membranes by cryo-electron tomography. Proc. Natl. Acad. Sci. USA. 2020, 117, 19713-19719. |