博碩士論文 107821031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:18.216.94.152
姓名 林佩誼(Pei-Yi Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討在斑馬魚小腦發育中ttbk2對神經先驅細胞的影響
(Investigation of the effect of ttbk2 on neuronal progenitors during cerebellar development in zebrafish)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 初級纖毛在神經系統發育中扮演重要的角色,若初級纖毛發生缺陷,容易引發神經系統發育上的問題。初級纖毛缺陷容易導致的小腦發育問題,包含Purkinje cells減少、granule cells減少、granule cells progenitors減少。
  TTBK2 (tau tubulin kinase 2)對初級纖毛的生成有重要的作用,若TTBK2發生問題,也容易產生神經系統發育疾病。在臨床上,脊髓小腦萎縮症被認為和TTBK2的缺陷有關,TTBK2的缺陷造成病患小腦萎縮、Purkinje cells和granule cells的減少。因此,TTBK2在小腦發育中扮演著重要的角色。
  為了研究TTBK2對小腦發育的影響,王又婷利用CRISPR-Cas9編輯斑馬魚的基因,產生ttbk2有缺陷的斑馬魚,ttbk2缺陷的斑馬魚也有小腦發育上的問題,包含Purkinje cells和granule cells軸突的減少。
  在本篇研究中,我們首先歸納出ttbk2a和ttbk2b在斑馬魚腦中的表現位置,在成魚的腦中,ttbk2a和ttbk2b在腦的腔室附近皆有較高的表現量;在小腦中,ttbk2a主要表現在granule cells,而ttbk2b主要表現在Purkinje cells。在胚胎階段,ttbk2b在一顆細胞階段的受精卵就開始表現。而ttbk2a在受精卵發育後24小時才開始。在幼魚中,ttbk2a和ttbk2b都表現在整個頭中。
  第二,我們發現初級纖毛在成魚小腦中主要表現在molecular layer。
  第三,我們歸納出ttbk2對granule cells progenitors的增生有重要的影響,對Purkinje cells的分化也有重要的影響。
  最後,我們也確認Purkinje cells和granule cells軸突的減少是因為初級纖毛的缺陷造成。
摘要(英) Primary cilia are required for the developmental signaling pathway. Primary cilia are important for cerebellar development. Ciliary defects result in cerebellar ataxia with decreased Purkinje cells, granule cells and granule cells progenitors.
TTBK2 is located at basal body and it is important for ciliogenesis. Spinocerebellar ataxia type 11 (SCA11) is a neurodegeneration disease, and it is related with mutations on TTBK2. SCA11 is characterized with decreased Purkinje cells and decreased granule cells. It suggests that TTBK2 is important for cerebellar development.
To investigate the role of TTBK2 during cerebellar development, Yu-ting Wang used CRISPR-Cas9 to generate ttbk2 mutants with protein truncation at kinase domain of ttbk2. Cilia were almost lost and Purkinje cells and axon terminals of granule cells were largely decreased in ttbk2 mutant.
In this study, first, the distribution of ttbk2a and ttbk2b in zebrafish cerebellum were characterized. ttbk2a was expressed in granule cells, while ttbk2b was expressed in Purkinje cells. ttbk2b was expressed in 1-cell stage embryo, while ttbk2a was not expressed until 24 hpf in the head of embryos.
Second, the location of primary cilia in cerebellum in adult zebrafish was identified. Primary cilia were located in the molecular layer of cerebellum in adult.
Third, the role of ttbk2 during cerebellar development was also characterized. ttbk2 was important for the proliferation of granule cells progenitors. ttbk2 was important for differentiation of Purkinje cells.
Finally, it was confirmed that decreased Purkinje cells and axon terminals of granule cells were caused by ciliary deficit.
關鍵字(中) ★ ttbk2
★ 小腦發育
★ 神經先驅細胞
關鍵字(英) ★ ttbk2
★ cerebellar development
★ Purkinje cell progenitors
★ Granule cell progenitors
論文目次 摘要 I
Abstract II
Table of content III
List of Tables VII
List of Figures VIII
Chapter 1 Introduction
■ Primary cilia 1
• The structure of primary cilia 1
•The intraflagellar transportation (IFT) 1
• Ciliopathies 2
• Primary cilia are important for cerebellar development 2
• Primary cilia are required for the SHH signaling pathway. 3
• The role of primary cilia in WNT signaling is elusive. 3
■ TTBK2 3
• TTBK2 is important for initiation of ciliogenesis. 4
• Disruptions on TTBK2 cause cerebellar developmental defects and SCA11. 4
• TTBK2 is expressed in the whole brain, particularly high in the cerebellum and hippocampus. 4
■ The function, structure and neuronal circuits of cerebellum 5
• The function of cerebellum 5
• The three-lobular structure of cerebellum in zebrafish. 5
• GABAergic and glutamatergic neurons in cerebellum 5
• The neuronal circuits in cerebellum 5
• The three-layer structure of cerebellum in zebrafish. 6
■ The cerebellar development 6
• The cerebellar development takes 5 days, 34 days and 33 months in zebrafish, mouse and human respectively. 6
• The cerebellum is derived from the upper rhombic lip in early-stage embryo. 7
• The atoh1a+ neuronal progenitors in the URL determines the populations of the granule cells in the mature cerebellar in zebrafish. 7
• In 3 dpf larvae, the atoh1c expression at the CCe provides the germline pool for generating granule cells. 7
• The ptf1a+ neuronal progenitors in the ventricular zone contribute the Purkinje cells in the mature cerebellum in zebrafish. 8
• The migration and differentiation of the granule cells and Purkinje cells. 8
■ ttbk2 mutant zebrafish 8
• ttbk2 dKO showed cerebellar developmental defects in zebrafish. 8
■ Motivation 9
Chapter 2 Materials and Methods
■ Zebrafish rearing 10
■ Phenyl-2-thiourea treatment 10
■ Fish breeding scheme for dKO 10
■ Genotyping 10
■ Hematoxylin and eosin (H&E) staining 11
■ In situ hybridization 11
■ Immunofluorescence 12
■ Plasmid and RNA probe preparation 13
■ Morpholino knockdown 13
■ Brain section 14
■ Photography and Microscopy 14
■ Quantitation 14
■ 3-D movie 15
■ Statistics methods 15
Chapter 3 Result
■ Investigation of the morphology of cerebellum in adult and larvae. 16
■ ttbk2a and ttbk2b are expressed in the whole brain. 16
■ ttbk2a and ttbk2b are expressed in the telencephalic ventricle, diencephalic ventricle and the ventricle of optic tectum in adult. 17
■ ttbk2a is expressed in the granule cells layer of the cerebellum, while ttbk2b is expressed in the Purkinje cells layer. 18
■ ttbk2b is expressed in the early-stage embryo, from 1-cell stage to 6-somite stage, when ttbk2a is not expressed. 19
■ ttbk2a and ttbk2b are expressed in the whole head in larvae. 19
■ Primary cilia are mainly located at the molecular layer of cerebellum in adult. 20
■ Cilia are largely decreased in the brain of ttbk2 mutant at 1 dpf. 20
■ Granule cells progenitors are decreased in the URL in ttbk2 dKO. 21
■ Granule cells progenitors in CCe are decreased in ttbk2 dKO, while they are not decreased in LCa. 21
■ Purkinje cells progenitors are increased in ttbk2 dKO. 22
■ Decreased Purkinje cells and axon terminals of granule cells are caused by ciliary deficit. 22
Chapter 4 Discussion
The distribution of ttbk2a and ttbk2b in zebrafish is similar with TTBK2 in mammals. 24
ttbk2a may be important for granule cells, and ttbk2b may be important for Purkinje cells. 24
ttbk2 mainly affects the proliferation of granule cells in rostral part of cerebellum, and its effect in caudal part is mild. 25
The migration of atoh1c+ granule cell progenitors is affected in ttbk2 dKO mutant. 25
ttbk2 is important for differentiation of Purkinje cells. 25
Decreased Purkinje cells and granule cells are caused by ciliary deficit. 26
Chapter 5 Future experiment 27
Investigation of the sole role of ttbk2a and ttbk2b during cerebellar development. 27
To investigate if ttbk2a is important for granule cells 27
To investigate if ttbk2b is important for Purkinje cells 27
Investigate if the differentiation defects of Purkinje cells are caused by the ciliary deficit 27
References 28
Table 31
Figure 34
參考文獻 Abdelhamed, Z. A., Abdelmottaleb, D. I., El-Asrag, M. E., Natarajan, S., Wheway, G., Inglehearn, C. F., . . . Johnson, C. A. (2019). The ciliary Frizzled-like receptor Tmem67 regulates canonical Wnt/beta-catenin signalling in the developing cerebellum via Hoxb5. Sci Rep, 9(1), 5446. doi:10.1038/s41598-019-41940-5
Abdelhamed, Z. A., Natarajan, S., Wheway, G., Inglehearn, C. F., Toomes, C., Johnson, C. A., & Jagger, D. J. (2015). The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. Disease Models & Mechanisms, 8(6), 527-541. doi:10.1242/dmm.019083
Adamaszek, M., D′Agata, F., Kirkby, K. C., Trenner, M. U., Sehm, B., Steele, C. J., . . . Strecker, K. (2014). Impairment of Emotional Facial Expression and Prosody Discrimination Due to Ischemic Cerebellar Lesions. Cerebellum, 13(3), 338-345. doi:10.1007/s12311-013-0537-0
Anderson, R. G. (1972). The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol, 54(2), 246-265. doi:10.1083/jcb.54.2.246
Bae, Y. K., Kani, S., Shimizu, T., Tanabe, K., Nojima, H., Kimura, Y., . . . Hibi, M. (2009). Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol, 330(2), 406-426. doi:10.1016/j.ydbio.2009.04.013
Bauer, P., Stevanin, G., Beetz, C., Synofzik, M., Schmitz-Hubsch, T., Wullner, U., . . . Brice, A. (2010). Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. Journal of Neurology Neurosurgery and Psychiatry, 81(11), 1229-1232. doi:10.1136/jnnp.2009.202150
Borovina, A., Superina, S., Voskas, D., & Ciruna, B. (2010). Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nature Cell Biology, 12(4), 407-U242. doi:10.1038/ncb2042
Bowie, E., & Goetz, S. C. (2020). TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. Elife, 9. doi:ARTN e51166
10.7554/eLife.51166
Bowie, E., Norris, R., Anderson, K. V., & Goetz, S. C. (2018). Spinocerebellar ataxia type 11-associated alleles of Ttbk2 dominantly interfere with ciliogenesis and cilium stability. Plos Genetics, 14(12). doi:ARTN e1007844
10.1371/journal.pgen.1007844
Caspary, T., Larkins, C. E., & Anderson, K. V. (2007). The graded response to sonic hedgehog depends on cilia architecture. Developmental Cell, 12(5), 767-778. doi:10.1016/j.devcel.2007.03.004
Gerdes, J. M., Liu, Y., Zaghloul, N. A., Leitch, C. C., Lawson, S. S., Kato, M., . . . Katsanis, N. (2007). Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet, 39(11), 1350-1360. doi:10.1038/ng.2007.12
Goetz, S. C., & Anderson, K. V. (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 11(5), 331-344. doi:10.1038/nrg2774
Goetz, S. C., Liem, K. F., & Anderson, K. V. (2012). The Spinocerebellar Ataxia-Associated Gene Tau Tubulin Kinase 2 Controls the Initiation of Ciliogenesis. Cell, 151(4), 847-858. doi:10.1016/j.cell.2012.10.010
Haldipur, P., Aldinger, K. A., Bernardo, S., Deng, M., Timms, A. E., Overman, L. M., . . . Millen, K. J. (2019). Spatiotemporal expansion of primary progenitor zones in the developing human cerebellum. Science, 366(6464), 454-+. doi:10.1126/science.aax7526
Houlden, H., Johnson, J., Gardner-Thorpe, C., Lashley, T., Hernandez, D., Worth, P., . . . Wood, N. W. (2008). Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11 (vol 39, pg 1434, 2007). Nature Genetics, 40(2), 255-255. doi:DOI 10.1038/ng0208-255b
Huang, P., & Schier, A. F. (2009). Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development, 136(18), 3089-3098. doi:10.1242/dev.041343
Huangfu, D. W., Liu, A. M., Rakeman, A. S., Murcia, N. S., Niswander, L., & Anderson, K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962), 83-87. doi:10.1038/nature02061
Hwang, W. Y., Fu, Y. F., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., . . . Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3), 227-229. doi:10.1038/nbt.2501
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci, 9(4), 304-313. doi:10.1038/nrn2332
Jonassen, J. A., San Agustin, J., Follit, J. A., & Pazour, G. J. (2008). Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol, 183(3), 377-384. doi:10.1083/jcb.200808137
Jones, C., Roper, V. C., Foucher, I., Qian, D., Banizs, B., Petit, C., . . . Chen, P. (2008). Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet, 40(1), 69-77. doi:10.1038/ng.2007.54
Kani, S., Bae, Y. K., Shimizu, T., Tanabe, K., Satou, C., Parsons, M. J., . . . Hibi, M. (2010). Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol, 343(1-2), 1-17. doi:10.1016/j.ydbio.2010.03.024
Kidwell, C. U., Su, C. Y., Hibi, M., & Moens, C. B. (2018). Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Dev Biol, 438(1), 44-56. doi:10.1016/j.ydbio.2018.03.004
Liao, J. C., Yang, T. T., Weng, R. R., Kuo, C. T., & Chang, C. W. (2015). TTBK2: A Tau Protein Kinase beyond Tau Phosphorylation. Biomed Research International, 2015. doi:Artn 575170
10.1155/2015/575170
Liu, A. M., Wang, B. L., & Niswander, L. A. (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132(13), 3103-3111. doi:10.1242/dev.01894
May, S. R., Ashique, A. M., Karlen, M., Wang, B. L., Shen, Y. G., Zarbalis, K., . . . Peterson, A. S. (2005). Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Developmental Biology, 287(2), 378-389. doi:10.1016/j.ydbio.2005.08.050
Reiter, J. F., Blacque, O. E., & Leroux, M. R. (2012). The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep, 13(7), 608-618. doi:10.1038/embor.2012.73
Romani, M., Micalizzi, A., & Valente, E. M. (2013). joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurology, 12(9), 894-905. doi:10.1016/S1474-4422(13)70136-4
Rosenbaum, J. L., & Witman, G. B. (2002). Intraflagellar transport. Nat Rev Mol Cell Biol, 3(11), 813-825. doi:10.1038/nrm952
Sathyanesan, A., Zhou, J., Scafidi, J., Heck, D. H., Sillitoe, R. V., & Gallo, V. (2019). Emerging connections between cerebellar development, behaviour and complex brain disorders. Nature Reviews Neuroscience, 20(5), 298-313. doi:10.1038/s41583-019-0152-2
Song, Z., Zhang, X. L., Jia, S., Yelick, P. C., & Zhao, C. T. (2016). Zebrafish as a Model for Human Ciliopathies. Journal of Genetics and Genomics, 43(3), 107-120. doi:10.1016/j.jgg.2016.02.001
Thisse, C., & Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc, 3(1), 59-69. doi:10.1038/nprot.2007.514
Tsujikawa, M., & Malicki, J. (2004). Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron, 42(5), 703-716. doi:10.1016/s0896-6273(04)00268-5
Volkmann, K., Rieger, S., Babaryka, A., & Koster, R. W. (2008). The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Developmental Biology, 313(1), 167-180. doi:10.1016/j.ydbio.2007.10.024
Wang, Y.-t. (2018). Investigation of ttbk2a and ttbk2b function in the zebrafish. (Master degree). National central university, https://hdl.handle.net/11296/262mh6.
Waters, A. M., & Beales, P. L. (2011). Ciliopathies: an expanding disease spectrum. Pediatric Nephrology, 26(7), 1039-1056. doi:10.1007/s00467-010-1731-7
Wei, Q., Ling, K., & Hu, J. H. (2015). The essential roles of transition fibers in the context of cilia. Current Opinion in Cell Biology, 35, 98-105. doi:10.1016/j.ceb.2015.04.015
Westerfield, M. (2007). The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 5th Edition.
Wingate, R. J. T. (2001). The rhombic lip and early cerebellar development. Current Opinion in Neurobiology, 11(1), 82-88. doi:Doi 10.1016/S0959-4388(00)00177-X
Wullimann, M. F., Mueller, T., Distel, M., Babaryka, A., Grothe, B., & Koster, R. W. (2011). The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Frontiers in Neuroanatomy, 5. doi:ARTN 2710.3389/fnana.2011.00027
Youn, Y. H., & Han, Y. G. (2018). Primary Cilia in Brain Development and Diseases. Am J Pathol, 188(1), 11-22. doi:10.1016/j.ajpath.2017.08.031
Zecchin, E., Mavropoulos, A., Devos, N., Filippi, A., Tiso, N., Meyer, D., . . . Argenton, F. (2004). Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Developmental Biology, 268(1), 174-184. doi:10.1016/j.ydbio.2003.12.016
指導教授 鍾邦柱 陳盛良(Bon-chu Chung Shen-Liang Chen) 審核日期 2021-9-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明