博碩士論文 89522017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.144.115.125
姓名 鄧宜珍(Yi-Chen Teng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 遙測影像處理與地貌辨識
(Remote-sensing image processing and recognition using wavelet transform and Hausdorff distance)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 如何從遙測影像中擷取有用的資訊來完成地貌辨識是本論文的研究主題。因此我們的研究內容共分為三大部分:(i) 影像強化,我們利用小波轉換的多重解析度特性,分別針對不同解析度的高頻係數,以小波收縮 (wavelet shrinkage) 去除雜訊,同時以Teager能量運算 (Teager energy operator) 強化較大區塊的邊線對比。(ii) 邊線擷取,主要在於邊線追蹤 (edge tracking) 與小波轉換的結合,利用多重解析度的高頻資訊作邊線追蹤,有效解決雜訊及邊線不連續的問題。 (iii) 以線段為特徵的影像比對,將線段轉換到不同的向量空間,以Hausdorff distance作為比對的方法,解決影像的旋轉、大小變化及位移等問題,達到可靠且有效的比對結果。
摘要(英) In this study, approaches of image enhancement, edge extraction, and line-based image matching for remote sensing images are proposed. The image enhancement includes noise reduction and contrast enhancement. We apply wavelet shrinkage techniques to suppress noise while preserving the sharpness of large-scale edges based on a Teager energy operator.
The edge extraction contains wavelet-based edge detection and tracking. Wavelet transform provides multiresolution representation of images for robust tracking. The proposed edge detector consists of three modules: (i) starting point extraction and purgation for tracking, (ii) multiresolution gradient image generation, and (iii) multiresolution edge tracking.
The image recognition approach matches line-based features using invariant Hausdorff distance. This approach matches two images and solves the problems of rotation, scaling, and translation transformations between these two images by applying the process of minimizing Hausdorff distance twice on the two sets of feature vectors.
關鍵字(中) ★ 邊線擷取
★ 影像比對
★ 影像強化
★ 小波轉換
★ 遙測影像
★ 影像處理
關鍵字(英) ★ line-feature
★ wavelet transform
★ Hausdorff distance
★ remote-sensing image
★ image matching
★ image enhancement
論文目次 Abstract
Contents
List of Figures
Chapter 1 Introduction
1.1 Motivation
1.2 Overview
1.2.1 Image enhancement
1.2.2 Edge extraction
1.2.3 Image matching based on Hausdorff distance
1.3 Thesis organization
Chapter 2 Related Work
2.1 Image enhancement
2.2 Edge detection
2.3 Line-based image matching
Chapter 3 Wavelet Transform
3.1 Wavelet basis
3.2 Multiresolution analysis
3.3 Multiresolution analysis for images
3.3.1 Standard construction
3.3.2 Nonstandard construction
Chapter 4 Image Enhancement
4.1 Teager Energy Operators
4.2 Wavelet shrinkage
4.3 Noise reduction and feature emphasis
Chapter 5 Edge Extraction
5.1 Producing gradient image from wavelet transform
5.2 Starting point extraction
5.3 Edge Tracking
5.3.1 Edge energy definition
5.3.2 Initializing tracking directions
5.3.3 Tracking algorithm
Chapter 6 Image Matching
6.1 Hausdorff distance
6.1.1 The definition of Hausdorff distance
6.1.2 Partial distance based on ranking
6.1.3 Point set matching
6.2 Line feature based matching
6.3 Matching algorithm
Chapter 7 Experiments and Discussions
7.1 Experimental results
7.1.1 Image enhancement
7.1.2 Noise removal
7.1.3 Edge extraction
7.1.4 Line-based matching
7.2 Discussions
Chapter 8 Conclusions and Future Work
8.1 Conclusions
8.2 Future work
References
參考文獻 [1]Abbott, J. G. and F. L. Thurstone, "Acoustic speckle: Theory and experimental analysis," Ultrason. Imag., Vol.1, pp.303-324, 1979.
[2]Bahoura, M. and J. Rouat, "Wavelet speech enhancement based on the Teager energy operator," IEEE Trans. Signal Processing Letters, Vol.8, No.1, pp.10-12, Jan. 2001.
[3]Barrow, H. G., J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, "Parametric correspondence and chamfer matching: Two new techniques for image matching," in Proc. 5th Int. Joint Conf. Artificial Intelligence, Cambridge, MA, 1977, pp.659-663.
[4]Borgefors, G., "Distance transforms in digital images," IEEE Trans. Pattern Anal. Machine Intell., Vol.PAMI-8, No.6, pp.344-371, 1986.
[5]Borgefors, G., "Hierarchical chamfer matching: A parametric edge matching algorithm," IEEE Trans. Pattern Anal. Machine Intell., Vol.10, No.6, pp.849-865, Nov. 1988.
[6]Busch, C., “Wavelet based texture segmentation of multi-modal tomographic images,” Comput. & Graphics, Vol.21, No.3, pp.347-358, 1997.
[7]Canny, J. F., "A computational approach to edge detection," IEEE Trans. Pattern Anal. Machine Intell., Vol.PAMI-8, No.6, pp.334-343, 1986.
[8]Chang, S. G., B. Yu, and M. Vetterli, "Spatially adaptive wavelet thresholding with context modeling for image denoising," IEEE Trans. Image Processing, Vol.9, No.9, pp.1522-1531, Sep. 2000.
[9]Chang, S. G., B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," IEEE Trans. Image Processing, Vol.9, No.9, pp.1532-1546, Sep. 2000.
[10]Chang, T. and C.-C. J. Kuo, “Texture analysis and classification with tree-structured wavelet transform,” IEEE Trans. Image Processing, Vol.2, No.4, pp.429-440, 1993.
[11]Chun, S. L., P. C. Chung, and C. F. Chen, “Unsupervised texture segmentation via wavelet transform,” Pattern Recognition, Vol.30, No.5, pp.729-742, 1997.
[12]Climent, J., A. Grau, J. Aranda, and A. B. Martínez, “A high precision operator to determine edge orientation,” in Proc. Int. Conf. Control, University of Wales Swansea, UK, Sep.1-4, 1998, pp.95-99.
[13]del Val Cura, L. M., N. J. Leite, and C. B. Medeiros, "An architecture for content-based retrieval of remote sensing images," in Proc. IEEE Int. conf. Multimedia and Expo., New York, July 30-Aug.2, 2000, pp.303-306.
[14]Donoho, D. L., "De-noising by soft-thresholding," IEEE Trans. Inform. Theory, vol.41, No.3, pp.613-627, May 1995.
[15]Falcão, A. X., J. K. Udupa, and F. K. Miyazawa, “An ultra-fast user-steered image segmentation paradigm: live wire on the fly,” IEEE Trans. Medical Imaging, Vol.19, No.1, pp.55-62, 2000.
[16]Feng, L., C. Y. Suen, Y. Y. Tang, and L. H. Yang, “Edge extraction of images by reconstruction using wavelet decomposition details at different resolution levels,” Int. Journal Pattern Recognition and Artificial Intelligence, Vol.14, No.6, pp.779-793, 2000.
[17]Fukuda, S. and H. Hirosawa, "Smoothing effect of wavelet-based speckle filtering: The Haar basis case," IEEE Trans. Geosci. Remote Sensing, Vol.37, No.2, pp.1168-1172, Mar. 1999.
[18]Goodman, J. W., "Some fundamental properties of speckle," J. Opt. Soc. Amer., Vol.66, No.11, pp.1145-1150, 1976.
[19]Guo, H., J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and C. S. Burrus, "Wavelet based speckle reduction with application to SAR based ATD/R," in Proc. ICIP, Austin, TX, Nov.13-16, 1994, Vol.1, pp.75-79.
[20]Heijden, F., “Edge and line feature extraction based on covariance models,” IEEE Trans. Pattern Anal. Machine Intell., Vol.17, No.1, pp.16-33, 1995.
[21]Huttenlocher, D. P. and K. Kedem, "Efficiently computing the Hausdorff distance for point sets under translation," in Proc. Sixth ACM Symp. Computat. Geometry, New York, May 1990, pp.340-349.
[22]Huttenlocher, D. P., G. Klanderman, and W. Rucklidge, "Comparing images using the Hausdorff distance," IEEE Trans. Pattern Anal. Machine Intell., Vol.15, No.9, pp.850-863, Sep. 1993.
[23]Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[24]Ji, T. L., M. K. Sundareshan, and H. Roehrig, "Adaptive image contrast enhancement based on human visual properties," IEEE Trans. Medical Imaging, Vol.13, No.4, pp.573-586, 1994.
[25]Kaiser, J. F., "On a simple algorithm to calculate the energy of a signal," in Proc. ICASSP, Albuquerque, New Mexico, Apr.3-6, 1990, Vol.1, pp.381-384.
[26]Kaiser, J. F., "Some useful properties of Teager’s energy operators," in Proc. IEEE ICASSP, Minneapolis, Minnesota, Apr.27-30, 1993, Vol.3, pp.149-152.
[27]Laine, A. F., S. Schuler, J. Fan, and W. Huda, "Mammographic feature enhancement by multiscale analysis," IEEE Trans. Medical Imaging, Vol.13, No.4, pp.725-740, 1994.
[28]Mallat, S., "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Machine Intell., Vol.11, No.7, pp.674-693, July 1989.
[29]Mallat, S. and S. Zhong, "Characterization of signals from multiscale edges," IEEE Trans. Pattern Anal. Machine Intell., Vol.14, No.7, pp.710-732, July 1992.
[30]Maragos, P., A. C. Bovik, and T. F. Quatieri, "A multidimensional energy operator for image processing," in Proc. SPIE Symp. Visual Commun. Image Process., Boston, MA, Nov. 1995, pp.79-84.
[31]Morrow, W. M., R. B. Paranjape, R. M. Rangayyam, and J. E. L. Desautels, "Region-based contrast enhancement of mammograms," IEEE Trans. Medical Imaging, Vol.11, No.3, pp.392-406, 1992.
[32]Moulin, P., "A wavelet regularization method for diffuse radar-target imaging and speckle-noise reduction," J. Math. Imag. Vision, Vol.3, No.1, pp.123-134, 1993.
[33]Polesel, A., G. Ramponi, and V. J. Mathews, "Image enhancement via adaptive unsharp masking," IEEE Trans. Image Processing, Vol.9, No.3, pp.505-510, 2000.
[34]Ramponi, G., N. Strobel, and T.-H. Yu, "Nonlinear unsharp masking methods for image comntrast enhancement," Journal of Electronic Imaging, Vol.5, No.3, pp.353-366, 1996.
[35]Ruaon, M. A. and C. Tomasi, “Color edge detection with the compass operator,” in IEEE Conf. Computer Vision and Pattern Recognition, Fort Collins, Colorado, June 23-25, 1999, Vol.2, pp.160-166.
[36]Sonka, M., V. Hlavac, and R. Boyle, eds., Image Processing, Analysis, and Machine Vision, Thomson Learning, Stamford Connecticut, 1998, Ch.5.
[37]Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, eds., Wavelets for Computer Graphics, Morgan Kaufmann, San Francisco, 1996.
[38]Wang, F. and R. Newkirk, "A knowledge-based system for highway network extraction," IEEE Trans. Geosci. Remote Sensing, Vol.26, No.5, pp.525-531, Sep. 1988.
[39]Yi, X. and O. I. Camps, "Line feature-based recognition using Hausdorff distance," in Proc. Int’l Symp. Computer Vision, Coral Gables, FL, Nov.21-23, 1995, pp.79-84.
[40]Yi, X. and O. I. Camps, "Line-based recognition using a multidimensional Hausdorff distance," IEEE Trans. Pattern Anal. Machine Intell., Vol.21, No.9, pp.901-916, Sep. 1999.
[41]You, J. and P. Bhattacharya, "A wavelet-based coarse-to-fine image matching scheme in parallel virtual machine environment," IEEE Trans. Image Processing, Vol.9, No.9, pp.1547-1559, Sep. 2000.
[42]Zong, X., A. F. Laine, and E. A. Geiser, "Speckle reduction and contrast enhancement of Echocardiograms via multiscale nonlinear processing," IEEE Trans. Medical Imaging, Vol.17, No.4, pp.57-586, 1998.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2002-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明