博碩士論文 108223021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:3.144.28.50
姓名 沈玉倢(Yu-Jie Shen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用原位創新法及機械力化學法合成酵素金屬有機骨架複合材料及其活性比較
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 金屬有機骨架材料 (Metal-organic Frameworks, MOFs) 近年來成為最熱門的孔洞材料之一,也因具孔洞多樣性、高比表面積以及熱穩定性等多種優勢,使其應用性非常多元化,其中一項應用即為酵素固定化之載體。本實驗室於2015年領導全球,開創出原位創新合成法 (de novo approach),成功將酵素包覆於MOFs之中,酵素依然保有生物活性,且藉由材料提供的孔洞篩選性得到良好保護,緊接著於2019年再次領先世界,利用機械力化學法 (Mechanochemical method) 將酵素包覆於MOFs之中。上述主要包覆的酵素為過氧化氫酶,其具有受質小且不需要輔酶的特性,然而在鹼性環境下較易失去活性。為了要讓上述系統能夠應用更多的酵素,因此本研究也包覆了脲酶,其具有較慢的反應速率,在實驗進行時可以更容易觀察催化過程,將脲酶包覆在材料當中,將可成為一個觀察酵素催化的全新平台。本研究成功以機械力化學法合成Enzyme@ZIF-90,並透過各種儀器鑑定材料之特性。雖然對於測量脲酶活性並未得到良好的結果,但同時也發現利用機械力化學法合成的CAT@ZIF-90不但與原位水相合成一樣,酵素保留良好的生物活性,但此法具有更高的產率,使其應用在工業上具有極大的潛力。
摘要(英) Metal-organic frameworks (MOFs) have become one of the most popular porous crystalline materials in recent years. Because of their porous diversity, large specific surface area and thermal stability, they are promising for a wide range of applications, for example enzyme immobilization is one of the attractive areas for our interests. In 2015, our group encapsulated catalase (CAT) enzyme into Zeolitic imidazole framework-90, CAT@ZIF-90, via mild water-based de novo approach, and afterward encapsulated enzymes into MOFs, Enzyme@MOFs, via a mechanochemical method in 2019. One of the mainly above-mentioned enzymes is catalase, which has the characteristics of a small substrate and no need for the coenzyme, but it is easier to lose activity in an alkaline environment. In order to expand the applications of de novo approach, we also encapsulated urease, which has a relatively lower reaction rate that provides a new platform for observing enzyme catalysis. In summary, we successfully synthesized Enzyme@ZIF-90 via a mechanochemical method and identified the characteristics through various instruments. Although urease did not show the expected activity, this method still retains catalase activity and improves the yield. Therefore, it still has a great potential for the further industrial applications.
關鍵字(中) ★ 金屬有機骨架材料
★ 酵素固定化
關鍵字(英) ★ Metal-organic Framworks
★ Enzyme Immobilization
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1金屬有機骨架材料 (Metal-organic Frameworks) 1
1-2類沸石咪唑骨架材料 (Zeolitic Imidazolate Frameworks) 4
1-3機械力化學法 6
1-4酵素固定化 (Enzyme Immobilization) 8
1-5酵素—過氧化氫酶和脲酶 11
1-5-1過氧化氫酶 (Catalase, CAT) 11
1-5-2脲酶 (Urease, URS) 11
1-5-3蛋白酶 (Protease) 12
1-6研究動機與目的 13
第二章 實驗部分 14
2-1實驗藥品 14
2-2實驗合成設備與鑑定儀器 17
2-2-1實驗合成設備 17
2-2-2實驗鑑定儀器 18
2-3實驗儀器之原理 19
2-3-1 X光粉末繞射儀 (Powder X-ray Diffractometer, PXRD) 19
2-3-2場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope, FE-SEM) 20
2-3-3紫外光可見光分光光譜儀 (Ultraviolet-Visible Spectrophotometer, UV-Vis) 21
2-3-4螢光光譜儀 (Fluorescence Spectrophotometer, FL) 22
2-3-5等溫氮氣吸/脫附測量儀 (Accelerated Surface Area and Porosimetry System, ASAP) 24
2-3-6熱重分析儀 (Thermogravimetric Analyzer, TGA) 27
2-3-7十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 28
2-4實驗步驟 30
2-4-1原位創新法 (de Novo approach) 合成Enzyme@ZIF-90 30
2-4-2機械力化學法 (Mechanochemistry) 合成Enzyme@ZIF-90 30
2-4-3原位創新法 (de Novo approach) 合成Enzyme@MOF-74 31
2-4-4偵測材料中蛋白質濃度 32
2-4-5偵測脲酶活性之方法——酚紅 (Phenol red) 以及艾氏試劑 (Ehrlich’s reagent) 34
2-4-6偵測過氧化氫酶活性之方法 37
2-4-7酵素金屬有機骨架複合材料之蛋白質凝膠電泳分析 39
第三章 結果與討論 41
3-1類沸石咪唑骨架材料包封脲酶 (URS@ZIF-90) 之材料鑑定 41
3-1-1 X光粉末繞射鑑定 (PXRD) 41
3-1-2掃描式電子顯微鏡影像分析 (SEM) 43
3-1-3 URS@ZIF-90之活性探討 44
3-1-4金屬有機骨架材料-74包封脲酶 (URS@MOF-74) 之相關鑑定 47
3-1-5檢測抑制脲酶之因素 49
3-1-6螢光光譜儀觀察酵素結構變化 50
3-1-7嘗試恢復失活脲酶之活性 51
3-2類沸石咪唑骨架材料包封過氧化氫酶 (CAT@ZIF-90) 之材料鑑定 54
3-2-1 X光粉末繞射鑑定 (PXRD) 54
3-2-2掃描式電子顯微鏡影像分析 (SEM) 56
3-2-3 CAT@ZIF-90之活性探討 57
3-2-4機械力化學法合成CAT@ZIF-90之熱重分析 (TGA) 59
3-2-5機械力化學法合成CAT@ZIF-90之氮氣等溫吸脫附儀分析 61
3-2-6十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 63
第四章 結論與未來展望 65
參考文獻 66
參考文獻 參考文獻
1. Zhou, H. C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 673-674.
2. Carrasco, S., Metal-Organic Frameworks for the Development of Biosensors: A Current Overview. Biosensors 2018, 8 (4).
3. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
4. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. De Gruyter: 1985.
5. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
6. Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F., Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chemical Society Reviews 2013, 42 (24), 9304-9332.
7. Ma, S.; Zhou, H.-C., Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications 2010, 46 (1), 44-53.
8. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
9. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2012, 112 (2), 869-932.
10. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
11. Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W., Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters 2020, 12 (1), 103.
12. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal–organic framework materials as catalysts. Chemical Society Reviews 2009, 38 (5), 1450-1459.
13. DeCoste, J. B.; Peterson, G. W., Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews 2014, 114 (11), 5695-5727.
14. Yang, J.; Yang, Y.-W., Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16 (10), 1906846.
15. Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D., Metal–Organic-Framework-Derived Co–Fe Bimetallic Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society 2019, 141 (27), 10744-10750.
16. Li, Z.; Guo, Y.; Ying, W.; Chen, D.; Wang, X.; Ma, X.; Zhao, X.; Deng, Z.; Peng, X., Highly conductive and transparent metal-organic frameworks thin film. Science China Materials 2019, 62 (9), 1350-1356.
17. Jiao, Y.; Qu, C.; Zhao, B.; Liang, Z.; Chang, H.; Kumar, S.; Zou, R.; Liu, M.; Walton, K. S., High-Performance Electrodes for a Hybrid Supercapacitor Derived from a Metal–Organic Framework/Graphene Composite. ACS Applied Energy Materials 2019, 2 (7), 5029-5038.
18. Miller, S. E.; Teplensky, M. H.; Moghadam, P. Z.; Fairen-Jimenez, D., Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 2016, 6 (4), 20160027.
19. Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M., Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews 2019, 48 (10), 2783-2828.
20. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
21. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
22. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
23. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
24. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
25. Al-Kutubi, H.; Gascon, J.; Sudhölter, E. J. R.; Rassaei, L., Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem 2015, 2 (4), 462-474.
26. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
27. Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W.; Schröder, M., Metal–organic frameworks in seconds via selective microwave heating. Journal of Materials Chemistry A 2017, 5 (16), 7333-7338.
28. Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F., Mechanochemical Synthesis of Metal−Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chemistry of Materials 2010, 22 (18), 5216-5221.
29. Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K., Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications 2017, 53 (43), 5818-5821.
30. Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S., Sonochemical synthesis of MOF-5. Chemical Communications 2008, (47), 6336-6338.
31. Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters 2009, 63 (1), 78-80.
32. Parnham, E. R.; Morris, R. E., Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research 2007, 40 (10), 1005-1013.
33. Carné-Sánchez, A.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D., A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nature Chemistry 2013, 5 (3), 203-211.
34. Rasmussen, E. G.; Kramlich, J.; Novosselov, I. V., Scalable Continuous Flow Metal–Organic Framework (MOF) Synthesis Using Supercritical CO2. ACS Sustainable Chemistry & Engineering 2020, 8 (26), 9680-9689.
35. Bayliss, P. A.; Ibarra, I. A.; Pérez, E.; Yang, S.; Tang, C. C.; Poliakoff, M.; Schröder, M., Synthesis of metal–organic frameworks by continuous flow. Green Chemistry 2014, 16 (8), 3796-3802.
36. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186.
37. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
38. Takacs, L., The historical development of mechanochemistry. Chemical Society Reviews 2013, 42 (18), 7649-7659.
39. Jiménez-González, C.; Constable, D. J. C.; Ponder, C. S., Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry—a green metrics primer. Chemical Society Reviews 2012, 41 (4), 1485-1498.
40. Baig, R. B. N.; Varma, R. S., Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chemical Society Reviews 2012, 41 (4), 1559-1584.
41. Garay, A. L.; Pichon, A.; James, S. L., Solvent-free synthesis of metal complexes. Chemical Society Reviews 2007, 36 (6), 846-855.
42. Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W., The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 2009, 11 (3), 418-426.
43. Do, J.-L.; Friščić, T., Mechanochemistry: A Force of Synthesis. ACS Central Science 2017, 3 (1), 13-19.
44. Mottillo, C.; Friščić, T., Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules 2017, 22 (1), 144.
45. Friščić, T.; Halasz, I.; Beldon, P. J.; Belenguer, A. M.; Adams, F.; Kimber, S. A. J.; Honkimäki, V.; Dinnebier, R. E., Real-time and in situ monitoring of mechanochemical milling reactions. Nature Chemistry 2013, 5 (1), 66-73.
46. Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L., Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chemical Science 2015, 6 (3), 1645-1649.
47. Kirk, O.; Borchert, T. V.; Fuglsang, C. C., Industrial enzyme applications. Current Opinion in Biotechnology 2002, 13 (4), 345-351.
48. Subba Rao, C.; Sathish, T.; Ravichandra, P.; Prakasham, R. S., Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistry 2009, 44 (3), 262-268.
49. Sun, Y.; Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 2002, 83 (1), 1-11.
50. Guzman-Maldonado, H.; Paredes-Lopez, O., Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 1995, 35 (5), 373-403.
51. Alkorta, I.; Garbisu, C.; Llama, M. J.; Serra, J. L., Industrial applications of pectic enzymes: a review. Process Biochemistry 1998, 33 (1), 21-28.
52. Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R., Enzyme immobilization: an update. J Chem Biol 2013, 6 (4), 185-205.
53. Majewski, M. B.; Howarth, A. J.; Li, P.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K., Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm 2017, 19 (29), 4082-4091.
54. Mojsov, K., APPLICATION OF ENZYMES IN THE TEXTILE INDUSTRY: A REVIEW. 2011.
55. Kirkman, H. N.; Gaetani, G. F., Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A 1984, 81 (14), 4343-4347.
56. Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Olson, B. M., Some amino acid sequences in bovine-liver catalase. Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects 1964, 89 (1), 47-65.
57. Chance, B., Effect of pH upon the reaction kinetics of the enzyme-substrate compounds of catalase. The Journal of biological chemistry 1952, 194 2, 471-81.
58. Sumner, J. B., THE ISOLATION AND CRYSTALLIZATION OF THE ENZYME UREASE: PRELIMINARY PAPER. Journal of Biological Chemistry 1926, 69 (2), 435-441.
59. Takishima, K.; Suga, T.; Mamiya, G., The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. European journal of biochemistry 1988, 175 1, 151-65.
60. Cesareo, S. D.; Langton, S. R., Kinetic properties of Helicobacter pylori urease compared with jack bean urease. FEMS Microbiology Letters 1992, 99 (1), 15-22.
61. Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H., Proteinase K from Tritirachium album Limber. European Journal of Biochemistry 1974, 47 (1), 91-97.
62. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
63. Mottillo, C.; Lu, Y.; Pham, M.-H.; Cliffe, M. J.; Do, T.-O.; Friščić, T., Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides. Green Chemistry 2013, 15 (8), 2121-2131.
64. Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; Pham, M.-H.; Do, T.-O.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, O.; Dinnebier, R. E.; Halasz, I.; Friščić, T., In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat Commun 2015, 6 (1), 6662.
65. Štefanac, Z.; Tomašković, M.; Raković-tresić, Z., Spectrophotometric Method of Assaying Urease Activity. Analytical Letters 1969, 2 (4), 197-210.
66. Sargsyan, K.; Lin, C.-C.; Chen, T.; Grauffel, C.; Chen, Y.-P.; Yang, W.-Z.; Yuan, H. S.; Lim, C., Multi-targeting of functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-ejectors. Chemical Science 2020, 11 (36), 9904-9909.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明