博碩士論文 108223050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:13.58.138.83
姓名 林泓蓁(Hong-Jhen Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具二氰基三苯胺之高性能高分子應用於鋰離子電池的電極材料
(Dicyanotriphenylamine-Based High Performance Polymers as Organic Electrode Materials for Lithium-Ion Batteries)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文總共分為四個章節。第一章為總體序論,簡單介紹了電化學儲能、無機和有
機材料作為電池電極的優缺點、三種有機聚合物材料(聚三苯胺 (PTPA)、聚醯亞胺
(PIs)、聚醯胺 (PAs))的性能以及研究動機。第二章評估了基於二氰基三苯胺的聚醯亞
胺作為鋰離子電池有機陰極和陽極材料的電化學性能以及 TPA-PMPI 同時作為活性材
料和聚合物粘合劑的雙重功能。第三章,我們測試了基於二氰基三苯胺的聚醯胺作為鋰
離子電池的有機陽極材料,研究它們的電化學性能以及 DiCN-ether 同時作為活性材料
和聚合物粘合劑的雙重功能。第四章為結論和研究展望。研究並比較了這些基於二氰基
三苯胺的聚醯亞胺和聚醯胺電極材料的反應電壓、放電容量、速率穩定性、反應機制和
電化學電阻。這些聚合物有機材料不僅在電解質中表現出優異的穩定性,並且由於可逆
的 Li+ 插入/脫嵌能力,還具有很高的庫侖效率。由於具有出色的比容量和長時間循環壽
命,這些基於二氰基三苯胺的聚合物被認為是具有潛力的下一代鋰離子電池有機電極材
料。
摘要(英) This thesis has been divided into four chapters. Chapter 1 is general introduction, simply
introduced electrochemical energy storage, advantages and disadvantages of inorganic and
organic materials as battery electrodes, properties of three kinds of organic polymer materials
(polytriphenylamine, polyimides, polyamides) and the research motivation. Chapter 2
evaluated electrochemical performances of dicyanotriphenylamine-based polyimides as
organic cathode and anode materials for lithium-ion battery and the dual functional capability
of TPA-PMPI as both active material and polymer binder simultaneously. Chapter 3, we tested
dicyanotriphenylamine-based polyamides as organic anode materials for lithium-ion battery to
investigate their battery performances as well as the dual functional capability of DiCN-ether
as both active material and polymer binder simultaneously. Chapter 4 is the conclusion and
research outlook. The reaction voltages, discharge capacity, rate stability, reaction mechanism
and electrochemical resistance of these dicyanotriphenylamine-based polyimides and
polyamides were investigated and compared. These polymer organic materials not only showed
excellent stability in electrolytes, but also got high coulombic efficiency due to the capability
of reversible Li+
insertion/de-insertion. Owing to the outstanding specific capacity with longterm cycling life, these dicyanotriphenylamine-based polymers are considered as promising
organic electrode materials for next generation Li-ion batteries.
關鍵字(中) ★ 有機材料
★ 鋰離子電池
關鍵字(英) ★ Organic materials
★ Li-ion battery
論文目次 ABLE OF CONTENTS
中文摘要 I
ABSTRACT II
ACKNOWLEDGMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VIIIii
LIST OF FIGURES VIIIx
CHAPTER 1 GENERAL INTRODUCTION 1
CHAPTER 2 DICYANOTRIPHENYLAMINE-BASED POLYIMIDES AS HIGH-PERFORMANCE ELECTRODES FOR NEXT GENERATION ORGANIC LITHIUM-ION BATTERIES 26
CHAPTER 3 DICYANOTRIPHENYLAMINE-BASED HIGH PERFORMANCE POLYAMIDES AS ORGANIC ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES 66
CHAPTER 4 CONCLUSIONS AND FUTURE WORK 91


CHAPTER 1
General Introduction
1.1 ELECTROCHEMICAL ENERGY STORAGE (EES) 2
1.2 INORGANIC ELECTRODE MATERIALS 4
1.3 ORGANIC ELECTRODE MATERIALS 6
1.3.1 Polytriphenylamine (PTPA) 7
1.3.2 Polyimide (PI) 11
1.3.3 Polyamide (PA) 14
1.4 RESEARCH MOTIVATION 15
REFERENCES 17


CHAPTER 2
Dicyanotriphenylamine-Based Polyimides as High-Performance Electrodes for Next Generation Organic Lithium-Ion Batteries
ABSTRACT OF CHAPTER 2 27
2.1 INTRODUCTION 28
2.2 EXPERIMENTAL SECTION 30
2.2.1 Materials 30
2.2.2 Monomer synthesis 30
4-Aminophthalonitrile (1) 30
4,4′-Dinitro-3′′,4′′-dicyanotriphenylamine (2) 30
4,4′-Diamino-3″,4″-dicyanotriphenylamine (DiCN-TPA) 31
2.2.3 Polymer synthesis 31
2.2.4 Electrochemical Measurements 32
2.3 RESULTS AND DISCUSSION 34
2.3.1 Materials Characterizations 34
2.3.2 Cyclic Voltammetry of Coin Cells 36
2.3.3 Battery Performance of TPA-NTCPI as Cathode Material 39
2.3.4 Battery Performance of TPA-PMPI as Anode Material 48
2.3.5 Binder free TPA-PMPI as Anode Material 55
2.3.6 Electrolyte selection of PIs electrodes 58
2.4 SUMMARY 59
REFERENCES 60




CHAPTER 3
Dicyanotriphenylamine-Based High Performance Polyamides as Organic Electrode Materials for Lithium-Ion Batteries
ABSTRACT OF CHAPTER 3 67
3.1 INTRODUCTION 68
3.2 EXPERIMENTAL SECTION 69
3.2.1 Materials 69
3.2.2 Monomer synthesis 69
3.2.3 Polymer synthesis 69
3.2.4 Electrochemical Measurements 70
3.3 RESULTS AND DISCUSSION 71
3.3.1 Materials Characterizations 71
3.3.2 Cyclic Voltammetry of TPA-PAs as Anode Materials 72
3.3.3 Battery Performance of TPA-PA Anodes 74
3.3.4 Binder free TPA-PAs as Anode Material 83
3.4 SUMMARY 88
REFERENCES 89
參考文獻 (1) Togonon, J. J. H.; Chiang, P.-C.; Lin, H.-J.; Tsai, W.-C.; Yen, H.-J. Pure Carbon-Based Electrodes for Metal-Ion Batteries. Carbon Trends 2021, 3, 100035. https://doi.org/10.1016/j.cartre.2021.100035.
(2) Larcher, D.; Tarascon, J. M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7 (1), 19–29. https://doi.org/10.1038/nchem.2085.
(3) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111 (5), 3577–3613. https://doi.org/10.1021/cr100290v.
(4) Tarascon, JM., Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
https://doi.org/10.1038/35104644
(5) Ba, Z.; Wang, Z.; Luo, M.; Li, H. B.; Li, Y.; Huang, T.; Dong, J.; Zhang, Q.; Zhao, X. Benzoquinone-Based Polyimide Derivatives as High-Capacity and Stable Organic Cathodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12 (1), 807–817.
https://doi.org/10.1021/acsami.9b18422.
(6) Goodenough, J. B.; Park, K. S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167–1176.
https://doi.org/10.1021/ja3091438.
(7) Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30 (33), 1–24.
https://doi.org/10.1002/adma.201800561.
(8) Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sust. Energ. Rev. 2018, 89, 292–308. https://doi.org/10.1016/j.rser.2018.03.002.
(9) Diouf, B.; Pode, R. Potential of Lithium-Ion Batteries in Renewable Energy. Renew. Energ. 2015, 76, 375–380.
https://doi.org/10.1016/j.renene.2014.11.058.
(10) Chatzivasileiadi, A.; Ampatzi, E.; Knight, I. Characteristics of Electrical Energy Storage Technologies and Their Applications in Buildings. Renew. Sust. Energ. Rev. 2013, 25, 814–830.
https://doi.org/10.1016/j.rser.2013.05.023.
(11) Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. Li2MnO3-Stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. J. Mater. Chem. 2007, 17 (30), 3112–3125. https://doi.org/10.1039/b702425h.
(12) Lu, J.; Peng, Q.; Wang, W.; Nan, C.; Li, L.; Li, Y. Nanoscale Coating of LiMO2 (M = Ni, Co, Mn) Nanobelts with Li+-Conductive Li2TiO3: Toward Better Rate Capabilities for Li-Ion Batteries. J. Am. Chem. Soc. 2013, 135 (5), 1649–1652. https://doi.org/10.1021/ja308717z.19
(13) Kang, S. H.; Thackeray, M. M. Enhancing the Rate Capability of High Capacity xLi2MnO3 · (1 - x)LiMO2 (M = Mn, Ni, Co) Electrodes by Li-Ni-PO4 Treatment. Electrochem. Commun. 2009, 11 (4) 748–751. https://doi.org/10.1016/j.elecom.2009.01.025.
(14) Cheng, Q.; Okamoto, Y.; Tamura, N.; Tsuji, M.; Maruyama, S.; Matsuo, Y. Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries. Sci. Rep. 2017, 7 (1), 1–14.
https://doi.org/10.1038/s41598-017-14504-8.
(15) Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The Success Story of Graphite as a Lithium-Ion Anode Material – Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites. Sustain. Energy Fuels 2020, 4 (11), 5387–5416. https://doi.org/10.1039/d0se00175a.
(16) Mou, H.; Xiao, W.; Miao, C.; Li, R.; Yu, L. Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review. Front. Chem. 2020, 8. https://doi.org/10.3389/fchem.2020.00141.
(17) Obrovac, M. N.; Chevrier, V. L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114 (23), 11444–11502.
https://doi.org/10.1021/cr500207g.
(18) Zhang, J.; Yu, A. Nanostructured Transition Metal Oxides as Advanced Anodes for Lithium-Ion Batteries. Sci. Bull. 2015, 60 (9), 823–838. https://doi.org/10.1007/s11434-015-0771-6.
(19) Bhosale, M. E.; Chae, S.; Kim, J. M.; Choi, J. Y. Organic Small Molecules and Polymers as an Electrode Material for Rechargeable Lithium Ion Batteries. J. Mater. Chem. A 2018, 6 (41), 19885–19911.
https://doi.org/10.1039/c8ta04906h.
(20) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated Dicarboxylate Anodes for Li-Ion Batteries. Nat. Mater. 2009, 8 (2), 120–125.
https://doi.org/10.1038/nmat2372.
(21) Liang, Y.; Tao, Z.; Chen, J. Organic Electrode Materials for Rechargeable Lithium Batteries. Adv. Energy Mater. 2012, 2 (7), 742–769. https://doi.org/10.1002/aenm.201100795.
(22) Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, Á.; Theato, P.; Mackay, M. E.; Sung, Y. E.; Char, K.; Pyun, J. The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials. Nat. Chem. 2013, 5 (6), 518–524.
https://doi.org/10.1038/nchem.1624.
(23) Guo, W.; Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Superior Radical Polymer Cathode Material with a Two-Electron Process Redox Reaction Promoted by Graphene. Energy Environ. Sci. 2012, 5 (1), 5221–5225. https://doi.org/10.1039/c1ee02148f.
(24) Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Erratum: Dimercaptan-Polyaniline Composite Electrodes for Lithium Batteries with High Energy Density (Nature (1995) 373 (598-600)). Nature 1995, 374 (6518), 196.
https://doi.org/10.1038/374196a0.
(25) Song, Z.; Zhan, H.; Zhou, Y. Polyimides: Promising Energy-Storage Materials. Angew. Chemie - Int. Ed. 2010, 49 (45), 8444–8448.
https://doi.org/10.1002/anie.201002439.
(26) Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H.; Yoshida, J. I. Polymer-Bound Pyrene-4,5,9,10-Tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity. J. Am. Chem. Soc. 2012, 134 (48), 19694–19700. https://doi.org/10.1021/ja306663g.
(27) Huang, W.; Zhu, Z.; Wang, L.; Wang, S.; Li, H.; Tao, Z.; Shi, J.; Guan, L.; Chen, J. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4]Quinone Cathode and Gel Polymer Electrolyte. Angew. Chemie - Int. Ed. 2013, 52 (35), 9162–9166. https://doi.org/10.1002/anie.201302586.
(28) Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5 (11) 1402034. https://doi.org/10.1002/aenm.201402034.
(29) Lv, M.; Zhang, F.; Wu, Y.; Chen, M.; Yao, C.; Nan, J.; Shu, D.; Zeng, R.; Zeng, H.; Chou, S. L. Heteroaromatic Organic Compound with Conjugated Multi-Carbonyl as Cathode Material for Rechargeable Lithium Batteries. Sci. Rep. 2016, 6, 1–8. https://doi.org/10.1038/srep23515.
(30) Jaffe, A.; Saldivar Valdes, A.; Karunadasa, H. I. Quinone-Functionalized Carbon Black Cathodes for Lithium Batteries with High Power Densities. Chem. Mater. 2015, 27 (10), 3568–3571.
https://doi.org/10.1021/acs.chemmater.5b00990.
(31) Lee, M.; Hong, J.; Kim, H.; Lim, H. D.; Cho, S. B.; Kang, K.; Park, C. B. Organic Nanohybrids for Fast and Sustainable Energy Storage. Adv. Mater. 2014, 26 (16), 2558–2565.
https://doi.org/10.1002/adma.201305005.
(32) Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials. Adv. Mater. 2007, 19 (12), 1616–1621. https://doi.org/10.1002/adma.200602584.
(33) Feng, J. K.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Polytriphenylamine: A High Power and High Capacity Cathode Material for Rechargeable Lithium Batteries. J. Power Sources 2008, 177 (1), 199–204.
https://doi.org/10.1016/j.jpowsour.2007.10.086.
(34) Yang, X.; Yao, S.; Yu, M.; Jiang, J. X. Synthesis and Gas Adsorption Properties of Tetra-Armed Microporous Organic Polymer Networks Based on Triphenylamine. Macromol. Rapid Commun. 2014, 35 (8), 834–839. https://doi.org/10.1002/marc.201300864.
(35) Zhang, C.; Yang, X.; Ren, W.; Wang, Y.; Su, F.; Jiang, J. X. Microporous Organic Polymer-Based Lithium Ion Batteries with Improved Rate Performance and Energy Density. J. Power Sources 2016, 317, 49–56. https://doi.org/10.1016/j.jpowsour.2016.03.080.
(36) Xiong, J.; Wei, Z.; Xu, T.; Zhang, Y.; Xiong, C.; Dong, L. Polytriphenylamine Derivative with Enhanced Electrochemical Performance as the Organic Cathode Material for Rechargeable Batteries. Polymer. 2017, 130, 135–142. https://doi.org/10.1016/j.polymer.2017.10.004.
(37) Su, C.; Ji, L.; Xu, L.; Zhou, N.; Wang, G.; Zhang, C. A Polytriphenylamine Derivative Exhibiting a Four-Electron Redox Center as a High Free Radical Density Organic Cathode. RSC Adv. 2016, 6 (27), 22989–22995.
https://doi.org/10.1039/c6ra03248f.
(38) Su, C.; Yang, F.; Ji, L.; Xu, L.; Zhang, C. Polytriphenylamine Derivative with High Free Radical Density as the Novel Organic Cathode for Lithium Ion Batteries. J. Mater. Chem. A 2014, 2 (47), 20083–20088.
https://doi.org/10.1039/c4ta03413a.
(39) Huang, W.; Jia, T.; Zhou, G.; Chen, S.; Hou, Q.; Wang, Y.; Luo, S.; Shi, G.; Xu, B. A Triphenylamine-Based Polymer with Anthraquinone Side Chain as Cathode Material in Lithium Ion Batteries. Electrochim. Acta 2018, 283, 1284–1290. https://doi.org/10.1016/j.electacta.2018.07.062.
(40) Su, C.; He, H.; Xu, L.; Zhao, K.; Zheng, C.; Zhang, C. A Mesoporous Conjugated Polymer Based on a High Free Radical Density Polytriphenylamine Derivative: Its Preparation and Electrochemical Performance as a Cathode Material for Li-Ion Batteries. J. Mater. Chem. A 2017, 5 (6), 2701–2709. https://doi.org/10.1039/c6ta10127e.
(41) Liaw, D.-J. High Glass Transitions of New Polyamides, Polyimides, and Poly(Amide-Imide)s Containing a Triphenylamine Group: Synthesis and Characterization. Macromolecules 2002, 35 (12), 4669–4676.
https://doi.org/10.1021/ma001523u.
(42) Maceiras, A.; Gören, A.; Sencadas, V.; Costa, C. M.; Vilas, J. L.; Lanceros-Méndez, S.; León, L. M. Effect of Cyano Dipolar Groups on the Performance of Lithium-Ion Battery Electrospun Polyimide Gel Electrolyte Membranes. J. Electroanal. Chem. 2016, 778, 57–65.
https://doi.org/10.1016/j.jelechem.2016.08.014.
(43) Wakita, J.; Sekino, H.; Sakai, K.; Urano, Y.; Ando, S. Molecular Design, Synthesis, and Properties of Highly Fluorescent Polyimides. J. Phys. Chem. B 2009, 113 (46), 15212–15224.
https://doi.org/10.1021/jp9072922.
(44) Song, Z.; Xu, T.; Gordin, M. L.; Jiang, Y. B.; Bae, I. T.; Xiao, Q.; Zhan, H.; Liu, J.; Wang, D. Polymer-Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries. Nano Lett. 2012, 12 (5), 2205–2211. https://doi.org/10.1021/nl2039666.
(45) Tian, D.; Zhang, H. Z.; Zhang, D. S.; Chang, Z.; Han, J.; Gao, X. P.; Bu, X. H. Li-Ion Storage and Gas Adsorption Properties of Porous Polyimides (PIs). RSC Adv. 2014, 4 (15), 7506–7510.
https://doi.org/10.1039/c3ra45563g.
(46) Xu, F.; Wang, H.; Wu, M.; Nan, J.; Li, T.; Cao, S. an. Electrochemical Properties of Poly(Anthraquinonyl Imide)s as High-Capacity Organic Cathode Materials for Li-Ion Batteries. Mater. Chem. Phys. 2018, 214, 120–125. https://doi.org/10.1016/j.matchemphys.2018.04.079.
(47) Liu, X.; Qiu, S.; Mei, P.; Zhang, Q.; Yang, Y. Chain Structure-Dependent Electrochemical Performance of Polyimide Cathode Materials for Lithium-Ion Batteries. J. Mater. Sci. 2021, 56 (5), 3900–3910.
https://doi.org/10.1007/s10853-020-05510-9.
(48) Su, C.; Sun, M.; Guo, P.; Xu, L. Triphenylamine-Contained Multiporous Polyimide: Its Preparation and Application as Anode for Lithium-Ion Storage. J. Electrochem. Energy Convers. Storage 2021, 18 (3), 1–8.
https://doi.org/10.1115/1.4049574.
(49) Xu, F.; Xia, J.; Shi, W.; Cao, S. A. Sulfonyl-Based Polyimide Cathode for Lithium and Sodium Secondary Batteries: Enhancing the Cycling Performance by the Electrolyte. Mater. Chem. Phys. 2016, 169, 192–197. https://doi.org/10.1016/j.matchemphys.2015.12.004.
(50) Tian, B.; Ning, G. H.; Tang, W.; Peng, C.; Yu, D.; Chen, Z.; Xiao, Y.; Su, C.; Loh, K. P. Polyquinoneimines for Lithium Storage: More than the Sum of Its Parts. Mater. Horizons 2016, 3 (5), 429–433.
https://doi.org/10.1039/c6mh00072j.
(51) Huang, Y.; Li, K.; Liu, J.; Zhong, X.; Duan, X.; Shakir, I.; Xu, Y. Three-Dimensional Graphene/Polyimide Composite-Derived Flexible High-Performance Organic Cathode for Rechargeable Lithium and Sodium Batteries. J. Mater. Chem. A 2017, 5 (6), 2710–2716.
https://doi.org/10.1039/c6ta09754e.
(52) He, J.; Liao, Y.; Hu, Q.; Zeng, Z.; Yi, L.; Wang, Y.; Lu, H.; Pan, M. Multi Carbonyl Polyimide as High Capacity Anode Materials for Lithium Ion Batteries. J. Power Sources 2020, 451, 227792. https://doi.org/10.1016/j.jpowsour.2020.227792.
(53) Zhao, F.; Zhao, X.; Peng, B.; Gan, F.; Yao, M.; Tan, W.; Dong, J.; Zhang, Q. Polyimide-Derived Carbon Nanofiber Membranes as Anodes for High-Performance Flexible Lithium Ion Batteries. Chinese Chem. Lett. 2018, 29 (11), 1692–1697. https://doi.org/10.1016/j.cclet.2017.12.015.
(54) Yang, H.; Liu, S.; Cao, L.; Jiang, S.; Hou, H. Superlithiation of Non-Conductive Polyimide toward High-Performance Lithium-Ion Batteries. J. Mater. Chem. A 2018, 6 (42), 21216–21224.
https://doi.org/10.1039/C8TA05109G.
(55) Li, J.; Luo, M.; Ba, Z.; Wang, Z.; Chen, L.; Li, Y.; Li, M.; Li, H. B.; Dong, J.; Zhao, X.; Zhang, Q. Hierarchical Multicarbonyl Polyimide Architectures as Promising Anode Active Materials for High-Performance Lithium/Sodium Ion Batteries. J. Mater. Chem. A 2019, 7 (32), 19112–19119.
https://doi.org/10.1039/c9ta05552e.
(56) Yen, H. J.; Liou, G. S. Recent Advances in Triphenylamine-Based Electrochromic Derivatives and Polymers. Polym. Chem. 2018, 9 (22), 3001–3018. https://doi.org/10.1039/c8py00367j.
Labasan, K. B.; Lin, H.-J.; Baskoro, F.; Togonon, J. J. H.; Wong, H. Q.; Chang, C.-W.; Arco, S. D.; Yen, H.-J. Dicyanotriphenylamine-Based Polyimides as High-Performance Electrodes for Next Generation Organic Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13 (15), 17467-17477.
https://doi.org/10.1021/acsami.1c00065.
(2) Song, Z.; Zhan, H.; Zhou, Y. Polyimides: Promising Energy-Storage Materials. Angew. Chemie - Int. Ed. 2010, 49 (45), 8444–8448.
https://doi.org/10.1002/anie.201002439.
(3) Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials. Adv. Mater. 2007, 19 (12), 1616–1621. https://doi.org/10.1002/adma.200602584.
(4) Ba, Z.; Wang, Z.; Luo, M.; Li, H. B.; Li, Y.; Huang, T.; Dong, J.; Zhang, Q.; Zhao, X. Benzoquinone-Based Polyimide Derivatives as High-Capacity and Stable Organic Cathodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12 (1), 807–817.
https://doi.org/10.1021/acsami.9b18422.
(5) Song, Z.; Xu, T.; Gordin, M. L.; Jiang, Y. B.; Bae, I. T.; Xiao, Q.; Zhan, H.; Liu, J.; Wang, D. Polymer-Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries. Nano Lett. 2012, 12 (5), 2205–2211. https://doi.org/10.1021/nl2039666.
(6) Tian, D.; Zhang, H. Z.; Zhang, D. S.; Chang, Z.; Han, J.; Gao, X. P.; Bu, X. H. Li-Ion Storage and Gas Adsorption Properties of Porous Polyimides (PIs). RSC Adv. 2014, 4 (15), 7506–7510.
https://doi.org/10.1039/c3ra45563g.
(7) Xu, F.; Wang, H.; Wu, M.; Nan, J.; Li, T.; Cao, S. an. Electrochemical Properties of Poly(Anthraquinonyl Imide)s as High-Capacity Organic Cathode Materials for Li-Ion Batteries. Mater. Chem. Phys. 2018, 214, 120–125. https://doi.org/10.1016/j.matchemphys.2018.04.079.
(8) Liu, X.; Qiu, S.; Mei, P.; Zhang, Q.; Yang, Y. Chain Structure-Dependent Electrochemical Performance of Polyimide Cathode Materials for Lithium-Ion Batteries. J. Mater. Sci. 2021, 56 (5), 3900–3910.
https://doi.org/10.1007/s10853-020-05510-9.
(9) Chen, C.; Zhao, X.; Li, H. B.; Gan, F.; Zhang, J.; Dong, J.; Zhang, Q. Naphthalene-Based Polyimide Derivatives as Organic Electrode Materials for Lithium-Ion Batteries. Electrochim. Acta 2017, 229, 387–395.
https://doi.org/10.1016/j.electacta.2017.01.172.
(10) He, J.; Liao, Y.; Hu, Q.; Zeng, Z.; Yi, L.; Wang, Y.; Lu, H.; Pan, M. Investigation of Polyimide as an Anode Material for Lithium-Ion Battery and Its Thermal Safety Behavior. Ionics (Kiel) 2020, 26 (7), 3343–3350.
https://doi.org/10.1007/s11581-020-03509-5.
(11) Rasmussen, C. R.; Gardocki, J. F.; Plampin, J. N.; Twardzik, B. L.; Reynolds, B. E.; Molinari, A. J.; Schwartz, N.; Bennetts, W. W.; Price, B. E.; Marakowski, J. 2-Pyrrolidinylideneureas, a New Class of Central Nervous System Agents. J. Med. Chem. 1978, 21 (10), 1044–1054.
https://doi.org/10.1021/jm00208a008.
(12) Lv, M.; Zhang, F.; Wu, Y.; Chen, M.; Yao, C.; Nan, J.; Shu, D.; Zeng, R.; Zeng, H.; Chou, S. L. Heteroaromatic Organic Compound with Conjugated Multi-Carbonyl as Cathode Material for Rechargeable Lithium Batteries. Sci. Rep. 2016, 6, 1–8. https://doi.org/10.1038/srep23515.
(13) Liang, Y.; Zhang, P.; Chen, J. Function-Oriented Design of Conjugated Carbonyl Compound Electrodes for High Energy Lithium Batteries. Chem. Sci. 2013, 4 (3), 1330–1337.
https://doi.org/10.1039/c3sc22093a.
(14) Wang, J.; Yao, H.; Du, C.; Guan, S. Polyimide Schiff Base as a High-Performance Anode Material for Lithium-Ion Batteries. J. Power Sources 2021, 482, 228931. https://doi.org/10.1016/j.jpowsour.2020.228931.
(15) Ruby Raj, M.; Mangalaraja, R. V.; Contreras, D.; Varaprasad, K.; Reddy, M. V.; Adams, S. Perylenedianhydride-Based Polyimides as Organic Cathodes for Rechargeable Lithium and Sodium Batteries. ACS Appl. Energy Mater. 2020, 3 (1), 240–252.
https://doi.org/10.1021/acsaem.9b01419.
(16) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density. Solid State Ion. 1981, 3–4, 171–174.
https://doi.org/10.1016/0167-2738(81)90077-1.
(17) He, J.; Liao, Y.; Hu, Q.; Zeng, Z.; Yi, L.; Wang, Y.; Lu, H.; Pan, M. Multi Carbonyl Polyimide as High Capacity Anode Materials for Lithium Ion Batteries. J. Power Sources 2020, 451, 227792.
https://doi.org/10.1016/j.jpowsour.2020.227792.
(18) Xu, F.; Xia, J.; Shi, W.; Cao, S. A. Sulfonyl-Based Polyimide Cathode for Lithium and Sodium Secondary Batteries: Enhancing the Cycling Performance by the Electrolyte. Mater. Chem. Phys. 2016, 169, 192–197. https://doi.org/10.1016/j.matchemphys.2015.12.004.
(19) Hernández, G.; Casado, N.; Coste, R.; Shanmukaraj, D.; Rubatat, L.; Armand, M.; Mecerreyes, D. Redox-Active Polyimide-Polyether Block Copolymers as Electrode Materials for Lithium Batteries. RSC Adv. 2015, 5 (22), 17096–17103. https://doi.org/10.1039/c4ra15976d.
(20) Tian, B.; Ning, G. H.; Tang, W.; Peng, C.; Yu, D.; Chen, Z.; Xiao, Y.; Su, C.; Loh, K. P. Polyquinoneimines for Lithium Storage: More than the Sum of Its Parts. Mater. Horizons 2016, 3 (5), 429–433.
https://doi.org/10.1039/c6mh00072j.
(21) Huang, Y.; Li, K.; Liu, J.; Zhong, X.; Duan, X.; Shakir, I.; Xu, Y. Three-Dimensional Graphene/Polyimide Composite-Derived Flexible High-Performance Organic Cathode for Rechargeable Lithium and Sodium Batteries. J. Mater. Chem. A 2017, 5 (6), 2710–2716.
https://doi.org/10.1039/c6ta09754e.
(22) Lyu, H.; Li, P.; Liu, J.; Mahurin, S.; Chen, J.; Hensley, D. K.; Veith, G. M.; Guo, Z.; Dai, S.; Sun, X. G. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries. ChemSusChem 2018, 11 (4), 763–772. https://doi.org/10.1002/cssc.201702001.
(23) Wu, J.; Rui, X.; Long, G.; Chen, W.; Yan, Q.; Zhang, Q. Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angew. Chemie - Int. Ed. 2015, 54 (25), 7354–7358.
https://doi.org/10.1002/anie.201503072.
(24) Gao, X.; Chen, Y.; Gu, C.; Wen, J.; Peng, X.; Liu, J.; Zhang, Z.; Zhang, Q.; Liu, Z.; Wang, C. Non-Conjugated Diketone as a Linkage for Enhancing the Rate Performance of Poly(Perylenediimides). J. Mater. Chem. A 2020, 8 (37). https://doi.org/10.1039/d0ta06326f.
(25) Aravindan, V.; Gnanaraj, J.; Lee, Y. S.; Madhavi, S. Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chem. Rev. 2014, 114 (23), 11619–11635. https://doi.org/10.1021/cr5000915.
(26) Liu, J.; Qian, D.; Feng, H.; Li, J.; Jiang, J.; Peng, S.; Liu, Y. Designed Synthesis of TiO2-Modified Iron Oxides on/among Carbon Nanotubes as a Superior Lithium-Ion Storage Material. J. Mater. Chem. A 2014, 2 (29), 11372–11381. https://doi.org/10.1039/c4ta01596g.
(27) Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano 2011, 5 (9), 7100–7107. https://doi.org/10.1021/nn201802c.
(28) Liu, L. L.; Tian, J. S. An Improved Blind Image Restoration Based on Bi-Spectral Reconstruction. Appl. Mech. Mater. 2014, 644–650, 4229–4232. https://doi.org/10.4028/www.scientific.net/AMM.644-650.4229.
(29) Kaskhedikar, N. A.; Maier, J. Lithium Storage in Carbon Nanostructures. Adv. Mater. 2009, 21 (25–26), 2664–2680.
https://doi.org/10.1002/adma.200901079.
(30) Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164 (7), A1703–A1719.
https://doi.org/10.1149/2.1441707jes.
(31) Man, Z.; Li, P.; Zhou, D.; Zang, R.; Wang, S.; Li, P.; Liu, S.; Li, X.; Wu, Y.; Liang, X.; Wang, G. High-Performance Lithium-Organic Batteries by Achieving 16 Lithium Storage in Poly(Imine-Anthraquinone). J. Mater. Chem. A 2019, 7 (5), 2368–2375. https://doi.org/10.1039/c8ta11230d.
(32) Kang, H.; Liu, H.; Li, C.; Sun, L.; Zhang, C.; Gao, H.; Yin, J.; Yang, B.; You, Y.; Jiang, K. C.; Long, H.; Xin, S. Polyanthraquinone-Triazine - A Promising Anode Material for High-Energy Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10 (43), 37023–37030.
https://doi.org/10.1021/acsami.8b12888.
(33) Han, X.; Han, P.; Yao, J.; Zhang, S.; Cao, X.; Xiong, J.; Zhang, J.; Cui, G. Nitrogen-Doped Carbonized Polyimide Microsphere as a Novel Anode Material for High Performance Lithium Ion Capacitors. Electrochim. Acta 2016, 196, 603–610. https://doi.org/10.1016/j.electacta.2016.02.185.
(34) Zhao, F.; Zhao, X.; Peng, B.; Gan, F.; Yao, M.; Tan, W.; Dong, J.; Zhang, Q. Polyimide-Derived Carbon Nanofiber Membranes as Anodes for High-Performance Flexible Lithium Ion Batteries. Chinese Chem. Lett. 2018, 29 (11), 1692–1697. https://doi.org/10.1016/j.cclet.2017.12.015.
(35) Yang, H.; Liu, S.; Cao, L.; Jiang, S.; Hou, H. Superlithiation of Non-Conductive Polyimide toward High-Performance Lithium-Ion Batteries. J. Mater. Chem. A 2018, 6 (42), 21216–21224.
https://doi.org/10.1039/C8TA05109G.
(36) Li, J.; Luo, M.; Ba, Z.; Wang, Z.; Chen, L.; Li, Y.; Li, M.; Li, H. B.; Dong, J.; Zhao, X.; Zhang, Q. Hierarchical Multicarbonyl Polyimide Architectures as Promising Anode Active Materials for High-Performance Lithium/Sodium Ion Batteries. J. Mater. Chem. A 2019, 7 (32), 19112–19119.
https://doi.org/10.1039/c9ta05552e.
(37) Han, X.; Qing, G.; Sun, J.; Sun, T. How Many Lithium Ions Can Be Inserted onto Fused C6 Aromatic Ring Systems? Angew. Chemie - Int. Ed. 2012, 51 (21), 5147–5151.
https://doi.org/10.1002/anie.201109187.
Han, X.; Qing, G.; Sun, J.; Sun, T. How Many Lithium Ions Can Be Inserted onto Fused C6 Aromatic Ring Systems? Angew. Chemie - Int. Ed. 2012, 51 (21), 5147–5151.
https://doi.org/10.1002/anie.201109187.
(2) Yamazaki, N.; Higashi, F.; Kawabata, J. Studies on Reactions of the N-Phosphonium Salts of Pyridines. XI. Preparation of Polypeptides and Polyamides by Means of Triaryl Phosphites in Pyridine. J. Polym. Sci. Polym. Chem. Ed. 1974, 12 (9), 2149–2154.
https://doi.org/10.1002/pol.1974.170120935.
(3) Yamazaki, N.; Matsumoto, M. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1373–1380.
https://doi.org/10.1002/pol.1975.170130609
(4) Wang, J.; Yao, H.; Du, C.; Guan, S. Polyimide Schiff Base as a High-Performance Anode Material for Lithium-Ion Batteries. J. Power Sources 2021, 482, 228931.
https://doi.org/10.1016/j.jpowsour.2020.228931.
(5) He, J.; Liao, Y.; Hu, Q.; Zeng, Z.; Yi, L.; Wang, Y.; Lu, H.; Pan, M. Investigation of Polyimide as an Anode Material for Lithium-Ion Battery and Its Thermal Safety Behavior. Ionics (Kiel) 2020, 26 (7), 3343–3350.
https://doi.org/10.1007/s11581-020-03509-5.
(6) Liu, J.; Qian, D.; Feng, H.; Li, J.; Jiang, J.; Peng, S.; Liu, Y. Designed Synthesis of TiO2-Modified Iron Oxides on/among Carbon Nanotubes as a Superior Lithium-Ion Storage Material. J. Mater. Chem. A 2014, 2 (29), 11372–11381.
https://doi.org/10.1039/c4ta01596g.
(7) Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Nano 2011, 5 (9), 7100–7107.
https://doi.org/10.1021/nn201802c.
(8) He, J.; Liao, Y.; Hu, Q.; Zeng, Z.; Yi, L.; Wang, Y.; Lu, H.; Pan, M. Multi Carbonyl Polyimide as High Capacity Anode Materials for Lithium Ion Batteries. J. Power Sources 2020, 451, 227792.
https://doi.org/10.1016/j.jpowsour.2020.227792.
(9) Peled, E.; Menkin, S. Review—SEI: Past, Present and Future. J. Electrochem. Soc. 2017, 164 (7), A1703–A1719.
https://doi.org/10.1149/2.1441707jes.
(10) Man, Z.; Li, P.; Zhou, D.; Zang, R.; Wang, S.; Li, P.; Liu, S.; Li, X.; Wu, Y.; Liang, X.; Wang, G. High-Performance Lithium-Organic Batteries by Achieving 16 Lithium Storage in Poly(Imine-Anthraquinone). J. Mater. Chem. A 2019, 7 (5), 2368–2375.
https://doi.org/10.1039/c8ta11230d.
(11) Kang, H.; Liu, H.; Li, C.; Sun, L.; Zhang, C.; Gao, H.; Yin, J.; Yang, B.; You, Y.; Jiang, K. C.; Long, H.; Xin, S. Polyanthraquinone-Triazine - A Promising Anode Material for High-Energy Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10 (43), 37023–37030.
https://doi.org/10.1021/acsami.8b12888.
指導教授 顏宏儒 吳國暉(Hung-Ju Yen Kuo-Hui Wu) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明