博碩士論文 108324010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.12.146.100
姓名 謝翔徍(Hsiang-Chia Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以聚(偏氟乙烯-三氟乙烯)為基底之單軸/同軸靜電紡絲奈米纖維受張力變形下機械性質與微觀結構之相關性
(Correlation between the mechanical properties and microstructure of uniaxially/coaxially electrospun, P(VDF-TrFE)-based nanofibers subjected to tension deformation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-19以後開放)
摘要(中) 聚(偏氟乙烯-三氟乙烯) (poly (vinylidene fluoride-trifluoroethylene), P(VDF-TrFE)) 是一種眾所周知,具有壓電性質的電活性高分子 (electroactive polymer, EAP)。這種高分子由於壓電效應能夠將電能轉化為機械能而被廣泛用於機械手臂或是人造肌肉。在這項研究中,我們將P(VDF-TrFE)和基於P(VDF-TrFE)的三元共聚物P(VDF-TrFE-CTFE)採用單軸或同軸靜電紡絲製備奈米纖維,其中P(VDF-TrFE-CTFE)不同於P(VDF-TrFE),加入氯三氟乙烯 (chlorotrifluoroethylene , CTFE),並檢驗這兩種類型的奈米纖維在張力下機械性質與微觀結構的差異。拉伸試驗、掃描式電子顯微鏡和即時性小角與廣角X光散射用於測量基於P(VDF-TrFE)的EAPs之楊氏模數和微觀結構。基於從 EAPs 之間機械性質和微觀結構的比較中得出的原理,我們能夠在機械工程和生物醫學工程領域中開發出具有所需性能的壓電材料。
摘要(英) Poly (vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), is a well-known electroactive polymer (EAP) displaying piezoelectricity. These kinds of polymers are widely used in mechanical arms or artificial muscles since their piezoelectricity nature allows them to convert electrical power to mechanical energy. In this study, we employed the uniaxial or coaxial electrospinning process to prepare nanofibers from P(VDF-TrFE) and from a P(VDF-TrFE)-based terpolymer, P(VDF-TrFE-CTFE), which differs from P(VDF-TrFE) by the presence of chlorotrifluoroethylene (CTFE) and examined the differences in mechanical properties and microstructures between the two types of nanofibers when they were under tension. Tensile tests, scanning electron microscopes and in-situ small- and wide-angle X-ray scattering were employed to measure the Young′s modulus and microstructure of the P(VDF-TrFE)-based EAPs. Based on the principles drawn from the comparison in mechanical properties and microstructures between the EAPs, we may develop piezoelectric materials with desired properties for applications in mechanical and biomedical engineering.
關鍵字(中) ★ 聚(偏氟乙烯-三氟乙烯)
★ 靜電紡絲
★ 奈米纖維
★ 張力
★ 機械性質
★ 微觀結構
關鍵字(英)
論文目次 目次

摘要 I
ABSTRACT II
誌謝 III
目次 IV
圖次 VII
表次 XII
一、 前言 1
1.1 簡介 1
1.2 研究動機 2
二、 文獻回顧 3
2.1 壓電材料之發展 3
2.2 壓電效應 6
2.2.1 正壓電效應 6
2.2.2 逆壓電效應 7
2.3 電活性高分子 8
2.3.1 電活性高分子之簡介 8
2.3.2 電活性高分子之優勢 10
2.4 聚(偏氟乙烯) (PVDF)之簡介 12
2.5 P(VDF-TrFE)與P(VDF-TrFE-CTFE) 14
2.6 靜電紡絲製程之特點 17
2.7 不同尺度下之微觀結構 19
2.8 應力應變曲線圖 21
2.9 機械拉伸作用下之微觀結構 23
2.10 同步輻射X光散射實驗 25
三、 實驗及儀器原理 28
3.1 實驗流程 28
3.2 樣品製備 29
3.3 實驗儀器 34
3.3.1 拉伸試驗 34
3.3.2 掃描式電子顯微鏡 36
3.3.3 小角度與廣角度X光散射實驗 37
3.3.4 即時性量測實驗 38
四、 實驗結果 39
4.1 拉伸試驗 39
4.2 掃描式電子顯微鏡 45
4.3 小角度X光散射實驗 58
4.4 廣角度X光散射實驗 68
五、 結果討論 81
5.1 機械性質與微觀結構之相關性 81
5.2 同軸靜電紡絲-核心主導性 82
5.3 靜電紡絲製程之異向性 84
5.4 機械拉伸與微觀結構之機制 86
六、 結論 92
七、 未來工作 93
八、 參考文獻 94
九、 附錄 99
參考文獻 參考文獻
1. Mirfakhrai, T., J.D.W. Madden, and R.H. Baughman, Polymer artificial muscles. Materials Today, 2007. 10(4): p. 30-38.
2. Dagdeviren, C., et al., Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mechanics Letters, 2016. 9: p. 269-281.
3. Jacques, C. and C.J.B.S.M.F. Pierre, Development, via compression, of electric polarization in hemihedral crystals with inclined faces. 1880. 3: p. 90-3.
4. Curie, J. and P.J.C.R. Curie, Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées. 1881. 93: p. 1137-1140.
5. Voigt, W., Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). Vol. 34. 1910: BG Teubner.
6. 吳朗, 電子陶瓷: 壓電陶瓷. 1994: 全欣.
7. Vijaya, M., Piezoelectric materials and devices: applications in engineering and medical sciences. 2012: CRC press.
8. Ræder, J.H. piezoelectric materials for sensors, actuators and ultrasound transducers. SINTEF 2021.
9. Semnani, D., F. Fereydonian, and M. Mashayekhi. Artificial Mucsles and Electroactive Polymers. SlidePlayer 2016.
10. Chen, X., X. Han, and Q.D. Shen, PVDF‐based ferroelectric polymers in modern flexible electronics. Advanced Electronic Materials, 2017. 3(5): p. 1600460.
11. Electroactve polymers. 2021.
12. Krakovský, I., T. Romijn, and A.J.J.o.a.p. Posthuma de Boer, A few remarks on the electrostriction of elastomers. 1999. 85(1): p. 628-629.
13. Fukada, E. and I.J.J.o.t.p.s.o.J. Yasuda, On the piezoelectric effect of bone. 1957. 12(10): p. 1158-1162.
14. Karothu, D.P., et al., Crystal Adaptronics: Global Performance Indices for Dynamic Crystals as Organic Thermal Actuators (Adv. Mater. 20/2020). 2020. 32(20): p. 2070160.
15. Ma, C.-Y., Study the mechanical and electrical properties of coaxial electrospun P(VDF-TrFE) & P(VDF-TrFE-CTFE) nanofibers, in Materials Science and Engineering. 2020, National Yang Ming Chiao Tung University.
16. Ramadan, K.S., et al., A review of piezoelectric polymers as functional materials for electromechanical transducers. 2014. 23(3): p. 033001.
17. Yao, J., et al., Thermoplastic Polyurethane Dielectric Elastomers with High Actuated Strain and Good Mechanical Strength by Introducing Ester Group Grafted Polymethylvinylsiloxane. 2021. 60(13): p. 4883-4891.
18. Kumari, M., J.C. Douglin, and D.R.J.J.o.M.S. Dekel, Crosslinked quaternary phosphonium-functionalized poly (ether ether ketone) polymer-based anion-exchange membranes. 2021. 626: p. 119167.
19. Luo, X., et al., Metal ion cross-linked nanoporous polymeric membranes with improved organic solvent resistance for molecular separation. 2021. 621: p. 119002.
20. Qin, Y., et al., Polymer integration for packaging of implantable sensors. 2014. 202: p. 758-778.
21. Yuan, X., et al. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting. in Journal of Physics: Conference Series. 2016. IOP Publishing.
22. Kawai, H.J.J.a.P., Japan “The piezoelectricity of poly (vinylidene fluoride)”. 1969. 8: p. 975-976.
23. Wu, T., et al., A Flexible Film Bulk Acoustic Resonator Based on-Phase Polyvinylidene Fluoride Polymer. 2020. 20(5): p. 1346.
24. Pi, Z., et al., Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene)(PVDF-TrFE) thin film. 2014. 7: p. 33-41.
25. Liu, Q., C. Richard, and J.-F.J.E.P.J. Capsal, Control of crystal morphology and its effect on electromechanical performances of electrostrictive P (VDF-TrFE-CTFE) terpolymer. 2017. 91: p. 46-60.
26. Ico, G., et al., Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting. 2016. 4(6): p. 2293-2304.
27. Wan, C. and C.R.J.J.o.M.C.A. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. 2017. 5(7): p. 3091-3128.
28. Li, Y., et al., Stretching-induced relaxor ferroelectric behavior in a poly (vinylidene fluoride-co-trifluoroethylene-co-hexafluoropropylene) random terpolymer. 2017. 50(19): p. 7646-7656.
29. Gatford, J.J.N.Z., The New Zealand Institute for Plant and F.R. Ltd, A diagram of the electrospinning process showing the onset of instability. 2008.
30. Xu, B., et al., Aligned core/shell electrospinning of poly (glycerol sebacate)/poly (l‐lactic acid) with tuneable structural and mechanical properties. 2016. 65(4): p. 423-429.
31. Lam, T.-N., et al., Tunable Mechanical and Electrical Properties of Coaxial Electrospun Composite Nanofibers of P (VDF-TrFE) and P (VDF-TrFE-CTFE). 2021. 22(9): p. 4639.
32. Stress–strain curve. 2021.
33. Matsushige, K., et al., The II-I crystal transformation of poly (vinylidene fluoride) under tensile and compressional stresses. 1980. 21(12): p. 1391-1397.
34. Sajkiewicz, P., A. Wasiak, and Z.J.E.p.j. Gocłowski, Phase transitions during stretching of poly (vinylidene fluoride). 1999. 35(3): p. 423-429.
35. Kaur, S. and D.P. Singh. Effect of annealing temperature on dielectric behavior of PVDF thick films. in AIP Conference Proceedings. 2017. AIP Publishing LLC.
36. Neidhöfer, M., et al., Structural evolution of PVDF during storage or annealing. 2004. 45(5): p. 1679-1688.
37. Hsu, C. and P.J.P.c. Geil, Morphology and crystal structure of quenched poly (vinylidene fluoride). 1986. 27(4): p. 105-108.
38. Song, D., D. Yang, and Z.J.J.o.m.s. Feng, Formation of β-phase microcrystals from the melt of PVF 2-PMMA blends induced by quenching. 1990. 25(1): p. 57-64.
39. Schneider, S., et al., Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMA blends. 2001. 42(21): p. 8799-8806.
40. Schneider, S., et al., Self-nucleation and enhanced nucleation of polyvinylidene fluoride (α-phase). 2001. 42(21): p. 8787-8798.
41. Takahashi, Y.J.J.o.a.p., Conformationally incommensurate form of poly (vinylidene fluoride) induced by electric field. 1990. 67(9): p. 4060-4063.
42. Davis, G., et al., Electric‐field‐induced phase changes in poly (vinylidene fluoride). 1978. 49(10): p. 4998-5002.
43. Al-Saleh, M.H. and U.J.J.o.P.D.A.P. Sundararaj, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. 2012. 46(3): p. 035304.
44. Wu, J., et al., In-situ simultaneous synchrotron small-and wide-angle X-ray scattering measurement of poly (vinylidene fluoride) fibers under deformation. 2000. 33(5): p. 1765-1777.
45. Chang, W.-Y., et al., Phase transformation and thermomechanical characteristics of stretched polyvinylidene fluoride. 2008. 480(1-2): p. 477-482.
46. Smith, F., Industrial applications of X-ray diffraction. 1999: CRC press.
47. Cole, H.J.J.o.A.C., Bragg′s law and energy sensitive detectors. 1970. 3(5): p. 405-406.
48. Conrad, H., Dynamics of colloids in molecular glass forming liquids studied via X-ray photon correlation spectroscopy. 2014, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
49. Wiedemann, H., Synchrotron radiation, in Particle Accelerator Physics. 2003, Springer. p. 647-686.
50. 林宮玄, 淺談同步輻射光源應用. 全華圖書物理專刊, 2015. 10: p. 1-8.
51. Lam, T.-N., et al., Tuning mechanical properties of electrospun piezoelectric nanofibers by heat treatment. 2019. 8: p. 100461.
52. Jiang, Y., et al., Aligned P (VDF-TrFE) nanofibers for enhanced piezoelectric directional strain sensing. 2018. 10(4): p. 364.
53. Rizvi, H.R., et al., Bioinspired cellular sheath-core electrospun non-woven mesh. 2019. 2(2): p. 127-140.
54. NSRRC. 23A1 IASW - Small/Wide Angle X-ray Scattering. NSRRC 2021.
55. Yang, W., et al., On the tear resistance of skin. 2015. 6(1): p. 1-10.
56. Yuan, M., et al., High-Field Dielectric Properties of Oriented Poly (vinylidene fluoride-co-hexafluoropropylene): Structure–Dielectric Property Relationship and Implications for Energy Storage Applications. 2020. 2(3): p. 1356-1368.
57. Chen, R., et al., Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. 2010. 79(2): p. 315-325.
58. Augustine, R., et al., CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. 2019. 14: p. 8573.
59. Defebvin, J., et al., In situ SAXS/WAXS investigation of the structural evolution of poly (vinylidene fluoride) upon uniaxial stretching. 2016. 84: p. 148-157.
60. He, Z., et al., Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. 2021. 13(2): p. 174.
61. Castagnet, S., et al., Cavitation in strained polyvinylidene fluoride: mechanical and X-ray experimental studies. 2000. 41(20): p. 7523-7530.
62. Maier, G.A., et al., Structural changes during plastic deformation at crack tips in PVDF films: a scanning X-ray scattering study. 2005. 38(14): p. 6099-6105.
63. Guo, H., et al., In-situ synchrotron SAXS and WAXS investigations on deformation and α–β transformation of uniaxial stretched poly (vinylidene fluoride). 2013. 15(8): p. 1597-1606.
64. Lu, Y., Y.J.M.M. Men, and Engineering, Cavitation‐Induced Stress Whitening in Semi‐Crystalline Polymers. 2018. 303(11): p. 1800203.
指導教授 陳儀帆 黃爾文(Yi-Fan Chen E-Wen Huang) 審核日期 2021-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明