博碩士論文 107821605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.22.181.209
姓名 安芮絲(Grace Sonia)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 使用果蠅作為模型來研究不同脂肪來源的高脂肪飲食的影響和潛在的抗肥胖療法
(Using Drosophila as a model to study the effects of high fat diets from different fat sources and potential anti-obesity remedies)
相關論文
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 利用人類腎臟近曲小管表皮細胞建立三維細胞培養模型
★ 脂肪酸特異互養棲熱菌酮醇酸還原異構酶之晶體結構及活性分析★ 以桿狀病毒載體系統 建構與異源表達果蠅Zelda基因及其功能分析
★ 測試以異位表達 Zelda 之 S2 細胞為平台進行 STARR-seq 分析 Zelda 依賴增強子活性★ 以重組桿狀病毒表達系統建構果蠅Zelda基因 及其交互作用分子之篩選
★ 製作 anti-Zelda antibody 與分析 Zelda 表現量★ 利用果蠅大腸癌模型探討左旋硒代胱胺酸之抗癌效果
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) ABSTRACT (in Chinese)

多年來超重和肥胖的全球流行病愈演愈烈。根據世界衛生組織 2016 年的報告,18 歲及以上的成年人約有39% 超重,13% 肥胖。肥胖會增加罹患糖尿病、代謝紊亂、心血管疾病、睡眠呼吸中止症和癌症等的風險,從而導致更高的死亡率。它還可能促進慢性全身發炎,進而影響許多人體器官和神經系統。
在果蠅實驗中,肥胖模式是透過長期餵食高糖或脂肪飲食所建立的。脂肪代謝中和胰島素信號傳遞路徑在人和果蠅之間是高度保守的。飲食誘導的肥胖果蠅表現出三酸甘油酯累積、胰島素抗性、體適能下降、腎臟和心血管疾病風險升高。因此,果蠅越來越多被用作建立肥胖和代謝疾病模式。先前果蠅的高油飲食實驗,主要使用椰子油。然而椰子油的不穩定和黏滯可能會干擾高油實驗的結果。除此之外,根據全球食用油消費和生產數據,椰子油並非是最主要的食用油。因此在這項研究中,我們有系統地比較不同脂肪來源(包括橄欖油、椰子油、棕櫚油、牛油和豬油)的高油飲食對果蠅所造成的影響。
我們的結果顯示, 根據生理反應和健康評估的,過量的豬油及棕櫚油對果蠅表現出較顯著的影響。此外不同高油飲食誘導的果蠅模式亦顯現出不同的基因表現。有些植物萃取物,例如肉桂和EGCG被認為可以防止肥胖和降低發炎。根據我們的高油果蠅模式,我們發現肉桂和 EGCG 的確可以減少高脂肪飲食造成的負面影響。


關鍵詞: 高脂肪飲食/肥胖/抗肥胖/果蠅模型
摘要(英) ABSTRACT

Global epidemic of overweight and obesity has intensified over the years. According to the WHO report in 2016, about 1.9 billion adults (39%) aged 18 years and over were overweight and 13% were obese. Obesity can lead to a higher mortality by increasing the risks of diabetes, metabolic disorders, cardiovascular diseases, sleep apnea, and cancer etc. It could also promote chronic systemic inflammation affecting many human organs and nervous systems.
Diet-induced obesity in Drosophila has been established by chronic feeding of high sugar or fat diet. Many components in fat metabolism and insulin signaling pathways are conserved between humans and flies. Similarly, obese flies showed accumulated triacylglycerol, insulin resistance, lower fitness, and elevated risks for kidney and cardiovascular diseases. Thus, flies were increasingly used as a genetic tool for modeling obesity and metabolic diseases. Previously, coconut oil was mostly used for excess dietary experiments in flies. However, the liquidness and greasiness may interfere with the direct effect of excessive consumption of fat. In addition, global oil consumption and production data showed that coconut oil might not always be a major fat source for different population or in different regions. In this study, we compared the effects of diet supplemented with different fat sources.
Our result suggested that excessive pork fat (HP) and palm oil (HM) exerted more significant effects based on the biological responses and fitness evaluation. Also fly fed by different high fat diets showed different expression pattern. Natural remedy such as cinnamon and EGCG have been implied to prevent obesity and inflammation. Based on our HFD model, cinnamon and EGCG could reduce the negative impact of high fat diet in flies.

Keywords: High fat diet/obesity/anti-obesity/Drosophila model
關鍵字(中) ★ 高脂肪飲食
★ 肥胖
★ 抗肥胖
★ 果蠅模型
關鍵字(英) ★ High fat diet
★ obesity
★ anti-obesity
★ Drosophila model
論文目次 TABLE OF CONTENT

ABSTRACT----------------------------------------------------------------------------------------- i
ABSTRACT (in Chinese) ------------------------------------------------------------------------- ii
ACKNOWLEDGEMENT------------------------------------------------------------------------- iii
TABLE OF CONTENT--------------------------------------------------------------------------- iv
LIST OF FIGURES-------------------------------------------------------------------------------- vi
LIST OF TABLES --------------------------------------------------------------------------------- vii
ABBREVIATION---------------------------------------------------------------------------------- viii
CHAPTER I INTRODUCTION------------------------------------------------------------------ 1
1.1 Overweight and obesity pandemic------------------------------------------------------ 1
1.2 Excessive fat diets and obesity---------------------------------------------------------- 1
1.3 Using Drosophila modeling human obesity------------------------------------------- 3
1.4 High fat studies using Drosophila------------------------------------------------------ 5
1.5 High fat diets impact on biological responses---------------------------------------- 6
1.6 High fat diets alter gene expression related to metabolic disorders---------------- 7
1.7 Potential anti-obesity remedies--------------------------------------------------------- 8
CHAPTER II MATERIALS AND METHODS------------------------------------------------ 12
2.1 Fly food preparation---------------------------------------------------------------------- 12
2.2 Fly strains---------------------------------------------------------------------------------- 12
2.3 Fly handling and maintenance---------------------------------------------------------- 12
2.4 Experimental diet feeding--------------------------------------------------------------- 13
2.5 Measurement of pupal lethality--------------------------------------------------------- 13
2.6 Measurement of body mass and size--------------------------------------------------- 13
2.7 Assessment of abnormal wing phenotypes ------------------------------------------- 13
2.8 Climbing experiments-------------------------------------------------------------------- 13
2.9 Fecundity tests and developmental rate------------------------------------------------ 14
2.10 Life span--------------------------------------------------------------------------------- 14
2.11 Histochemistry -------------------------------------------------------------------------- 14
2.12 Triglyceride (TAG) measurements--------------------------------------------------- 15
2.13 RT-qPCR--------------------------------------------------------------------------------- 16
2.14 Statistical analysis---------------------------------------------------------------------- 17


CHAPTER III RESULTS------------------------------------------------------------------------- 18
3.1 HFD effects on growth and development---------------------------------------------- 19
3.2 HFD effects on fat metabolism--------------------------------------------------------- 24
3.3 HFD effects on physical fitness--------------------------------------------------------- 26
3.4 HFD effects on fertility------------------------------------------------------------------ 29
3.5 HFD effects on gene expression-------------------------------------------------------- 30
3.6 HFD effects on responses to anti-oxidant reagents----------------------------------- 32
3.7 HFD and anti-obesity effects on NFkB mutant flies--------------------------------- 38
CHAPTER 4 DISCUSSION---------------------------------------------------------------------- 40
4.1 Developing fly obesity model induced by different fat sources-------------------- 40
4.2 Different fat sources led to different fly biological responses---------------------- 40
4.3 HFDs reduced fly fitness ---------------------------------------------------------------- 44
4.4 HFDs reduced fertility in female flies-------------------------------------------------- 45
4.5 Different HFDs induced differential gene expression------------------------------- 45
4.6 Flies under different HFDs responded differently to cinnamon and EGCG------ 46
REFERENCES-------------------------------------------------------------------------------------- 47
APPENDIX------------------------------------------------------------------------------------------ 57

參考文獻 REFERENCES

Aires, V., Labbé, J., Deckert, V., Pais de Barros, J. P., Boidot, R., Haumont, M., Maquart, G., Le Guern, N., Masson, D., Prost-Camus, E., Prost, M., & Lagrost, L. (2019). Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract. Scientific reports, 9(1), 1-6.
Akter S, D’Ambra J, Ray P (2013). Development and validation of an instrument to measure user perceived service quality of mHealth. Information & Management. 50(4), 181-95.
Albuquerque, D., E. Stice, R. Rodríguez-López, L. Manco, C. J. M. g. Nóbrega and genomics (2015). Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. 290(4), 1191-1221.
Allen, R. W., Schwartzman, E., Baker, W. L., Coleman, C. I., & Phung, O. J. (2013). Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Annals of family medicine, 11(5), 452–459.
Anh, N. T., Nishitani, M., Harada, S., Yamaguchi, M., & Kamei, K. (2011). Essential role of Duox in stabilization of Drosophila wing. The Journal of biological chemistry, 286(38), 33244–33251.
Aune, D., Sen, A., Prasad, M., Norat, T., Janszky, I., Tonstad, S., Romundstad, P., & Vatten, L. J. (2016). BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ (Clinical research ed.), 353, i2156.
Azuma, M., Dat Le, T., Yoshimoto, Y., Hiraki, N., Yamanaka, M., Omura, F., & Inoue, Y. H. (2019). RNA-seq analysis of diet-driven obesity and anti-obesity effects of quercetin glucoside or epigallocatechin gallate in Drosophila adults. European review for medical and pharmacological sciences, 23(2), 857–876.
Bai, Y., Li, K., Shao, J., Luo, Q., & Jin, L. H. (2018). Flos Chrysanthemi Indici extract improves a high-sucrose diet-induced metabolic disorder in Drosophila. Experimental and therapeutic medicine, 16(3), 2564–2572.
Baker, K. D., & Thummel, C. S. (2007). Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell metabolism, 6(4), 257–266.
Baranova, A., Collantes, R., Gowder, S. J., Elariny, H., Schlauch, K., Younoszai, A., King, S., Randhawa, M., Pusulury, S., Alsheddi, T., Ong, J. P., Martin, L. M., Chandhoke, V., & Younossi, Z. M. (2005). Obesity-related differential gene expression in the visceral adipose tissue. Obesity surgery, 15(6), 758–765.
Bastos, M. S., Del Vesco, A. P., Santana, T. P., Santos, T. S., de Oliveira Junior, G. M., Fernandes, R., Barbosa, L. T., & Gasparino, E. (2017). The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails. PloS one, 12(12), e0189619.
Beller, M., Sztalryd, C., Southall, N., Bell, M., Jäckle, H., Auld, D. S., & Oliver, B. (2008). COPI complex is a regulator of lipid homeostasis. PLoS biology, 6(11), e292.
Bharucha, K. N., Tarr, P., & Zipursky, S. L. (2008). A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. The Journal of experimental biology, 211(Pt 19), 3103–3110.
Birse, R. T., Choi, J., Reardon, K., Rodriguez, J., Graham, S., Diop, S., Ocorr, K., Bodmer, R., & Oldham, S. (2010). High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell metabolism, 12(5), 533–544.
Binh, T. D., Pham, T., Men, T. T., Dang, T., & Kamei, K. (2019). LSD-2 dysfunction induces dFoxO-dependent cell death in the wing of Drosophila melanogaster. Biochemical and biophysical research communications, 509(2), 491–497.
Bretscher, H., & O′Connor, M. B. (2020). The Role of Muscle in Insect Energy Homeostasis. Frontiers in physiology, 11, 580687.
Brookheart, R. T., Swearingen, A. R., Collins, C. A., Cline, L. M., & Duncan, J. G. (2017). High-sucrose-induced maternal obesity disrupts ovarian function and decreases fertility in Drosophila melanogaster. Biochimica et biophysica acta. Molecular basis of disease, 1863(6), 1255–1263.
Castelli W. P. (1988). Cardiovascular disease in women. American journal of obstetrics and gynecology, 158(6 Pt 2), 1553–1567.
Carlsen, H., Haugen, F., Zadelaar, S., Kleemann, R., Kooistra, T., Drevon, C. A., & Blomhoff, R. (2009). Diet-induced obesity increases NF-kappaB signaling in reporter mice. Genes & nutrition, 4(3), 215–222.
Carmon, A., Topbas, F., Baron, M., & MacIntyre, R. J. (2010). dumpy interacts with a large number of genes in the developing wing of Drosophila melanogaster. Fly, 4(2), 117–127.
Couturier, K., Qin, B., Batandier, C., Awada, M., Hininger-Favier, I., Canini, F., Leverve, X., Roussel, A. M., & Anderson, R. A. (2011). Cinnamon increases liver glycogen in an animal model of insulin resistance. Metabolism: clinical and experimental, 60(11), 1590–1597.
Crespy, V., & Williamson, G. (2004). A review of the health effects of green tea catechins in in vivo animal models. The Journal of nutrition, 134(12 Suppl), 3431S–3440S.
Crujeiras, A. B., & Casanueva, F. F. (2015). Obesity and the reproductive system disorders: epigenetics as a potential bridge. Human reproduction update, 21(2), 249–261.
Davidson, E. P., Coppey, L. J., Calcutt, N. A., Oltman, C. L., & Yorek, M. A. (2010). Diet-induced obesity in Sprague-Dawley rats causes microvascular and neural dysfunction. Diabetes/metabolism research and reviews, 26(4), 306–318.
de Ferranti, S., & Mozaffarian, D. (2008). The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clinical chemistry, 54(6), 945–955.
Di Angelantonio, E., Bhupathiraju, S., Wormser, D., et al. (2016). Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet (London, England), 388(10046), 776–786.
Diop, S. B., Bisharat-Kernizan, J., Birse, R. T., Oldham, S., Ocorr, K., & Bodmer, R. (2015). PGC-1/Spargel Counteracts High-Fat-Diet-Induced Obesity and Cardiac Lipotoxicity Downstream of TOR and Brummer ATGL Lipase. Cell reports, 10(9), 1572–1584.
Dornas, W. C., Cardoso, L. M., Silva, M., Machado, N. L., Chianca, D. A., Jr, Alzamora, A. C., Lima, W. G., Lagente, V., & Silva, M. E. (2017). Oxidative stress causes hypertension and activation of nuclear factor-κB after high-fructose and salt treatments. Scientific reports, 7, 46051.
Dou, L., Zheng, Y., Li, L., Gui, X., Chen, Y., Yu, M., & Guo, Y. (2018). The effect of cinnamon on polycystic ovary syndrome in a mouse model. Reproductive biology and endocrinology : RB&E, 16(1), 99.
Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., & Xu, K. (2018). Inflammatory Links Between High Fat Diets and Diseases. Frontiers in immunology, 9, 2649.
Eckel, R. H., Jakicic, J. M., Ard, J. D., et al. (2014). 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 129(25 Suppl 2), S76–S99.
El-Mowafy, A. M., Al-Gayyar, M. M., Salem, H. A., El-Mesery, M. E., & Darweish, M. M. (2010). Novel chemotherapeutic and renal protective effects for the green tea (EGCG): role of oxidative stress and inflammatory-cytokine signaling. Phytomedicine : international journal of phytotherapy and phytopharmacology, 17(14), 1067–1075.
El Sayed SM, Moustafa RA. (2016) Effect of combined administration of ginger and cinnamon on high fat diet induced hyperlipidemia in rats. Journal of Pharmaceutical, Chemical and Biological Sciences. 3(4), 561-72.
El-Shehawi, A. M., El-Shazly, S., Ahmed, M., Alkafafy, M., Sayed, S., Farouk, S., Alotaibi, S. S., & Elseehy, M. M. (2020). Transcriptome Analysis of Testis from HFD-Induced Obese Rats (Rattus norvigicus) Indicated Predisposition for Male Infertility. International journal of molecular sciences, 21(18), 6493.
Engel, J. E., & Wu, C. F. (1992). Interactions of membrane excitability mutations affecting potassium and sodium currents in the flight and giant fiber escape systems of Drosophila. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 171(1), 93–104.
Fayaz, E., Damirchi, A., Zebardast, N., & Babaei, P. (2019). Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition (Burbank, Los Angeles County, Calif.), 65, 173–178.
Fernández-Sánchez, A., Madrigal-Santillán, E., Bautista, M., Esquivel-Soto, J., Morales-González, A., Esquivel-Chirino, C., Durante-Montiel, I., Sánchez-Rivera, G., Valadez-Vega, C., & Morales-González, J. A. (2011). Inflammation, oxidative stress, and obesity. International journal of molecular sciences, 12(5), 3117–3132.
Finkelstein, E. A., Khavjou, O. A., Thompson, H., Trogdon, J. G., Pan, L., Sherry, B., & Dietz, W. (2012). Obesity and severe obesity forecasts through 2030. American journal of preventive medicine, 42(6), 563–570.
Flegal, K. M., Kit, B. K., Orpana, H., & Graubard, B. I. (2013). Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA, 309(1), 71–82.
Gáliková, M., & Klepsatel, P. (2018). Obesity and Aging in the Drosophila Model. International journal of molecular sciences, 19(7), 1896.
Ganguly, R., & Pierce, G. N. (2015). The toxicity of dietary trans fats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 78, 170–176.
Green, H. J., Fraser, I. G., & Ranney, D. A. (1984). Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. Journal of the neurological sciences, 65(3), 323–331.
Grönke, S., Mildner, A., Fellert, S., Tennagels, N., Petry, S., Müller, G., Jäckle, H., & Kühnlein, R. P. (2005). Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell metabolism, 1(5), 323–330.
Gruenwald, J., Freder, J., & Armbruester, N. (2010). Cinnamon and health. Critical reviews in food science and nutrition, 50(9), 822–834.
Green, H. J., Fraser, I. G., & Ranney, D. A. (1984). Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. Journal of the neurological sciences, 65(3), 323–331.
Khan A, Safdar M, Khan MM, Khattak KN, Anderson RA.(2003). Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes care. Dec 1;26(12):3215-8.
Komi, P. V., & Karlsson, J. (1978). Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta physiologica Scandinavica, 103(2), 210–218.
Hariri, N., & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition research reviews, 23(2), 270–299.
Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2017). Prevalence of Obesity Among Adults and Youth: United States, 2015-2016. NCHS data brief, (288), 1–8.
Harika, R. K., Eilander, A., Alssema, M., Osendarp, S. J., & Zock, P. L. (2013). Intake of fatty acids in general populations worldwide does not meet dietary recommendations to prevent coronary heart disease: a systematic review of data from 40 countries. Annals of nutrition & metabolism, 63(3), 229–238.
Hemphill, W., Rivera, O., & Talbert, M. (2018). RNA-Sequencing of Drosophila melanogaster Head Tissue on High-Sugar and High-Fat Diets. G3 (Bethesda, Md.), 8(1), 279–290.
Herrero, P., Bondia, J., Giménez, M., Oliver, N., & Georgiou, P. (2018). Automatic Adaptation of Basal Insulin Using Sensor-Augmented Pump Therapy. Journal of diabetes science and technology, 12(2), 282–294.
Hohos, N. M., & Skaznik-Wikiel, M. E. (2017). High-Fat Diet and Female Fertility. Endocrinology, 158(8), 2407–2419.
Huang, J., Wang, Y., Xie, Z., Zhou, Y., Zhang, Y., & Wan, X. (2014). The anti-obesity effects of green tea in human intervention and basic molecular studies. European journal of clinical nutrition, 68(10), 1075–1087.
Hurd, T. R., Liang, F. X., & Lehmann, R. (2015). Curly Encodes Dual Oxidase, Which Acts with Heme Peroxidase Curly Su to Shape the Adult Drosophila Wing. PLoS genetics, 11(11), e1005625.
Hu, S., Wang, L., Yang, D., Li, L., Togo, J., Wu, Y., Liu, Q., Li, B., Li, M., Wang, G., Zhang, X., Niu, C., Li, J., Xu, Y., Couper, E., Whittington-Davies, A., Mazidi, M., Luo, L., Wang, S., Douglas, A., … Speakman, J. R. (2018). Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell metabolism, 28(3), 415–431.e4.
Janssen, I., Heymsfield, S. B., Wang, Z. M., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. Journal of applied physiology (Bethesda, Md. : 1985), 89(1), 81–88.
Jayedi, A., Soltani, S., Abdolshahi, A., & Shab-Bidar, S. (2020). Healthy and unhealthy dietary patterns and the risk of chronic disease: an umbrella review of meta-analyses of prospective cohort studies. The British journal of nutrition, 124(11), 1133–1144.
Jiang J, Mo ZC, Yin K, Zhao GJ, Lv YC, Ouyang XP, Jiang ZS, Fu Y, Tang CK. (2012). Epigallocatechin-3-gallate prevents TNF-α-induced NF-κB activation thereby upregulating ABCA1 via the Nrf2/Keap1 pathway in macrophage foam cells. International journal of molecular medicine. May 1;29(5):946-56.
Jones, H. N., Woollett, L. A., Barbour, N., Prasad, P. D., Powell, T. L., & Jansson, T. (2009). High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 23(1), 271–278.
Kayashima, Y., Murata, S., Sato, M., Matsuura, K., Asanuma, T., Chimoto, J., Ishii, T., Mochizuki, K., Kumazawa, S., Nakayama, T., & Yamakawa-Kobayashi, K. (2015). Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochemistry and biophysics reports, 4, 417–424.
Keleher, M. R., Zaidi, R., Hicks, L., Shah, S., Xing, X., Li, D., Wang, T., & Cheverud, J. M. (2018). A high-fat diet alters genome-wide DNA methylation and gene expression in SM/J mice. BMC genomics, 19(1), 888.
Khan, A., Safdar, M., Ali Khan, M. M., Khattak, K. N., & Anderson, R. A. (2003). Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes care, 26(12), 3215–3218.
Kim, J. E., Lee, M. H., Nam, D. H., Song, H. K., Kang, Y. S., Lee, J. E., Kim, H. W., Cha, J. J., Hyun, Y. Y., Han, S. Y., Han, K. H., Han, J. Y., & Cha, D. R. (2013). Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PloS one, 8(4), e62068.
Kitagawa, M., Tahara, H., Kitagawa, S., Oka, H., Kudo, Y., Sato, S., Ogawa, I., Miyaichi, M., & Takata, T. (2006). Characterization of established cementoblast-like cell lines from human cementum-lining cells in vitro and in vivo. Bone, 39(5), 1035–1042.
Klaus, S., Pültz, S., Thöne-Reineke, C., & Wolfram, S. (2005). Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. International journal of obesity (2005), 29(6), 615–623.
Komi, P. V., & Karlsson, J. (1978). Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta physiologica Scandinavica, 103(2), 210–218.
Kühnlein R. P. (2012). Lipid droplet-based storage fat metabolism in Drosophila. Journal of lipid research, 53(8), 1430–1436.
Lee, K. A., Cho, K. C., Kim, B., Jang, I. H., Nam, K., Kwon, Y. E., Kim, M., Hyeon, D. Y., Hwang, D., Seol, J. H., & Lee, W. J. (2018). Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila. Cell host & microbe, 23(3), 338–352.e5.
Liao, S., Amcoff, M., & Nässel, D. R. (2021). Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. Insect biochemistry and molecular biology, 133, 103495.
Licholai, J. A., Nguyen, K. P., Fobbs, W. C., Schuster, C. J., Ali, M. A., & Kravitz, A. V. (2018). Why Do Mice Overeat High-Fat Diets? How High-Fat Diet Alters the Regulation of Daily Caloric Intake in Mice. Obesity (Silver Spring, Md.), 26(6), 1026–1033.
Li, F., Gao, C., Yan, P., Zhang, M., Wang, Y., Hu, Y., Wu, X., Wang, X., & Sheng, J. (2018). EGCG Reduces Obesity and White Adipose Tissue Gain Partly Through AMPK Activation in Mice. Frontiers in pharmacology, 9, 1366. https://doi.org/10.3389/fphar.2018.01366
Linné Y. (2004). Effects of obesity on women′s reproduction and complications during pregnancy. Obesity reviews : an official journal of the International Association for the Study of Obesity, 5(3), 137–143.
Lopez, T., Schriner, S. E., Okoro, M., Lu, D., Chiang, B. T., Huey, J., & Jafari, M. (2014). Green tea polyphenols extend the lifespan of male drosophila melanogaster while impairing reproductive fitness. Journal of medicinal food, 17(12), 1314–1321.
Madabattula, S. T., Strautman, J. C., Bysice, A. M., O′Sullivan, J. A., Androschuk, A., Rosenfelt, C., Doucet, K., Rouleau, G., & Bolduc, F. (2015). Quantitative Analysis of Climbing Defects in a Drosophila Model of Neurodegenerative Disorders. Journal of visualized experiments : JoVE, (100), e52741.
Maffiuletti, N. A., Jubeau, M., Munzinger, U., Bizzini, M., Agosti, F., De Col, A., Lafortuna, C. L., & Sartorio, A. (2007). Differences in quadriceps muscle strength and fatigue between lean and obese subjects. European journal of applied physiology, 101(1), 51–59.
Manna, P., & Jain, S. K. (2015). Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic syndrome and related disorders, 13(10), 423–444.
Mang, B., Wolters, M., Schmitt, B., Kelb, K., Lichtinghagen, R., Stichtenoth, D. O., & Hahn, A. (2006). Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. European journal of clinical investigation, 36(5), 340–344.
McKay, J. A., & Mathers, J. C. (2011). Diet induced epigenetic changes and their implications for health. Acta physiologica (Oxford, England), 202(2), 103–118.
Mariappan, N., Elks, C. M., Sriramula, S., Guggilam, A., Liu, Z., Borkhsenious, O., & Francis, J. (2010). NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovascular research, 85(3), 473–483.
Maurizi, G., Della Guardia, L., Maurizi, A., & Poloni, A. (2018). Adipocytes properties and crosstalk with immune system in obesity-related inflammation. Journal of cellular physiology, 233(1), 88–97.
Mehta, S. H., Kerver, J. M., Sokol, R. J., Keating, D. P., & Paneth, N. (2014). The association between maternal obesity and neurodevelopmental outcomes of offspring. The Journal of pediatrics, 165(5), 891–896.
Molaei M, Vandehoef C, Karpac J. NF-κB shapes metabolic adaptation by attenuating foxo-mediated lipolysis in Drosophila. Developmental cell. 2019 Jun 3;49(5):802-10.
Moreira P. I. (2013). High-sugar diets, type 2 diabetes and Alzheimer′s disease. Current opinion in clinical nutrition and metabolic care, 16(4), 440–445.
Muller, A. P., Dietrich, M., Martimbianco de Assis, A., Souza, D. O., & Portela, L. V. (2013). High saturated fat and low carbohydrate diet decreases lifespan independent of body weight in mice. Longevity & healthspan, 2(1), 10. https://doi.org/10.1186/2046-2395-2-10
Murase, T., Nagasawa, A., Suzuki, J., Hase, T., & Tokimitsu, I. (2002). Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, 26(11), 1459–1464.
Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., & Baranski, T. J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease models & mechanisms, 4(6), 842–849.
Musselman, L. P., Fink, J. L., Ramachandran, P. V., Patterson, B. W., Okunade, A. L., Maier, E., Brent, M. R., Turk, J., & Baranski, T. J. (2013). Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. The Journal of biological chemistry, 288(12), 8028–8042.
Ndisang, J. F., Rastogi, S., & Vannacci, A. (2014). Immune and inflammatory processes in obesity, insulin resistance, diabetes, and related cardiometabolic complications. Journal of immunology research, 2014, 579560.
Nielsen F. H. (2010). Magnesium, inflammation, and obesity in chronic disease. Nutrition reviews, 68(6), 333–340.
OECD/FAO (2016), “Oilseeds and Oilseed Products”, in OECD-FAO Agricultural Outlook 2016-2025, OECD Publishing, Paris.
Orsavova, J., Misurcova, L., Ambrozova, J. V., Vicha, R., & Mlcek, J. (2015). Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. International journal of molecular sciences, 16(6), 12871–12890.
Pasquali, R., Patton, L., & Gambineri, A. (2007). Obesity and infertility. Current opinion in endocrinology, diabetes, and obesity, 14(6), 482–487.
Pham, V. N., Xu, X., & Huq, E. (2018). Molecular bases for the constitutive photomorphogenic phenotypes in Arabidopsis. Development (Cambridge, England), 145(23), dev169870.
Ponmurugan, P., S. Kavitha, M. Suganya and B. M. Gnanamangai (2019). Tea Polyphenols Chemistry for Pharmaceutical Applications. Tea-Chemistry and Pharmacology, IntechOpen.
Reis T. (2016). Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila Development, Body Fat, and Lifespan. PloS one, 11(1), e0146758.
Qin, B., Nagasaki, M., Ren, M., Bajotto, G., Oshida, Y., & Sato, Y. (2003). Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes research and clinical practice, 62(3), 139–148.
Raederstorff, D. G., Schlachter, M. F., Elste, V., & Weber, P. (2003). Effect of EGCG on lipid absorption and plasma lipid levels in rats. The Journal of nutritional biochemistry, 14(6), 326–332.
Ratnayake, W. M. N. and Gilani, G. S. (2004). Nutritional and Health Effects of Dietary Fats. Pakistan Journal of Nutrition, 3(4), 205-212.
Reis T. (2016). Effects of Synthetic Diets Enriched in Specific Nutrients on Drosophila Development, Body Fat, and Lifespan. PloS one, 11(1), e0146758.
Relja, B., Höhn, C., Bormann, F., Seyboth, K., Henrich, D., Marzi, I., & Lehnert, M. (2012). Acute alcohol intoxication reduces mortality, inflammatory responses and hepatic injury after haemorrhage and resuscitation in vivo. British journal of pharmacology, 165(4b), 1188–1199.
Rivera, O., McHan, L., Konadu, B., Patel, S., Sint Jago, S., & Talbert, M. E. (2019). A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 189(2), 179–198.
Roy, R., Sultana, S., Begum, N., Fornara, D., Barmon, M., Zhang, R., Sarker, T., & Rabbany, M. G. (2021). Exogenous melatonin reduces water deficit-induced oxidative stress and improves growth performance of Althaea rosea grown on coal mine spoils. Environmental science and pollution research international, Advance online publication.
Rulifson, E. J., Kim, S. K., & Nusse, R. (2002). Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science, 296(5570), 1118–1120.
Sae-tan, S., Grove, K. A., & Lambert, J. D. (2011). Weight control and prevention of metabolic syndrome by green tea. Pharmacological research, 64(2), 146–154.
Sajwan, S., Sidorov, R., Stašková, T., Žaloudíková, A., Takasu, Y., Kodrík, D., & Zurovec, M. (2015). Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect biochemistry and molecular biology, 61, 79–86.
Schriner, S. E., Kuramada, S., Lopez, T. E., Truong, S., Pham, A., & Jafari, M. (2014). Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate chico. Experimental gerontology, 60, 220–230.
Scott, R. C., Schuldiner, O., & Neufeld, T. P. (2004). Role and regulation of starvation-induced autophagy in the Drosophila fat body. Developmental cell, 7(2), 167–178.
Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of clinical investigation, 116(11), 3015–3025.
Showalter, M. R., Nonnecke, E. B., Linderholm, A. L., Cajka, T., Sa, M. R., Lönnerdal, B., Kenyon, N. J., & Fiehn, O. (2018). Obesogenic diets alter metabolism in mice. PloS one, 13(1), e0190632.
Silvestris, E., de Pergola, G., Rosania, R., & Loverro, G. (2018). Obesity as disruptor of the female fertility. Reproductive biology and endocrinology : RB&E, 16(1), 22.
Siri, P. W., & Krauss, R. M. (2005). Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Current atherosclerosis reports, 7(6), 455–459.
Smith, P., Arias, R., Sonti, S., Odgerel, Z., Santa-Maria, I., McCabe, B. D., Tsaneva-Atanasova, K., Louis, E. D., Hodge, J., & Clark, L. N. (2018). A Drosophila Model of Essential Tremor. Scientific reports, 8(1), 7664.
Sohrabi, M., Roushandeh, A. M., Alizadeh, Z., Vahidinia, A., Vahabian, M., & Hosseini, M. (2015). Effect of a high fat diet on ovary morphology, in vitro development, in vitro fertilisation rate and oocyte quality in mice. Singapore medical journal, 56(10), 573–579.
Spalding, K. L., Bernard, S., Näslund, E., Salehpour, M., Possnert, G., Appelsved, L., Fu, K. Y., Alkass, K., Druid, H., Thorell, A., Rydén, M., & Arner, P. (2017). Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nature communications, 8(1), 15253.
Speakman J. R. (2019). Use of high-fat diets to study rodent obesity as a model of human obesity. International journal of obesity (2005), 43(8), 1491–1492.
Stojakovic A, Mastronardi CA, Licinio J, Wong ML (2018). Long-term consumption of high-fat diet impairs motor coordination without affecting the general motor activity. Journal of translational science, 5, 1-10.
Stobdan, T., Sahoo, D., Azad, P., Hartley, I., Heinrichsen, E., Zhou, D., & Haddad, G. G. (2019). High fat diet induces sex-specific differential gene expression in Drosophila melanogaster. PloS one, 14(3), e0213474.
Sullivan, E. L., Riper, K. M., Lockard, R., & Valleau, J. C. (2015). Maternal high-fat diet programming of the neuroendocrine system and behavior. Hormones and behavior, 76, 153–161.
Swinburn, B. A., Sacks, G., Hall, K. D., McPherson, K., Finegood, D. T., Moodie, M. L., & Gortmaker, S. L. (2011). The global obesity pandemic: shaped by global drivers and local environments. Lancet (London, England), 378(9793), 804–814.
Thompson, D. A., Moskowitz, H. R., & Campbell, R. G. (1977). Taste and olfaction in human obesity. Physiology & behavior, 19(2), 335–337.
Tomlinson, D. J., Erskine, R. M., Morse, C. I., Winwood, K., & Onambélé-Pearson, G. (2016). The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology, 17(3), 467–483.
Uranga, R. M., & Keller, J. N. (2019). The Complex Interactions Between Obesity, Metabolism and the Brain. Frontiers in neuroscience, 13, 513.
Vimal, D., Kumar, S., Pandey, A., Sharma, D., Saini, S., Gupta, S., Ravi Ram, K., & Chowdhuri, D. K. (2018). Mlh1 is required for female fertility in Drosophila melanogaster: An outcome of effects on meiotic crossing over, ovarian follicles and egg activation. European journal of cell biology, 97(2), 75–89.
Wagner, A. E., Piegholdt, S., Rabe, D., Baenas, N., Schloesser, A., Eggersdorfer, M., Stocker, A., & Rimbach, G. (2015). Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster. Oncotarget, 6(31), 30568–30578.
Wang, B., Zhang, S., Wang, X., Yang, S., Jiang, Q., Xu, Y., & Xia, W. (2017). Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice. International journal of biological macromolecules, 102, 104–110.
Wang, L., Shao, H., Luo, X., Wang, R., Li, Y., Li, Y., Luo, Y., & Chen, Z. (2016). Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality. PloS one, 11(1), e0147613.
Wang, X., Zhu, H., Snieder, H., Su, S., Munn, D., Harshfield, G., Maria, B. L., Dong, Y., Treiber, F., Gutin, B., & Shi, H. (2010). Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC medicine, 8, 87.
Wat, L. W., Chao, C., Bartlett, R., Buchanan, J. L., Millington, J. W., Chih, H. J., Chowdhury, Z. S., Biswas, P., Huang, V., Shin, L. J., Wang, L. C., Gauthier, M. L., Barone, M. C., Montooth, K. L., Welte, M. A., & Rideout, E. J. (2020). A role for triglyceride lipase brummer in the regulation of sex differences in Drosophila fat storage and breakdown. PLoS biology, 18(1), e3000595.
Wen, D. T., Wang, W. Q., Hou, W. Q., Cai, S. X., & Zhai, S. S. (2020). Endurance exercise protects aging Drosophila from high-salt diet (HSD)-induced climbing capacity decline and lifespan decrease by enhancing antioxidant capacity. Biology open, 9(5), bio045260.
Wentzel, P., Eriksson, U. J., & Herrera, E. (2019). High-fat diet in pregnant rats and adverse fetal outcome. Upsala journal of medical sciences, 124(2), 125–134.
Werthebach, M., Stewart, F. A., Gahlen, A., Mettler-Altmann, T., Akhtar, I., Maas-Enriquez, K., Droste, A., Eichmann, T. O., Poschmann, G., Stühler, K., & Beller, M. (2019). Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell reports, 26(13), 3726–3740.e7.
World Health Organization. (2016). Consideration of the evidence on childhood obesity for the Commission on Ending Childhood Obesity: report of the ad hoc working group on science and evidence for ending childhood obesity. Geneva: WHO.
Wolfram, S., Raederstorff, D., Wang, Y., Teixeira, S. R., Elste, V., & Weber, P. (2005). TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Annals of nutrition & metabolism, 49(1), 54–63.
Yang, L., & Colditz, G. A. (2015). Prevalence of Overweight and Obesity in the United States, 2007-2012. JAMA internal medicine, 175(8), 1412–1413.
Yang, X. Y., Gu, Y. J., An, T., Liu, J. X., Pan, Y. Y., Mo, F. F., Miao, J. N., Zhao, D. D., Zhang, D. W., Gao, S. H., & Jiang, G. J. (2018). Proteomics Analysis of Testis of Rats Fed a High-Fat Diet. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 47(1), 378–389.
Yüce, A., Türk, G., Çeribaşi, S., Sönmez, M., Çiftçi, M., & Güvenç, M. (2013). Effects of cinnamon (Cinnamomum zeylanicum) bark oil on testicular antioxidant values, apoptotic germ cell and sperm quality. Andrologia, 45(4), 248–255.
指導教授 粘仲毅(Dr. Chung-Yi Nien) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明