博碩士論文 108324017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.140.208.203
姓名 魏名賢(Ming-Hsien Wei)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討添加生物碳於兩階段厭氧發酵農業廢棄物產甲烷的影響
(Effect of biogas production of agricultural waste by adding biochar in two-stage anaerobic fermentation)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 能源是人類社會重要的議題之一,自從石油危機以來,各國紛紛尋找替代能源。農業廢物通常通過焚燒或掩埋的方式進行處理。這些方法造成了嚴重的生態問題,包括空氣汙染和水污染。厭氧發酵是一種將農業廢棄物轉化為生物甲烷的生物過程。它是一種成熟穩定的處理各種廢棄物有機物部分的技術。
目前在台灣大部分的厭氧發酵工廠多為單階段厭氧發酵槽,所有厭氧發酵的微生物群皆在同一個系統進行發酵,由於在厭氧發酵過程中有許多不同的微生物群參與,所以厭氧發酵是一個較複雜的系統。其中水解產酸菌與產甲烷菌彼此適合生長的環境並不相同,產酸菌產生的揮發性脂肪酸會使環境酸化,出現抑制產甲烷菌活性的情況,而產甲烷菌在產生甲烷時,會使環境pH值提高,同樣也會影響到產酸菌的活性,所以透過將水解產酸階段與產甲烷階段分離成兩個各自的系統,讓不同的微生物群可以在各自合適的環境進行發酵,並找尋到各階段最適化的條件。在處理固體濃度較高的厭氧發酵時,發酵過程中會出現質傳不良和過度酸化的問題。研究發現,生物碳可以成為生物質固定化的支持介質,改善微生物群的生長,以幫助底物降解,增加揮發性脂肪酸濃度,還可透過提供鹼度來增加厭氧發酵系統的緩衝能力。
在本研究中,發現在農業廢棄物進行兩階段厭氧發酵中添加生物碳可以提升揮發性脂肪酸濃度32.5%,並且縮短發酵天數。此外,在製作生物碳的過程中,將生物碳經磨碎處理、或改變不同的熱裂解溫度和熱裂解時間,來探討不同的生物碳對農業廢棄物進行兩階段厭氧發酵的影響。根據實驗結果,生物碳經磨碎處理後可以提升揮發性脂肪酸濃度32.6%,並且以500℃的熱裂解溫度和2小時的熱解時間製作的生物碳添加於產酸階段是較為合適的製作生物碳參數。最後討論了生物碳添加量對厭氧發酵產酸階段的影響,發現隨著生物碳添加量的增加會提升揮發性脂肪酸濃度,當生物碳添加量增加到30%時,揮發性脂肪酸的濃度提升了35%。另外,透過模擬的方式來探討添加生物碳對產甲烷階段的影響,發現添加生物碳能夠改善產甲烷菌的生長,在較短的發酵時間內提升甲烷濃度,並且將生物碳添加量增加後,觀察到沼氣產量的增加,進一步提升每日甲烷產量,最終累積甲烷產量為579.2 mL,相較於控制組提升了42%。
摘要(英) Energy is an important issue in human society. Since the oil crisis, every countries have to look for alternative sources of energy. Agricultural waste is usually treated by incineration or landfill. These methods have caused severe ecological problems involving air and water pollution. Anaerobic fermentation is a biological process that converts agricultural waste into biomethane. It is a mature and stable technology for the treatment of organic fraction of various waste materials.
Nowaday, most of the anaerobic fermentation plants in Taiwan are single-stage anaerobic fermentation. All anaerobic fermentation microbial groups are fermented in the same system. There are many different microbial groups in the anaerobic fermentation process, so it is a more complex system. Acid-producing bacteria and methanogens are suitable for growth in different environments. The volatile fatty acids produced by acid-producing bacteria will acidify the environment and inhibit the activity of methanogens. When methanogens produce methane, they will increasing the pH value of the environment and also affect the activity of acid-producing bacteria. Therefore, by separating the acid-producing stage and the methane-producing stage into two separate systems, they can be fermented in a suitable environment to find each optimal conditions for the stage. When substrate with high solid concentration in anaerobic fermentation, the problems of poor mass transfer and excessive acidification will occur in the fermentation process. Research have found that biochar can become a support medium for immobilization of biomass, so it can improve the growth of microbes and increase the buffering capacity of the anaerobic fermentation system by providing alkalinity.
In this study, it is found that adding biochar to the two-stage anaerobic fermentation of agricultural waste can increase the concentration of volatile fatty acids by 32.5% and shorten the fermentation days. In addition, in the process of making biochar, the biochar is grinded, or different pyrolysis temperature and pyrolysis time are changed, to explore the impact of different biochar on the two-stage anaerobic fermentation of agricultural waste. According to the experimental results, after the biochar being grinded, it can increase the concentration of volatile fatty acids by 32.6%. Also, the addition of biochar to the acid-producing stage at a pyrolysis temperature of 500℃ and a pyrolysis time of 2 hour is a more optimal biochar parameter. Finally, it is found that when the amount of biochar increased to 30%, the concentration of volatile fatty acids will also increase 35%. In addition, the effect of adding biochar on the methanogenesis stage was explored through simulation, and it is found that adding biochar can improve the growth of methanogens and increase the methane concentration in a shorter fermentation time. After increasing the amount of biochar, the methane production gets higher. The final cumulative methane production is 579.2 mL, compared to the control group by increasing 42%.
關鍵字(中) ★ 厭氧發酵
★ 菇包木屑
★ 生物碳
★ 兩階段
★ 甲烷
關鍵字(英) ★ anaerobic
★ spent mushroom substrate
★ biochar
★ two stage
★ methane
論文目次 摘要 i
Abstract iii
誌謝 v
圖目錄 x
表目錄 xii
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 3
2-1 生質甲烷 3
2-2 厭氧發酵 4
2-2-1 水解 5
2-2-2 產揮發性脂肪酸 6
2-2-3 產乙酸 7
2-2-4 產甲烷 7
2-3 影響厭氧發酵的因素 7
2-3-1 溫度 8
2-3-2 pH值 9
2-3-3 揮發性脂肪酸 10
2-3-4 氨氮物質 11
2-4 兩階段厭氧發酵 12
2-5 生物碳 13
2-5-1 生物碳基本介紹 13
2-5-2 增加緩衝能力 14
2-5-3 吸附抑制物 15
2-5-4 導電性和電子傳遞機制 16
2-6 菇包木屑 17
2-7 雞糞 19
2-8 汙泥處理 19
三、 材料與方法 20
3-1 實驗規劃 20
3-2 實驗材料 21
3-2-1 菇包木屑 21
3-2-2 生物碳 22
3-2-3 雞糞 23
3-2-4 厭氧汙泥 23
3-3 實驗藥品 23
3-4 實驗設備 24
3-5 實驗方法 25
3-5-1 生物碳製作 25
3-5-2 汙泥熱處理 25
3-5-3 汙泥馴養 25
3-5-4 添加生物碳在水解產酸階段對比實驗 26
3-5-5找尋添加在水解產酸階段的最佳生物碳條件 26
3-5-6探討生物碳的pH值與電導度與時間之關係 27
3-5-7模擬生物碳添加進產甲烷階段的影響 27
3-6 分析方法 29
3-6-1 總固體量(Total Solid, TS)測定 29
3-6-2 揮發性固體(Volatile Solid, VS)測定 29
3-6-3 生物碳轉化率 29
3-6-4 生物碳pH值測定 30
3-6-5 生物碳電導度測定 30
3-6-6 每日產氣量測定 30
3-6-7 氣相層析儀-火焰離子化偵測器操作程序(GC-FID) 31
3-6-8 揮發性脂肪酸濃度分析方法 32
3-6-9 氣相層析儀-熱導率偵測器操作程序(GC-TCD) 33
3-6-10 甲烷濃度測定 34
四、 結果與討論 37
4-1 添加生物碳對水解產酸階段的影響 37
4-1-1 生物碳對產酸階段pH值的影響 37
4-1-2 生物碳對產酸階段揮發性脂肪酸濃度的影響 39
4-2 添加經磨碎處理的生物碳對水解產酸階段的影響 43
4-2-1 經磨碎處理的生物碳對產酸階段pH值的影響 43
4-2-2 經磨碎處理的生物碳對產酸階段揮發性脂肪酸濃度的影響 44
4-3 添加不同裂解溫度的生物碳對水解產酸階段的影響 48
4-3-1 不同裂解溫度的生物碳對產酸階段pH值的影響 48
4-3-2 不同裂解溫度的生物碳對產酸階段揮發性脂肪酸濃度的影響 49
4-4 添加不同裂解時間的生物碳對水解產酸階段的影響 53
4-4-1 不同裂解時間的生物碳對產酸階段pH值的影響 53
4-4-2 不同裂解時間的生物碳對產酸階段揮發性脂肪酸濃度的影響 54
4-5 添加不同生物碳添加量對水解產酸階段的影響 58
4-5-1 生物碳添加量對產酸階段pH值的影響 58
4-5-2 生物碳添加量對產酸階段揮發性脂肪酸濃度的影響 59
4-6 時間對生物碳pH值與電導度的影響 64
4-7 模擬生物碳添加進產甲烷階段的影響 66
4-7-1 添加生物碳對產甲烷階段pH值的影響 66
4-7-2 添加生物碳對產甲烷階段沼氣量的影響 67
4-7-3 添加生物碳甲烷產酸階段揮發性脂肪酸的影響 68
4-7-4 添加生物碳對產甲烷階段甲烷濃度的影響 69
4-7-5 添加生物碳對產甲烷階段甲烷產量的影響 70
五、 結論與建議 72
5-1 結論 72
5-2 建議 73
參考文獻 74
參考文獻 [1] I. E. Agency. https://www.iea.org/data-and-statistics (accessed.
[2] 「菇類智慧化生產與農場經營管理」研討會專刊,主編:呂昀陞、李瑋崧、石信德、陳美杏、黃棨揚、謝廷芳,行政院農業委員會農業試驗所,中華民國一百零八年六月。.
[3] 李仲強, "隧道式雞糞乾燥除臭設備之研究," 中興大學生物產業機電工程學系所學位論文, pp. 1-59, 2015.
[4] S. Rasi, A. Veijanen, and J. Rintala, "Trace compounds of biogas from different biogas production plants," Energy, vol. 32, no. 8, pp. 1375-1380, 2007.
[5] P. Weiland, "Biogas production: current state and perspectives," Applied microbiology and biotechnology, vol. 85, no. 4, pp. 849-860, 2010.
[6] D. P. Chynoweth, J. M. Owens, and R. Legrand, "Renewable methane from anaerobic digestion of biomass," Renewable energy, vol. 22, no. 1-3, pp. 1-8, 2001.
[7] C. F. European Commission (EC). An Energy Policy for Europe and B. E. B. p. 27.
[8] 郭木鐸, "使用兩階段厭氧發酵處理農業廢棄物產生沼氣及其最適化操作," 2020.
[9] M. H. Gerardi, The microbiology of anaerobic digesters. John Wiley & Sons, 2003.
[10] L. Appels, J. Baeyens, J. Degrève, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge," Progress in energy and combustion science, vol. 34, no. 6, pp. 755-781, 2008.
[11] Y. Li et al., "Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources," Science of the Total Environment, vol. 699, p. 134226, 2020.
[12] H. H. Fang and H. Liu, "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresource technology, vol. 82, no. 1, pp. 87-93, 2002.
[13] L. Yang et al., "Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment," International Biodeterioration & Biodegradation, vol. 105, pp. 153-159, 2015.
[14] Y. Liu et al., "Optimization of anaerobic acidogenesis by adding Fe0 powder to enhance anaerobic wastewater treatment," Chemical engineering journal, vol. 192, pp. 179-185, 2012.
[15] J. Yu, M. Zheng, T. Tao, J. Zuo, and K. Wang, "Waste activated sludge treatment based on temperature staged and biologically phased anaerobic digestion system," Journal of Environmental Sciences, vol. 25, no. 10, pp. 2056-2064, 2013.
[16] G. Zhuo, Y. Yan, X. Tan, X. Dai, and Q. Zhou, "Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: effect of temperature," Journal of Biotechnology, vol. 159, no. 1-2, pp. 27-31, 2012.
[17] W. Sun et al., "From mesophilic to thermophilic digestion: the transitions of anaerobic bacterial, archaeal, and fungal community structures in sludge and manure samples," Applied microbiology and biotechnology, vol. 99, no. 23, pp. 10271-10282, 2015.
[18] H. Pasalari, M. Gholami, A. Rezaee, A. Esrafili, and M. Farzadkia, "Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: A systematic review," Chemosphere, p. 128618, 2020.
[19] P. Zhang, Y. Chen, and Q. Zhou, "Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH," Water research, vol. 43, no. 15, pp. 3735-3742, 2009.
[20] J. Jiang, Y. Zhang, K. Li, Q. Wang, C. Gong, and M. Li, "Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate," Bioresource technology, vol. 143, pp. 525-530, 2013.
[21] B. Fezzani and R. B. Cheikh, "Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature," Bioresource technology, vol. 101, no. 6, pp. 1628-1634, 2010.
[22] W. S. Lee, A. S. M. Chua, H. K. Yeoh, and G. C. Ngoh, "A review of the production and applications of waste-derived volatile fatty acids," Chemical Engineering Journal, vol. 235, pp. 83-99, 2014.
[23] A. J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, "Optimisation of the anaerobic digestion of agricultural resources," Bioresource technology, vol. 99, no. 17, pp. 7928-7940, 2008.
[24] F. Mosey and X. Fernandes, "Patterns of hydrogen in biogas from the anaerobic digestion of milk-sugars," in Water Pollution Research and Control Brighton: Elsevier, 1988, pp. 187-196.
[25] I. S. Turovskiy and P. Mathai, Wastewater sludge processing. John Wiley & Sons, 2006.
[26] I. Siegert and C. Banks, "The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors," Process Biochemistry, vol. 40, no. 11, pp. 3412-3418, 2005.
[27] Q. Wang, M. Kuninobu, H. I. Ogawa, and Y. Kato, "Degradation of volatile fatty acids in highly efficient anaerobic digestion," Biomass and Bioenergy, vol. 16, no. 6, pp. 407-416, 1999.
[28] D. R. Boone and L. Xun, "Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture," Applied and environmental microbiology, vol. 53, no. 7, pp. 1589-1592, 1987.
[29] G. D. Sprott and G. B. Patel, "Ammonia toxicity in pure cultures of methanogenic bacteria," Systematic and applied microbiology, vol. 7, no. 2-3, pp. 358-363, 1986.
[30] I. Koster and G. Lettinga, "Anaerobic digestion at extreme ammonia concentrations," Biological wastes, vol. 25, no. 1, pp. 51-59, 1988.
[31] S. Sung and T. Liu, "Ammonia inhibition on thermophilic anaerobic digestion," Chemosphere, vol. 53, no. 1, pp. 43-52, 2003.
[32] Y. Li, R. Zhang, C. Chen, G. Liu, Y. He, and X. Liu, "Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions," Bioresource technology, vol. 149, pp. 406-412, 2013.
[33] C. Mamimin et al., "Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent," International Journal of Hydrogen Energy, vol. 40, no. 19, pp. 6319-6328, 2015.
[34] F. Micolucci, M. Gottardo, P. Pavan, C. Cavinato, and D. Bolzonella, "Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste," Journal of Cleaner Production, vol. 171, pp. 1376-1385, 2018.
[35] S.-F. Fu, X.-H. Xu, M. Dai, X.-Z. Yuan, and R.-B. Guo, "Hydrogen and methane production from vinasse using two-stage anaerobic digestion," Process Safety and Environmental Protection, vol. 107, pp. 81-86, 2017.
[36] G. Srisowmeya, M. Chakravarthy, and G. N. Devi, "Critical considerations in two-stage anaerobic digestion of food waste–A review," Renewable and Sustainable Energy Reviews, vol. 119, p. 109587, 2020.
[37] N. A. Qambrani, M. M. Rahman, S. Won, S. Shim, and C. Ra, "Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review," Renewable and Sustainable Energy Reviews, vol. 79, pp. 255-273, 2017.
[38] A. Mukherjee, A. Zimmerman, and W. Harris, "Surface chemistry variations among a series of laboratory-produced biochars," Geoderma, vol. 163, no. 3-4, pp. 247-255, 2011.
[39] K. B. Cantrell, P. G. Hunt, M. Uchimiya, J. M. Novak, and K. S. Ro, "Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar," Bioresource technology, vol. 107, pp. 419-428, 2012.
[40] S.-Y. Oh and Y.-D. Seo, "Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications," Bioresource technology, vol. 218, pp. 77-83, 2016.
[41] D. Fabbri and C. Torri, "Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass," Current opinion in biotechnology, vol. 38, pp. 167-173, 2016.
[42] J. Pan, J. Ma, L. Zhai, T. Luo, Z. Mei, and H. Liu, "Achievements of biochar application for enhanced anaerobic digestion: a review," Bioresource technology, vol. 292, p. 122058, 2019.
[43] H. M. Jang, Y.-K. Choi, and E. Kan, "Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure," Bioresource technology, vol. 250, pp. 927-931, 2018.
[44] W. Wei et al., "Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar," Bioresource technology, vol. 306, p. 123159, 2020.
[45] C. Luo, F. Lü, L. Shao, and P. He, "Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes," Water research, vol. 68, pp. 710-718, 2015.
[46] M. Chiappero et al., "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, vol. 131, p. 110037, 2020.
[47] F. Lü, C. Luo, L. Shao, and P. He, "Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina," Water research, vol. 90, pp. 34-43, 2016.
[48] Y. Shen, S. Forrester, J. Koval, and M. Urgun-Demirtas, "Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production," Journal of Cleaner Production, vol. 167, pp. 863-874, 2017.
[49] Y. Wu, S. Wang, D. Liang, and N. Li, "Conductive materials in anaerobic digestion: From mechanism to application," Bioresource technology, vol. 298, p. 122403, 2020.
[50] Y. Yang, Y. Zhang, Z. Li, Z. Zhao, X. Quan, and Z. Zhao, "Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition," Journal of Cleaner Production, vol. 149, pp. 1101-1108, 2017.
[51] G. Wang, Q. Li, X. Gao, and X. C. Wang, "Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms," Bioresource technology, vol. 250, pp. 812-820, 2018.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明