參考文獻 |
參考文獻
1. Mirfakhrai, T., J.D.W. Madden, and R.H. Baughman, Polymer artificial muscles. Materials Today, 2007. 10(4): p. 30-38.
2. Dagdeviren, C., et al., Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extreme Mechanics Letters, 2016. 9: p. 269-281.
3. Jacques, C. and C.J.B.S.M.F. Pierre, Development, via compression, of electric polarization in hemihedral crystals with inclined faces. 1880. 3: p. 90-3.
4. Curie, J. and P.J.C.R. Curie, Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées. 1881. 93: p. 1137-1140.
5. Voigt, W., Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik). Vol. 34. 1910: BG Teubner.
6. 吳朗, 電子陶瓷: 壓電陶瓷. 1994: 全欣.
7. Vijaya, M., Piezoelectric materials and devices: applications in engineering and medical sciences. 2012: CRC press.
8. Ræder, J.H. piezoelectric materials for sensors, actuators and ultrasound transducers. SINTEF 2021.
9. Semnani, D., F. Fereydonian, and M. Mashayekhi. Artificial Mucsles and Electroactive Polymers. SlidePlayer 2016.
10. Chen, X., X. Han, and Q.D. Shen, PVDF‐based ferroelectric polymers in modern flexible electronics. Advanced Electronic Materials, 2017. 3(5): p. 1600460.
11. Electroactve polymers. 2021.
12. Krakovský, I., T. Romijn, and A.J.J.o.a.p. Posthuma de Boer, A few remarks on the electrostriction of elastomers. 1999. 85(1): p. 628-629.
13. Fukada, E. and I.J.J.o.t.p.s.o.J. Yasuda, On the piezoelectric effect of bone. 1957. 12(10): p. 1158-1162.
14. Karothu, D.P., et al., Crystal Adaptronics: Global Performance Indices for Dynamic Crystals as Organic Thermal Actuators (Adv. Mater. 20/2020). 2020. 32(20): p. 2070160.
15. Ma, C.-Y., Study the mechanical and electrical properties of coaxial electrospun P(VDF-TrFE) & P(VDF-TrFE-CTFE) nanofibers, in Materials Science and Engineering. 2020, National Yang Ming Chiao Tung University.
16. Ramadan, K.S., et al., A review of piezoelectric polymers as functional materials for electromechanical transducers. 2014. 23(3): p. 033001.
17. Yao, J., et al., Thermoplastic Polyurethane Dielectric Elastomers with High Actuated Strain and Good Mechanical Strength by Introducing Ester Group Grafted Polymethylvinylsiloxane. 2021. 60(13): p. 4883-4891.
18. Kumari, M., J.C. Douglin, and D.R.J.J.o.M.S. Dekel, Crosslinked quaternary phosphonium-functionalized poly (ether ether ketone) polymer-based anion-exchange membranes. 2021. 626: p. 119167.
19. Luo, X., et al., Metal ion cross-linked nanoporous polymeric membranes with improved organic solvent resistance for molecular separation. 2021. 621: p. 119002.
20. Qin, Y., et al., Polymer integration for packaging of implantable sensors. 2014. 202: p. 758-778.
21. Yuan, X., et al. Application review of dielectric electroactive polymers (DEAPs) and piezoelectric materials for vibration energy harvesting. in Journal of Physics: Conference Series. 2016. IOP Publishing.
22. Kawai, H.J.J.a.P., Japan “The piezoelectricity of poly (vinylidene fluoride)”. 1969. 8: p. 975-976.
23. Wu, T., et al., A Flexible Film Bulk Acoustic Resonator Based on-Phase Polyvinylidene Fluoride Polymer. 2020. 20(5): p. 1346.
24. Pi, Z., et al., Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene)(PVDF-TrFE) thin film. 2014. 7: p. 33-41.
25. Liu, Q., C. Richard, and J.-F.J.E.P.J. Capsal, Control of crystal morphology and its effect on electromechanical performances of electrostrictive P (VDF-TrFE-CTFE) terpolymer. 2017. 91: p. 46-60.
26. Ico, G., et al., Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting. 2016. 4(6): p. 2293-2304.
27. Wan, C. and C.R.J.J.o.M.C.A. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. 2017. 5(7): p. 3091-3128.
28. Li, Y., et al., Stretching-induced relaxor ferroelectric behavior in a poly (vinylidene fluoride-co-trifluoroethylene-co-hexafluoropropylene) random terpolymer. 2017. 50(19): p. 7646-7656.
29. Gatford, J.J.N.Z., The New Zealand Institute for Plant and F.R. Ltd, A diagram of the electrospinning process showing the onset of instability. 2008.
30. Xu, B., et al., Aligned core/shell electrospinning of poly (glycerol sebacate)/poly (l‐lactic acid) with tuneable structural and mechanical properties. 2016. 65(4): p. 423-429.
31. Lam, T.-N., et al., Tunable Mechanical and Electrical Properties of Coaxial Electrospun Composite Nanofibers of P (VDF-TrFE) and P (VDF-TrFE-CTFE). 2021. 22(9): p. 4639.
32. Stress–strain curve. 2021.
33. Matsushige, K., et al., The II-I crystal transformation of poly (vinylidene fluoride) under tensile and compressional stresses. 1980. 21(12): p. 1391-1397.
34. Sajkiewicz, P., A. Wasiak, and Z.J.E.p.j. Gocłowski, Phase transitions during stretching of poly (vinylidene fluoride). 1999. 35(3): p. 423-429.
35. Kaur, S. and D.P. Singh. Effect of annealing temperature on dielectric behavior of PVDF thick films. in AIP Conference Proceedings. 2017. AIP Publishing LLC.
36. Neidhöfer, M., et al., Structural evolution of PVDF during storage or annealing. 2004. 45(5): p. 1679-1688.
37. Hsu, C. and P.J.P.c. Geil, Morphology and crystal structure of quenched poly (vinylidene fluoride). 1986. 27(4): p. 105-108.
38. Song, D., D. Yang, and Z.J.J.o.m.s. Feng, Formation of β-phase microcrystals from the melt of PVF 2-PMMA blends induced by quenching. 1990. 25(1): p. 57-64.
39. Schneider, S., et al., Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMA blends. 2001. 42(21): p. 8799-8806.
40. Schneider, S., et al., Self-nucleation and enhanced nucleation of polyvinylidene fluoride (α-phase). 2001. 42(21): p. 8787-8798.
41. Takahashi, Y.J.J.o.a.p., Conformationally incommensurate form of poly (vinylidene fluoride) induced by electric field. 1990. 67(9): p. 4060-4063.
42. Davis, G., et al., Electric‐field‐induced phase changes in poly (vinylidene fluoride). 1978. 49(10): p. 4998-5002.
43. Al-Saleh, M.H. and U.J.J.o.P.D.A.P. Sundararaj, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. 2012. 46(3): p. 035304.
44. Wu, J., et al., In-situ simultaneous synchrotron small-and wide-angle X-ray scattering measurement of poly (vinylidene fluoride) fibers under deformation. 2000. 33(5): p. 1765-1777.
45. Chang, W.-Y., et al., Phase transformation and thermomechanical characteristics of stretched polyvinylidene fluoride. 2008. 480(1-2): p. 477-482.
46. Smith, F., Industrial applications of X-ray diffraction. 1999: CRC press.
47. Cole, H.J.J.o.A.C., Bragg′s law and energy sensitive detectors. 1970. 3(5): p. 405-406.
48. Conrad, H., Dynamics of colloids in molecular glass forming liquids studied via X-ray photon correlation spectroscopy. 2014, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
49. Wiedemann, H., Synchrotron radiation, in Particle Accelerator Physics. 2003, Springer. p. 647-686.
50. 林宮玄, 淺談同步輻射光源應用. 全華圖書物理專刊, 2015. 10: p. 1-8.
51. Lam, T.-N., et al., Tuning mechanical properties of electrospun piezoelectric nanofibers by heat treatment. 2019. 8: p. 100461.
52. Jiang, Y., et al., Aligned P (VDF-TrFE) nanofibers for enhanced piezoelectric directional strain sensing. 2018. 10(4): p. 364.
53. Rizvi, H.R., et al., Bioinspired cellular sheath-core electrospun non-woven mesh. 2019. 2(2): p. 127-140.
54. NSRRC. 23A1 IASW - Small/Wide Angle X-ray Scattering. NSRRC 2021.
55. Yang, W., et al., On the tear resistance of skin. 2015. 6(1): p. 1-10.
56. Yuan, M., et al., High-Field Dielectric Properties of Oriented Poly (vinylidene fluoride-co-hexafluoropropylene): Structure–Dielectric Property Relationship and Implications for Energy Storage Applications. 2020. 2(3): p. 1356-1368.
57. Chen, R., et al., Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. 2010. 79(2): p. 315-325.
58. Augustine, R., et al., CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. 2019. 14: p. 8573.
59. Defebvin, J., et al., In situ SAXS/WAXS investigation of the structural evolution of poly (vinylidene fluoride) upon uniaxial stretching. 2016. 84: p. 148-157.
60. He, Z., et al., Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. 2021. 13(2): p. 174.
61. Castagnet, S., et al., Cavitation in strained polyvinylidene fluoride: mechanical and X-ray experimental studies. 2000. 41(20): p. 7523-7530.
62. Maier, G.A., et al., Structural changes during plastic deformation at crack tips in PVDF films: a scanning X-ray scattering study. 2005. 38(14): p. 6099-6105.
63. Guo, H., et al., In-situ synchrotron SAXS and WAXS investigations on deformation and α–β transformation of uniaxial stretched poly (vinylidene fluoride). 2013. 15(8): p. 1597-1606.
64. Lu, Y., Y.J.M.M. Men, and Engineering, Cavitation‐Induced Stress Whitening in Semi‐Crystalline Polymers. 2018. 303(11): p. 1800203. |