博碩士論文 108324005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.226.98.128
姓名 葛廷軒(Ting-Hsuan Ko)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 臨界現象與膜融合的關聯性
(The correlation of critical fluctuation and membrane fusion)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-16以後開放)
摘要(中) 研究人員發現到膜蛋白與膽固醇並非均勻分布於細胞膜,而是形成異質性結構。特定膜蛋白與膽固醇集結的區塊被稱作脂筏。鑒於目前的技術尚無法直接在細胞膜上觀測到脂筏,脂筏的形成機制仍屬未知。脂筏得以透過相分離形成是當前的主流觀點之一,但由細胞膜分離出來的仿生物膜卻無法在人體溫度下發生相分離行為。臨界現象為脂筏的形成機制開闢了新的方向。只有當系統非常接近臨界點時才會發生臨界漲落。臨界漲落會使局部的組成出現消長並形成存在時間極短的動態區塊。近期一份研究指出,相分離形成的區塊邊界對HIV病毒的膜融合有顯著影響。本研究將探討臨界漲落產生的動態區塊,即使存在時間非常短,是否同樣能促進膜融合。本實驗分別利用螢光光譜儀與小角度X光散射儀量測膜融合與脂雙層膜的結構。我們致力於發掘臨界漲落如何影響到生物膜結構,從而改變生成膜融合中間態所需的能量。膜融合中間態是掌握膜融合能否完成的關鍵。我們期待針對臨界漲落與膜融合的研究成果,能為對抗冠狀病毒提供新穎的見解。
摘要(英) Researchers have found that cell membranes are heterogeneous, in the sense that membrane proteins and cholesterol tend to segregate and be unevenly distributed within cell membranes. Domains arising from the segregation is known as lipid rafts. The exact mechanisms for raft formation remains a debate due to the lack of direct observations of rafts in cell membranes. While phase separation observed in model membranes is one of the leading explanations for raft formation, no phase separation can be observed at physiological temperatures on the giant plasma membrane vesicles directly derived from cellular plasma membranes. Hence, critical fluctuation emerges as an alternative explanation for rafts. Critical fluctuation arises only when homogeneous membrane is extremely close to the critical point. At this point, it shows fluctuations in local composition and transiently forms segregation domains. A recent research found that phase separation, which spawns line tension on domain boundaries, had a significant effect on membrane fusion for HIV virus.
In this thesis work, we explore whether critical fluctuation also facilitates membrane fusion even though it only transiently forms domains. Fluorescent spectroscopy and small angle X ray scattering are employed to measure the membrane fusion efficiency and membrane structure, respectively. We aim to understand how critical fluctuation modulates the membrane structure and thereby varies the energy barriers for forming fusion intermediate structures, which in turn dictates the fusion efficacy. The results are expected to have broad implications for the fights against the membrane-bound coronavirus.
關鍵字(中) ★ 臨界漲落
★ 膜融合
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章、緒論 1
1-1細胞膜 (Cell membrane) 1
1-2 脂筏 (Lipid raft) 2
1-3 微脂體 (Liposome) 4
1-4 相分離 (Phase separation) 5
1-5 臨界現象 (Critical phenomena) 8
1-6 膜融合 (Membrane fusion) 13
1-7 研究動機 (Motivation) 16
第二章、實驗方法 17
2-1實驗材料 17
2-1.1 磷脂質 17
2-1.2 螢光染劑 20
2-1.3 緩衝溶液 21
2-1.4 其他材料 22
2-2 樣品製備 23
2-2.1 微脂體製備 23
2-2.2 微脂體 (含有螢光染劑) 製備 24
2-3 粒徑大小與分布的測定 26
2-4 膜融合的量測 28
2-4.1 螢光光譜儀量測 30
2-5 小角度X光散射 (Small angle X-ray scattering, SAXS) 33
2-5.1 小角度X光散射數據處理 34
第三章、實驗結果 38
3-1 微脂體粒徑的大小與分布 38
3-2單層囊泡結構 42
3-3 膜融合與臨界現象 45
3-3.1 液相共存區 45
3-3.2 液態無序相 (Ld) 51
3-3.3 液態有序相 (Lo) 57
3-4 膜厚與臨界現象 63
3-4.1 液相共存區 63
3-4.2 液態無序相 (Ld) 66
3-4.3 液態有序相 (Lo) 69
第四章、討論 72
4-1 膜厚與臨界現象 72
4-2 膜融合與臨界現象 73
第五章、結論 77
文獻目錄與參考資料 78
附錄 82
參考文獻 1. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 1972, 175, 720-731.
2. Ahmed, S. N., Brown, D. A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 1997, 36, 10944-10953.
3. Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 2006, 47, 1597-598.
4. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46-50
5. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 2014, 510, 172-175.
6. Field, K. A., Holowka, D. & Baird, B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. USA 1995, 92, 9201-9205.
7. Dinic, J., Riehl, A., Adler, J. & Parmryd, I. The T cell receptor resides in ordered plasma membrane nanodomains that aggregate upon patching of the receptor. Sci. Rep. 2015, 5, 10082.
8. Gupta, N. & DeFranco, A. L. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol. Biol. Cell 2003, 14, 432-444.
9. Teissier, E. & Pecheur, E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur. Biophys. J. 2007, 36, 887-899.
10. Dick, R. A., Goh, S. L., Feigenson, G. W. & Vogt, V. M. HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl. Acad. Sci. USA 2012, 109, 18761-18766.
11. Sezgin, E., Levental, I., Mayor, S., & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017, 18, 361-374.
12. Fan, Z. A., Tsang, K. Y., Chen, S. H. & Chen, Y. F. Revisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes. Sci. Rep. 2016, 6, 31470.
13. Lee, J. H. et al. Thermal Fluctuation and Elasticity of Lipid Vesicles Interacting with Pore-Forming Peptides. Phys. Rev. Lett. 2010, 105, 038101.
14. Periyasamy, P. C. et al. Nanomaterials for the Local and Targeted Delivery of Osteoarthritis Drugs. J. Nanomater. 2012, 2012, 673968.
15. Shaw, T. R., Glosh, S. & Veatch, S. L. Critical Phenomena in Plasma Membrane Organization and Function. Annu. Rev. Phys. Chem. 2021, 72, 51-72.
16. Veatch S. L. From small fluctuations to large-scale phase separation: lateral organization in model membranes containing cholesterol. Semin. Cell Dev. Biol. 2007, 18, 573-582
17. Simons, K. & Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 2004 33, 269-295
18. Semrau, S. & Schmidt, T. Membrane heterogeneity – from lipid domains to curvature effects. Soft matter. 2009, 5, 3174-3186.
19. Veatch, S. L & Keller, S. L. Separation of Liquid Phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol. Biophys. J. 2003, 85, 3074-3083.
20. Heberle, F. A. et al. Comparison of Three Ternary Lipid Bilayer Mixtures: FRET and ESR Reveal Nanodomains. Biophys. J. 2010, 99, 3309-3318.
21. Pathak, P. & London, E. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains. Biophys. J. 2015, 109, 1630-1638.
22. Sezgin, E. et al. Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat. Protoc. 2012, 7, 1042-1051.
23. Baumgart, T. et al. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA. 2007, 104, 3165-3170
24. Veatch, S. L. et al. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 2008, 3, 287-293.
25. Smith, A. R. H., Veatch, S. L. & Keller, S. L. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta Biomembr. 2009, 1788, 53-63
26. Smith, A. R. H. et al. Line Tensions, Correlation Lengths, and Critical Exponents in Lipid Membranes Near Critical Points. Biophys. J. 2008, 95, 236-246.
27. Li, G. Wang, Q. Kakuda, S. & London, E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J. Lipid Res. 2020, 61, 758-766.
28. Martens, S. & McMahon, H. T. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 2008, 9, 543-556.
29. Chernomordik, L. V. & Kozlov, M. M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 2008, 15, 675-683.
30. Israelachvili, J. N. & Wennerstroem, H. Entropic Forces between Amphiphilic Surfaces In Liquids. J. Phys. Chem. A. 1992, 96, 520-531.
31. Aeffner, S., Reusch, T., Weinhausen, B. & Salditt, T. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc. Natl. Acad. Sci. USA. 2012, 15, 1609-1618.
32. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 2006, 7, 631-643.
33. Walls, A. C. et al. Structure, Function, and Antigenicity of the SARSCoV-2 Spike Glycoprotein. Cell. 2020, 182, 1284-1294.
34. Malinin, V. S., Frederik, P. & Lentz, B. R. Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids. Biophys. J. 2002, 82, 2090-2100.
35. Yang, S. T., Kiessling, V. & Tamm, L. K. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion. Nat. Commun. 2016, 7, 11410.
36. Heberle, F. A. & Feigenson, G. W. Phase Separation in Lipid Membranes. Cold Spring Harb. Perspect. Biol. 2011, 3, a004630.
37. Scott, H. L. et al. On the Mechanism of Bilayer Separation by Extrusion, or Why Your LUVs Are Not Really Unilamellar. Biophys. J. 2019, 117, 1-6.
38. Carvalho, P. M. et al. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front. Chem. 2018, 6, 237.
39. Gibbons, D. L. et al. Visualization of the Target-Membrane-Inserted Fusion Protein of Semliki Forest Virus by Combined Electron Microscopy and Crystallograph. Cell. 2003, 114, 573-583.
40. Komorowski, K. et al. Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering. Biophys. J. 2018, 114, 1908-1920.
41. Wasan, E. K. et al. A multi-step lipid mixing assay to model structural changes in cationic lipoplexes used for in vitro transfection. Biochim. Biophys. Acta Biomembr. 1999, 1461, 27-46
42. Wu, L. et al. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110-5139.
43. Wilschut, J., Duzgune. N., Fraley, R. & Papahadjopoulos, D. Studies on the Mechanism of Membrane Fusion: Kinetics of Calcium Ion Induced Fusion of Phosphatidylserine Vesicles Followed by a New Assay for Mixing of Aqueous Vesicle Contents. Biochemistry 1980, 19, 6011-6021.
44. Li, T., Senesi, A. J. & Lee, B. Small Angle X‑ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128-11180.
45. Pabst, G. et al. Structural analysis of weakly ordered membrane stacks. J. Appl. Cryst. 2003, 36, 1378-1388
46. Pabst, G., Rappolt, M., Amenitsch, H. & Laggner, P. Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high quality x-ray data. Phys. Rev. E. 2000, 62, 4000-4009.
47. Olsen, B. T. et al. The Structural Basis of Cholesterol Accessibility in Membranes.
Biophys. J. 2013, 105, 1838-1847.
48. Kollmitzer, B., Heftberger, P., Rappoltb, M., & Pabst, G. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter. 2013, 9, 10877-10884.
49. Aeffner, S., Reusch, T., Weinhausen, B., & Salditt, T. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc. Natl. Acad. Sci. USA. 2012, 15, 1609-1618.
50. Pan, J., Nagle, S. T., & Nagle J. F. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys. Rev. E. 2009, 80, 021931.
51. Risselada, H. J. Membrane Fusion Stalks and Lipid Rafts: A Love-Hate Relationship. Biophys. J. 2017, 112, 1-4.
52. Heftberger, P. et al. In Situ Determination of Structure and Fluctuations of Coexisting Fluid Membrane Domains. Biophys. J. 2015, 108, 854-862.
53. Leikin, S. L. et al. Membrane Fusion: Overcoming of the Hydration Barrier
and Local Restructuring. J. Theor. Biol. 1987, 129, 411-425.
54. Nussio, M. R. et al. Nanoscale structure of lipid domain boundaries. Soft Matter. 2010, 6, 2193-2199.
55. Smith, A. R. H., Machta, B. B. & Keller S. L. Experimental Observations of Dynamic Critical Phenomena in a Lipid Membrane. Phys. Rev. Lett. 2012, 108, 265702.
56. Palmieri, B. & Safran, S. A. Hybrid lipids increase nanoscale fluctuation lifetimes in mixed membranes. Phys. Rev. E. 2013, 88, 032708.
57. Heberle, F. A. et al. Bilayer Thickness Mismatch Controls Domain Size in Model Membranes. J. Am. Chem. Soc. 2013, 135, 6853-6859.
58. Cornella, C. E. et al. Direct imaging of liquid domains in membranes by cryo-electron tomography. Proc. Natl. Acad. Sci. USA. 2020, 117, 19713-19719.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明