博碩士論文 102284001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.217.144.32
姓名 盧宗祺(Tsung-Chi Lu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 細胞穿透性p53蛋白促進血癌細胞凋亡但具有血漿不穩定性
(Cell-penetrating p53 protein promotes leukemia cell apoptosis but is unstable in plasma)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在人類的腫瘤細胞,特別是高級別癌症或轉移性腫瘤中,TP53基因的突變或缺陷尤為常見。p53是一個重要的轉錄因子,能調控細胞中許多基因的表現,其中其扮演抑癌基因的角色更是眾所矚目。p53蛋白可藉由參與控制細胞週期及促進細胞凋亡以預防細胞癌化的發生。因此,讓具突變型或缺陷型TP53基因的癌細胞重新獲得並恢復正常的 p53功能成為對抗癌症的一種積極性治療策略。在本研究中,我們開發一種重組的嵌合型p53蛋白,在其N端融合能促進轉錄活性的MyoD轉錄活化域,在其C端則鏈接具有細胞穿透能力的聚精氨酸多肽,並將其命名為M3-p53-R12 蛋白。該嵌合型p53蛋白以大腸桿菌作為表現宿主,並透過固定化金屬離子親和性層析法及透析取得重新折疊的蛋白質。研究證明,嵌合型p53蛋白具有穿過細胞膜並擁有遷移至細胞核的能力。此外該蛋白亦保留著p53蛋白的DNA結合及寡聚化等重要的轉錄因子特性。在細胞試驗中,嵌合型 p53 蛋白能抑制包含HL-60、Jurkat和K-562這三種血癌在內的多種TP53基因突變型腫瘤細胞的生長。在軟瓊脂細胞群落形成能力試驗表明嵌合型p53蛋白不僅能誘導血癌細胞的凋亡,還能抑制血癌細胞的生長。在Annexin V/PI 染色實驗中,更顯示嵌合型p53蛋白能選擇性誘導血癌細胞死亡,且不對間質幹細胞造成影響。這突顯出嵌合型p53蛋白具有選擇性對癌細胞造成傷害的能力。與此同時,我們成功建立了可用於研究嵌合型p53蛋白治療功效的異種血癌移植小鼠模型。然而,在嵌合型p53蛋白的血漿內代謝動力學研究中顯示,該蛋白對血漿中的蛋白酶非常敏感以致於其半衰期極短。這使得若想將嵌合型p53蛋白開發展成靜脈注射藥物,開發具有抗蛋白酶特性的次世代p53蛋白應為當務之急。
摘要(英) TP53 mutants or defectives are commonly occurred in tumor cells, especially metastatic tumors. p53 protein is the most famous transcription factor, which plays a tumor suppressor role in regulating the cell cycle and promoting apoptosis of cancer cells. Therefore, restoring normal p53 activity in TP53-mutant cancer cells may be an aggressive strategy against cancer. In this study, we designed a chimeric p53 protein which N-and C-terminal fused with MyoD transcriptional activation domain and poly-arginine cell-penetrating peptide respectively. The chimeric p53 protein used E. coli as the expression host and was obtained by immobilized metal ion chromatography purification followed by a serial refolding process. The purified chimeric p53 protein gain-of-function of cell-penetration and preserves abilities of DNA binding and oligomerization. In addition, the chimeric p53 protein, named M3-p53-R12 protein, suppressed the growth of human TP53-mutated tumor cell lines, including three hematopoietic malignancy cell lines, HL-60, Jurkat, and K-562. The soft-agar assay demonstrated that the chimeric p53 protein does not only induce apoptosis but also arrests the cell cycle of leukemia cell lines. The Annexin V/PI staining revealed that the chimeric p53 protein induces the death of leukemia cell lines but has no apoptotic effect on mesenchymal stem cells, highlighting its selective impact on normal and tumor cells. A leukemia xenograft murine model has also been successfully developed for investigated the in vivo efficacy of the chimeric p53 protein. However, the metabolism kinetics in plasma showed the rapid biodegradation of the chimeric p53 protein, suggesting prevent hydrolysis from serine protease of chimeric p53 in the future is imperative.
關鍵字(中) ★ p53
★ 血癌細胞
★ 細胞穿透
關鍵字(英) ★ p53
★ leukemia
★ Cell-penetrating
論文目次 中文摘要 I
Abstract II
Declaration III
Acknowledgement IV
Publications arising from this thesis V
Table of Contents VI
List of Figures IX
List of Tables X
Abbreviations XI
Chapter I. General Introduction 1
1.1 General introduction to TP53 gene 1
1.1.1 The brief history of p53 1
1.1.2 The functional domain of p53 2
1.1.3 p53 maintains genomic integrity 3
1.1.4 Mutant TP53 4
1.1.5 p53 and zinc ions 5
1.1.6 Epithelial-mesenchymal transition and p53 6
1.1.7 p53 and hematologic malignancies 6
1.1.8 p53-related gene therapy 7
1.1.8.1 Gendicine 7
1.1.8.2 Oncorine (H101) 9
1.2 General introduction to traditional cancer therapy for hematologic malignancies 10
1.2.1 Radiotherapy 10
1.2.2 Chemotherapy 11
1.2.3 Targeted therapy 11
1.3 General introduction to modern cancer therapy for hematologic malignancies 12
1.3.1 Hematopoietic stem cell transplantation 12
1.3.2 Cellular therapy 12
1.3.3 Cell-based gene therapy 13
1.3.3.1 Zalmoxis 14
1.3.3.2 Kymriah (tisagenlecleucel) 15
1.3.3.3 Yescarta (Axicabtagene Ciloleucel; axi-cel) 17
1.3.3.4 Tecartus (brexucabtagene autoleucel) 18
1.3.3.5 Breyanzi (lisocabtagene maraleucel) 19
1.3.3.6 Abecma (Idecabtagene vicleucel) 19
1.4 Introduction to current in vitro cancer gene therapy products 20
1.4.1 Rexin-G 21
1.4.2 Imlygic (T-VEC) 22
1.4.3 Rigvir (ECHO-7) 24
1.5 Introduction to protein transduction platform 25
1.6 Aim of this thesis 26
Chapter II. Materials and methods 29
Plasmids 29
Cell Lines and cell culture 29
Protein expression and purification 30
Protein oligomerization assay 31
Electrophoretic mobility shift assay (EMSA) 31
M3-p53-R12 transduction ability and translocation analysis 32
MTT assay 32
Annexin V /PI apoptosis detection 33
Soft agar assay 33
Mesenchymal stem cell (MSC) isolation and culture 33
Pick up reporter stable clones from soft agar 34
Busulfex® conditioning in NOD-SCID mice 34
Statistical analysis 34
Chapter III. Results 36
3.1 Small scale expression and solubility test of chimeric p53 proteins 36
3.2 Purification strategy of chimeric proteins in this study 37
3.3 Characterization of the refolded M3-p53-R12 protein 37
3.3.1 No interchain disulfide bond was formed during the M3-p53-R12 protein purification 37
3.3.2 Purified M3-p53-R12 protein has oligomerization potency 38
3.3.3 Purified M3-p53-R12 protein retains its DNA binding ability 38
3.3.4 Purified M3-p53-R12 protein could penetrate through the cell membrane and import to the nucleus 39
3.3.5 Durable stability analysis of purified M3-p53-R12 protein 39
3.4 M3-p53-R12 protein is cytotoxicity to p53 mutant cancer cell line 40
3.5 M3-p53-R12 has cytotoxic effect on leukemia cell lines 41
3.6 M3-p53-R12 has an apoptotic effect on leukemia cell lines 42
3.7 M3-p53-R12 protein suppresses leukemia cell proliferation 42
3.8 M3-p53-R12 protein has no apoptotic effect on normal cells 43
3.9 Jurkat-GFP and K-562-GFP stable cell lines can be used for tracking 43
3.10 In vitro analysis of fluorescence leukemia cell lines for preliminary study 44
3.11 The hematopoietic malignancy xenograft mouse model had developed 45
3.12 M3-p53-R12 protein is highly sensitive to enzymes in the plasma 47
3.13 Proline-endopeptidase and thrombin may be involved in the degradation of M3-p53-R12 protein in plasma 47
Chapter IV. Discussion and Conclusion 49
References 58
Figures 75
Tables 113
Appendices 116
Appendix A. The brief timeline and main findings of the p53 research. 116
Appendix B. Schematic diagram for the location and functional domain of p53. 117
Appendix C. Schematic diagram for the functional domain and PTM sites of the p53 protein 118
Appendix D. Schematic diagram for the p53-MDM2 negative feedback loop 119
Appendix E. TP53 mutations prevalence in sporadic cancers 120
Appendix F. Global cancer statistical analysis in 2020 121
Appendix G. Protein identification report of the N-terminal peptide sequencing of purified protein fragments. 123
參考文獻 Abida, W. M., & Gu, W. (2008). p53-Dependent and p53-independent activation of autophagy by ARF. Cancer research, 68(2), 352-357. doi:10.1158/0008-5472.CAN-07-2069
Abramson, J. S., Palomba, M. L., Gordon, L. I., Lunning, M. A., Wang, M., Arnason, J., . . . Siddiqi, T. (2020). Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet, 396(10254), 839-852. doi:10.1016/s0140-6736(20)31366-0
Agarwal, M. L., Agarwal, A., Taylor, W. R., & Stark, G. R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 92(18), 8493-8497. doi:10.1073/pnas.92.18.8493
Alberts, P., Olmane, E., Brokāne, L., Krastiņa, Z., Romanovska, M., Kupčs, K., . . . Venskus, D. (2016). Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. Apmis, 124(10), 896-904. doi:10.1111/apm.12576
Albrechtsen, N., Dornreiter, I., Grosse, F., Kim, E., Wiesmüller, L., & Deppert, W. (1999). Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene, 18(53), 7706-7717. doi:10.1038/sj.onc.1202952
Andtbacka, R. H., Kaufman, H. L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., . . . Coffin, R. S. (2015). Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol, 33(25), 2780-2788. doi:10.1200/jco.2014.58.3377
Andtbacka, R. H. I., Collichio, F., Harrington, K. J., Middleton, M. R., Downey, G., Ӧhrling, K., & Kaufman, H. L. (2019). Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer, 7(1), 145. doi:10.1186/s40425-019-0623-z
Asghari, H., & Talati, C. (2020). Tumor protein 53 mutations in acute myeloid leukemia: conventional induction chemotherapy or novel therapeutics. Curr Opin Hematol, 27(2), 66-75. doi:10.1097/moh.0000000000000568
Babiker, H. M., Riaz, I. B., Husnain, M., & Borad, M. J. (2017). Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma. Oncolytic virotherapy, 6, 11-18. doi:10.2147/OV.S100072
Backendorf, C., & Noteborn, M. H. (2014). Apoptin towards safe and efficient anticancer therapies. Adv Exp Med Biol, 818, 39-59. doi:10.1007/978-1-4471-6458-6_3
Baker, S. J., Fearon, E. R., Nigro, J. M., Hamilton, S. R., Preisinger, A. C., Jessup, J. M., . . . Vogelstein, B. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 244(4901), 217-221. doi:10.1126/science.2649981
Banerji, U., Affolter, A., Judson, I., Marais, R., & Workman, P. (2008). BRAF and NRAS mutations in melanoma: potential relationships to clinical response to HSP90 inhibitors. Mol Cancer Ther, 7(4), 737-739. doi:10.1158/1535-7163.Mct-08-0145
Basu, S., Gnanapradeepan, K., Barnoud, T., Kung, C. P., Tavecchio, M., Scott, J., . . . Murphy, M. E. (2018). Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α. Genes Dev, 32(3-4), 230-243. doi:10.1101/gad.309062.117
Beljanski, V., & Hiscott, J. (2012). The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol, 2(5), 629-635. doi:10.1016/j.coviro.2012.07.006
Bell, S., Hansen, S., & Buchner, J. (2002). Refolding and structural characterization of the human p53 tumor suppressor protein. Biophys Chem, 96(2-3), 243-257. doi:10.1016/s0301-4622(02)00011-x
Belting, M. (2003). Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci, 28(3), 145-151. doi:10.1016/s0968-0004(03)00031-8
Biaoxue, R., Hui, P., Wenlong, G., & Shuanying, Y. (2016). Evaluation of efficacy and safety for recombinant human adenovirus-p53 in the control of the malignant pleural effusions via thoracic perfusion. Sci Rep, 6, 39355. doi:10.1038/srep39355
Bilsland, A. E., Spiliopoulou, P., & Evans, T. R. (2016). Virotherapy: cancer gene therapy at last? F1000Res, 5. doi:10.12688/f1000research.8211.1
Bischoff, J. R., Kirn, D. H., Williams, A., Heise, C., Horn, S., Muna, M., . . . McCormick, F. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 274(5286), 373-376. doi:10.1126/science.274.5286.373
Blazar, B. R., Hill, G. R., & Murphy, W. J. (2020). Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol, 17(8), 475-492. doi:10.1038/s41571-020-0356-4
Boehme, K. A., & Blattner, C. (2009). Regulation of p53--insights into a complex process. Crit Rev Biochem Mol Biol, 44(6), 367-392. doi:10.3109/10409230903401507
Bommareddy, P. K., Patel, A., Hossain, S., & Kaufman, H. L. (2017). Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am J Clin Dermatol, 18(1), 1-15. doi:10.1007/s40257-016-0238-9
Bonini, C., Peccatori, J., Stanghellini, M. T., Vago, L., Bondanza, A., Cieri, N., . . . Ciceri, F. (2015). Haploidentical HSCT: a 15-year experience at San Raffaele. Bone Marrow Transplant, 50 Suppl 2, S67-71. doi:10.1038/bmt.2015.99
Bonyhadi, M., Frohlich, M., Rasmussen, A., Ferrand, C., Grosmaire, L., Robinet, E., . . . Berenson, R. J. (2005). In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J Immunol, 174(4), 2366-2375. doi:10.4049/jimmunol.174.4.2366
Brady, C. A., Jiang, D., Mello, S. S., Johnson, T. M., Jarvis, L. A., Kozak, M. M., . . . Attardi, L. D. (2011). Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell, 145(4), 571-583. doi:10.1016/j.cell.2011.03.035
Bressy, C., Hastie, E., & Grdzelishvili, V. Z. (2017). Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy. Mol Ther Oncolytics, 5, 20-40. doi:10.1016/j.omto.2017.03.002
Cao, Z., Livas, T., & Kyprianou, N. (2016). Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit Rev Oncog, 21(3-4), 155-168. doi:10.1615/CritRevOncog.2016016955
Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., . . . Hung, M. C. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol, 13(3), 317-323. doi:10.1038/ncb2173
Chawla, S. P., Bruckner, H., Morse, M. A., Assudani, N., Hall, F. L., & Gordon, E. M. (2018). A Phase I-II Study Using Rexin-G Tumor-Targeted Retrovector Encoding a Dominant-Negative Cyclin G1 Inhibitor for Advanced Pancreatic Cancer. Molecular therapy oncolytics, 12, 56-67. doi:10.1016/j.omto.2018.12.005
Chen, S., Chen, J., Xi, W., Xu, W., & Yin, G. (2014). Clinical therapeutic effect and biological monitoring of p53 gene in advanced hepatocellular carcinoma. Am J Clin Oncol, 37(1), 24-29. doi:10.1097/COC.0b013e3181fe4688
Cheng, L., Yang, L., Meng, F., & Zhong, Z. (2018). Protein Nanotherapeutics as an Emerging Modality for Cancer Therapy. Adv Healthc Mater, 7(20), e1800685. doi:10.1002/adhm.201800685
Chesney, J., Puzanov, I., Collichio, F., Singh, P., Milhem, M. M., Glaspy, J., . . . Kaufman, H. L. (2018). Randomized, Open-Label Phase II Study Evaluating the Efficacy and Safety of Talimogene Laherparepvec in Combination With Ipilimumab Versus Ipilimumab Alone in Patients With Advanced, Unresectable Melanoma. J Clin Oncol, 36(17), 1658-1667. doi:10.1200/jco.2017.73.7379
Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265(5170), 346-355. doi:10.1126/science.8023157
Chow, V. A., Shadman, M., & Gopal, A. K. (2018). Translating anti-CD19 CAR T-cell therapy into clinical practice for relapsed/refractory diffuse large B-cell lymphoma. Blood, 132(8), 777-781. doi:10.1182/blood-2018-04-839217
Christianson, H. C., & Belting, M. (2014). Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol, 35, 51-55. doi:10.1016/j.matbio.2013.10.004
Ciceri, F., Bonini, C., Stanghellini, M. T., Bondanza, A., Traversari, C., Salomoni, M., . . . Bordignon, C. (2009). Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol, 10(5), 489-500. doi:10.1016/s1470-2045(09)70074-9
Conry, R. M., Westbrook, B., McKee, S., & Norwood, T. G. (2018). Talimogene laherparepvec: First in class oncolytic virotherapy. Human vaccines & immunotherapeutics, 14(4), 839-846. doi:10.1080/21645515.2017.1412896
DeLeo, A. B., Jay, G., Appella, E., Dubois, G. C., Law, L. W., & Old, L. J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A, 76(5), 2420-2424. doi:10.1073/pnas.76.5.2420
Delphin, C., Cahen, P., Lawrence, J. J., & Baudier, J. (1994). Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding. Eur J Biochem, 223(2), 683-692. doi:10.1111/j.1432-1033.1994.tb19041.x
Dippold, W. G., Jay, G., DeLeo, A. B., Khoury, G., & Old, L. J. (1981). p53 transformation-related protein: detection by monoclonal antibody in mouse and human cells. Proc Natl Acad Sci U S A, 78(3), 1695-1699. doi:10.1073/pnas.78.3.1695
Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), 215-221. doi:10.1038/356215a0
Doniņa, S., Strēle, I., Proboka, G., Auziņš, J., Alberts, P., Jonsson, B., . . . Muceniece, A. (2015). Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res, 25(5), 421-426. doi:10.1097/cmr.0000000000000180
Duan, J., & Nilsson, L. (2006). Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry, 45(24), 7483-7492. doi:10.1021/bi0603165
Eliyahu, D., Michalovitz, D., Eliyahu, S., Pinhasi-Kimhi, O., & Oren, M. (1989). Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A, 86(22), 8763-8767.
Emami Riedmaier, A., Fisel, P., Nies, A. T., Schaeffeler, E., & Schwab, M. (2013). Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci, 34(2), 126-135. doi:10.1016/j.tips.2012.11.005
Endo, Y., Sakai, R., Ouchi, M., Onimatsu, H., Hioki, M., Kagawa, S., . . . Fujiwara, T. (2008). Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene, 27(17), 2375-2381. doi:10.1038/sj.onc.1210884
Fahrer, J., Schweitzer, B., Fiedler, K., Langer, T., Gierschik, P., & Barth, H. (2013). C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells. Bioconjug Chem, 24(4), 595-603. doi:10.1021/bc300563c
Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol, 9, 1300. doi:10.3389/fphar.2018.01300
Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R., & Prives, C. (1992). Wild-type p53 activates transcription in vitro. Nature, 358(6381), 83-86. doi:10.1038/358083a0
Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759-767. doi:10.1016/0092-8674(90)90186-i
Finlay, C. A., Hinds, P. W., & Levine, A. J. (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57(7), 1083-1093. doi:10.1016/0092-8674(89)90045-7
Finlay, C. A., Hinds, P. W., & Levine, A. J. (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57(7), 1083-1093. doi:10.1016/0092-8674(89)90045-7
Fischer, N. W., Prodeus, A., Malkin, D., & Gariépy, J. (2016). p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle, 15(23), 3210-3219. doi:10.1080/15384101.2016.1241917
Friedman, K. M., Garrett, T. E., Evans, J. W., Horton, H. M., Latimer, H. J., Seidel, S. L., . . . Morgan, R. A. (2018). Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells. Hum Gene Ther, 29(5), 585-601. doi:10.1089/hum.2018.001
Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol, 124(4), 619-626. doi:10.1083/jcb.124.4.619
Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X., & Ronai, Z. (1998). Mdm2 association with p53 targets its ubiquitination. Oncogene, 17(19), 2543-2547. doi:10.1038/sj.onc.1202200
Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E., & Shay, J. W. (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol, 12(6), 2866-2871. doi:10.1128/mcb.12.6.2866
Galanis, E., Carlson, S. K., Foster, N. R., Lowe, V., Quevedo, F., McWilliams, R. R., . . . Rubin, J. (2008). Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol Ther, 16(5), 979-984. doi:10.1038/mt.2008.29
Gambacorta, V., Gnani, D., Vago, L., & Di Micco, R. (2019). Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Frontiers in cell and developmental biology, 7, 207-207. doi:10.3389/fcell.2019.00207
Gencel-Augusto, J., & Lozano, G. (2020). p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev, 34(17-18), 1128-1146. doi:10.1101/gad.340976.120
Giaccia, A. J., & Kastan, M. B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 12(19), 2973-2983. doi:10.1101/gad.12.19.2973
Giebel, S., Boumendil, A., Labopin, M., Seesaghur, A., Baron, F., Ciceri, F., . . . Nagler, A. (2019). Trends in the use of hematopoietic stem cell transplantation for adults with acute lymphoblastic leukemia in Europe: a report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Ann Hematol, 98(10), 2389-2398. doi:10.1007/s00277-019-03771-2
Giono, L. E., & Manfredi, J. J. (2006). The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol, 209(1), 13-20. doi:10.1002/jcp.20689
Goldmann, C., Petry, H., Frye, S., Ast, O., Ebitsch, S., Jentsch, K. D., . . . Lüke, W. (1999). Molecular cloning and expression of major structural protein VP1 of the human polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies. Journal of virology, 73(5), 4465-4469. doi:10.1128/JVI.73.5.4465-4469.1999
Goldsmith, K., Chen, W., Johnson, D. C., & Hendricks, R. L. (1998). Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. The Journal of experimental medicine, 187(3), 341-348. doi:10.1084/jem.187.3.341
Gordon, E. M., & Hall, F. L. (2009). The ′timely′ development of Rexin-G: first targeted injectable gene vector (review). Int J Oncol, 35(2), 229-238.
Gordon, E. M., & Hall, F. L. (2010). Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther, 10(5), 819-832. doi:10.1517/14712598.2010.481666
Gordon, E. M., Ravicz, J. R., Liu, S., Chawla, S. P., & Hall, F. L. (2018). Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad-spectrum cancer gene therapy - A review of molecular mechanisms for oncologists. Molecular and clinical oncology, 9(2), 115-134. doi:10.3892/mco.2018.1657
Greenblatt, M. S., Bennett, W. P., Hollstein, M., & Harris, C. C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res, 54(18), 4855-4878.
Greig, S. L. (2016). Talimogene Laherparepvec: First Global Approval. Drugs, 76(1), 147-154. doi:10.1007/s40265-015-0522-7
Guan, Y. S., Liu, Y., He, Q., Li, X., Yang, L., Hu, Y., & La, Z. (2011). p53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: one-year follow-up. World J Gastroenterol, 17(16), 2143-2149. doi:10.3748/wjg.v17.i16.2143
Haferlach, C., Dicker, F., Herholz, H., Schnittger, S., Kern, W., & Haferlach, T. (2008). Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia, 22(8), 1539-1541. doi:10.1038/leu.2008.143
Hall, F. L., Liu, L., Zhu, N. L., Stapfer, M., Anderson, W. F., Beart, R. W., & Gordon, E. M. (2000). Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum Gene Ther, 11(7), 983-993. doi:10.1089/10430340050015293
Han, D., Xu, Z., Zhuang, Y., Ye, Z., & Qian, Q. (2021). Current Progress in CAR-T Cell Therapy for Hematological Malignancies. J Cancer, 12(2), 326-334. doi:10.7150/jca.48976
Hayakawa, J., Hsieh, M. M., Uchida, N., Phang, O., & Tisdale, J. F. (2009). Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem cells (Dayton, Ohio), 27(1), 175-182. doi:10.1634/stemcells.2008-0583
Hidalgo, P., Ip, W. H., Dobner, T., & Gonzalez, R. A. (2019). The biology of the adenovirus E1B 55K protein. FEBS Lett, 593(24), 3504-3517. doi:10.1002/1873-3468.13694
Hirai, H., Tani, T., Katoku-Kikyo, N., Kellner, S., Karian, P., Firpo, M., & Kikyo, N. (2011). Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells, 29(9), 1349-1361. doi:10.1002/stem.684
Hitzler, J., & Estey, E. (2019). Gemtuzumab ozogamicin in acute myeloid leukemia: act 2, with perhaps more to come. Haematologica, 104(1), 7-9. doi:10.3324/haematol.2018.205948
Hodgson, J. (2021). Refreshing the biologic pipeline 2020. Nature biotechnology, 39(2), 135-143. doi:10.1038/s41587-021-00814-w
Hu, Q., Chen, R., Teesalu, T., Ruoslahti, E., & Clegg, D. O. (2014). Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Transl Med, 3(12), 1526-1534. doi:10.5966/sctm.2014-0038
Huang, C. H., Chen, P. M., Lu, T. C., Kung, W. M., Chiou, T. J., Yang, M. H., . . . Wu, K. J. (2010). Purified recombinant TAT-homeobox B4 expands CD34(+) umbilical cord blood and peripheral blood progenitor cells ex vivo. Tissue Eng Part C Methods, 16(3), 487-496. doi:10.1089/ten.TEC.2009.0163
Hunter, A. M., & Sallman, D. A. (2019). Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol, 32(2), 134-144. doi:10.1016/j.beha.2019.05.004
Imamura, J., Miyoshi, I., & Koeffler, H. P. (1994). p53 in hematologic malignancies. Blood, 84(8), 2412-2421.
Inoue, A., Narumi, K., Matsubara, N., Sugawara, S., Saijo, Y., Satoh, K., & Nukiwa, T. (2000). Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett, 157(1), 105-112. doi:10.1016/s0304-3835(00)00480-8
Inoue, M., Tomizawa, K., Matsushita, M., Lu, Y. F., Yokoyama, T., Yanai, H., . . . Matsui, H. (2006). p53 protein transduction therapy: successful targeting and inhibition of the growth of the bladder cancer cells. Eur Urol, 49(1), 161-168. doi:10.1016/j.eururo.2005.08.019
Jackson, D. A., Symons, R. H., & Berg, P. (1972). Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A, 69(10), 2904-2909. doi:10.1073/pnas.69.10.2904
Jaunalksne, I., Brokāne, L., Petroška, D., Rasa, A., & Alberts, P. (2020). ECHO-7 oncolytic virus Rigvir® in an adjuvant setting for stage I uveal melanoma; A retrospective case report. Am J Ophthalmol Case Rep, 17, 100615. doi:10.1016/j.ajoc.2020.100615
Jiang, L., Liu, R., Wang, Y., Li, C., Xi, Q., Zhong, J., . . . Fang, Z. (2015). The role of Cyclin G1 in cellular proliferation and apoptosis of human epithelial ovarian cancer. J Mol Histol, 46(3), 291-302. doi:10.1007/s10735-015-9622-7
Kabouridis, P. S. (2003). Biological applications of protein transduction technology. Trends in biotechnology, 21(11), 498-503. doi:10.1016/j.tibtech.2003.09.008
Kalos, M., Levine, B. L., Porter, D. L., Katz, S., Grupp, S. A., Bagg, A., & June, C. H. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med, 3(95), 95ra73. doi:10.1126/scitranslmed.3002842
Kane, J. F. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 6(5), 494-500. doi:10.1016/0958-1669(95)80082-4
Kataoka, Y., Iwasaki, T., Kuroiwa, T., Seto, Y., Iwata, N., Hashimoto, N., . . . Kakishita, E. (2001). The role of donor T cells for target organ injuries in acute and chronic graft-versus-host disease. Immunology, 103(3), 310-318. doi:10.1046/j.1365-2567.2001.01240.x
Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., . . . Izpisúa Belmonte, J. C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140-1144. doi:10.1038/nature08311
Kennedy, J. A., & Barabé, F. (2008). Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia. Leukemia, 22(11), 2029-2040. doi:10.1038/leu.2008.206
Kim, S., Federman, N., Gordon, E. M., Hall, F. L., & Chawla, S. P. (2017). Rexin-G(®), a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: A case report. Molecular and clinical oncology, 6(6), 861-865. doi:10.3892/mco.2017.1231
Kleeff, J., Ishiwata, T., Kumbasar, A., Friess, H., Buchler, M. W., Lander, A. D., & Korc, M. (1998). The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest, 102(9), 1662-1673. doi:10.1172/jci4105
Lafevre-Bernt, M., Wu, S., & Lin, X. (2008). Recombinant, refolded tetrameric p53 and gonadotropin-releasing hormone-p53 slow proliferation and induce apoptosis in p53-deficient cancer cells. Mol Cancer Ther, 7(6), 1420-1429. doi:10.1158/1535-7163.Mct-08-0078
Lakin, N. D., & Jackson, S. P. (1999). Regulation of p53 in response to DNA damage. Oncogene, 18(53), 7644-7655. doi:10.1038/sj.onc.1203015
Lamb, M. G., Rangarajan, H. G., Tullius, B. P., & Lee, D. A. (2021). Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther, 12(1), 211. doi:10.1186/s13287-021-02277-x
Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., . . . Weirauch, M. T. (2018). The Human Transcription Factors. Cell, 172(4), 650-665. doi:10.1016/j.cell.2018.01.029
Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature, 358(6381), 15-16. doi:10.1038/358015a0
Lane, D. P., Cheok, C. F., & Lain, S. (2010). p53-based cancer therapy. Cold Spring Harb Perspect Biol, 2(9), a001222. doi:10.1101/cshperspect.a001222
Lane, D. P., & Crawford, L. V. (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature, 278(5701), 261-263. doi:10.1038/278261a0
Laptenko, O., Shiff, I., Freed-Pastor, W., Zupnick, A., Mattia, M., Freulich, E., . . . Prives, C. (2015). The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Molecular cell, 57(6), 1034-1046. doi:10.1016/j.molcel.2015.02.015
Lee, D. W., Gardner, R., Porter, D. L., Louis, C. U., Ahmed, N., Jensen, M., . . . Mackall, C. L. (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 124(2), 188-195. doi:10.1182/blood-2014-05-552729
Leone, A., Di Gennaro, E., Bruzzese, F., Avallone, A., & Budillon, A. (2014). New perspective for an old antidiabetic drug: metformin as anticancer agent. Cancer Treat Res, 159, 355-376. doi:10.1007/978-3-642-38007-5_21
Levine, A. J., & Oren, M. (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9(10), 749-758. doi:10.1038/nrc2723
Li, J. L., Cai, Y., Zhang, S. W., Xiao, S. W., Li, X. F., Duan, Y. J., . . . Yan, K. (2011). Combination of Recombinant Adenovirus-p53 with Radiochemotherapy in Unresectable Pancreatic Carcinoma. Chin J Cancer Res, 23(3), 194-200. doi:10.1007/s11670-011-0194-0
Li, L., Spendlove, I., Morgan, J., & Durrant, L. G. (2001). CD55 is over-expressed in the tumour environment. British journal of cancer, 84(1), 80-86. doi:10.1054/bjoc.2000.1570
Li, P., Zhao, M., Parris, A. B., Feng, X., & Yang, X. (2015). p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. Biochem Biophys Res Commun, 464(4), 1267-1274. doi:10.1016/j.bbrc.2015.07.117
Li, Y., Huo, Y., Yu, L., & Wang, J. (2019). Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues. Engineering, 5(1), 122-131. doi:https://doi.org/10.1016/j.eng.2018.12.003
Li, Y., Li, B., Li, C. J., & Li, L. J. (2015). Key points of basic theories and clinical practice in rAd-p53 ( Gendicine ™) gene therapy for solid malignant tumors. Expert Opin Biol Ther, 15(3), 437-454. doi:10.1517/14712598.2015.990882
Li, Y., Li, L. J., Wang, L. J., Zhang, Z., Gao, N., Liang, C. Y., . . . Han, B. (2014). Selective intra-arterial infusion of rAd-p53 with chemotherapy for advanced oral cancer: a randomized clinical trial. BMC Med, 12, 16. doi:10.1186/1741-7015-12-16
Liang, M. (2018). Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets, 18(2), 171-176. doi:10.2174/1568009618666171129221503
Linzer, D. I., & Levine, A. J. (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 17(1), 43-52. doi:10.1016/0092-8674(79)90293-9
Liu, B. L., Robinson, M., Han, Z. Q., Branston, R. H., English, C., Reay, P., . . . Coffin, R. S. (2003). ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther, 10(4), 292-303. doi:10.1038/sj.gt.3301885
Liu, J., Pandya, P., & Afshar, S. (2021). Therapeutic Advances in Oncology. International journal of molecular sciences, 22(4), 2008. doi:10.3390/ijms22042008
Liu, J., Zhang, C., Hu, W., & Feng, Z. (2015). Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett, 356(2 Pt A), 197-203. doi:10.1016/j.canlet.2013.12.025
Liu, Y., Elf, S. E., Miyata, Y., Sashida, G., Liu, Y., Huang, G., . . . Nimer, S. D. (2009). p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell, 4(1), 37-48. doi:10.1016/j.stem.2008.11.006
Locke, F. L., Ghobadi, A., Jacobson, C. A., Miklos, D. B., Lekakis, L. J., Oluwole, O. O., . . . Neelapu, S. S. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol, 20(1), 31-42. doi:10.1016/s1470-2045(18)30864-7
Locke, F. L., Neelapu, S. S., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., . . . Go, W. Y. (2017). Clinical and biologic covariates of outcomes in ZUMA-1: A pivotal trial of axicabtagene ciloleucel (axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (r-NHL). Journal of Clinical Oncology, 35(15_suppl), 7512-7512. doi:10.1200/JCO.2017.35.15_suppl.7512
Méplan, C., Richard, M. J., & Hainaut, P. (2000). Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene, 19(46), 5227-5236. doi:10.1038/sj.onc.1203907
Ma, W. S., Ma, J. G., & Xing, L. N. (2017). Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anticancer Drugs, 28(2), 230-236. doi:10.1097/CAD.0000000000000448
Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. Cell Death Differ, 26(2), 199-212. doi:10.1038/s41418-018-0246-9
Marión, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., . . . Blasco, M. A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149-1153. doi:10.1038/nature08287
Matlashewski, G., Lamb, P., Pim, D., Peacock, J., Crawford, L., & Benchimol, S. (1984). Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. Embo j, 3(13), 3257-3262.
Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., . . . Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 371(16), 1507-1517. doi:10.1056/NEJMoa1407222
McBride, O. W., Merry, D., & Givol, D. (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A, 83(1), 130-134. doi:10.1073/pnas.83.1.130
Menendez, S., Camus, S., & Izpisua Belmonte, J. C. (2010). p53: guardian of reprogramming. Cell Cycle, 9(19), 3887-3891. doi:10.4161/cc.9.19.13301
Mercer, W. E., Shields, M. T., Amin, M., Sauve, G. J., Appella, E., Romano, J. W., & Ullrich, S. J. (1990). Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci U S A, 87(16), 6166-6170. doi:10.1073/pnas.87.16.6166
Michalovitz, D., Halevy, O., & Oren, M. (1990). Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell, 62(4), 671-680. doi:10.1016/0092-8674(90)90113-s
Munshi, N. C., Anderson, L. D., Jr., Shah, N., Madduri, D., Berdeja, J., Lonial, S., . . . San-Miguel, J. (2021). Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med, 384(8), 705-716. doi:10.1056/NEJMoa2024850
Nair, M. S., Lee, M. M., Bonnegarde-Bernard, A., Wallace, J. A., Dean, D. H., Ostrowski, M. C., . . . Chan, M. K. (2015). Cry protein crystals: a novel platform for protein delivery. PLoS One, 10(6), e0127669. doi:10.1371/journal.pone.0127669
Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L., Miklos, D., Jacobson, C. A., . . . Go, W. Y. (2016). Kte-C19 (anti-CD19 CAR T Cells) Induces Complete Remissions in Patients with Refractory Diffuse Large B-Cell Lymphoma (DLBCL): Results from the Pivotal Phase 2 Zuma-1. Blood, 128(22), LBA-6-LBA-6. doi:10.1182/blood.V128.22.LBA-6.LBA-6
Nguyen, K., Devidas, M., Cheng, S. C., La, M., Raetz, E. A., Carroll, W. L., . . . Children′s Oncology, G. (2008). Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children′s Oncology Group study. Leukemia, 22(12), 2142-2150. doi:10.1038/leu.2008.251
Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol, 2(1), a001008. doi:10.1101/cshperspect.a001008
Pan, J. J., Zhang, S. W., Chen, C. B., Xiao, S. W., Sun, Y., Liu, C. Q., . . . Lu, Y. Y. (2009). Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol, 27(5), 799-804. doi:10.1200/JCO.2008.18.9670
Pant, V., Quintás-Cardama, A., & Lozano, G. (2012). The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. Blood, 120(26), 5118-5127. doi:10.1182/blood-2012-05-356014
Paszkiewicz, P. J., Fräßle, S. P., Srivastava, S., Sommermeyer, D., Hudecek, M., Drexler, I., . . . Busch, D. H. (2016). Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest, 126(11), 4262-4272. doi:10.1172/jci84813
Peng, Z. (2005). Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther, 16(9), 1016-1027. doi:10.1089/hum.2005.16.1016
Peroja, P., Pedersen, M., Mantere, T., Nørgaard, P., Peltonen, J., Haapasaari, K. M., . . . Kuittinen, O. (2018). Mutation of TP53, translocation analysis and immunohistochemical expression of MYC, BCL-2 and BCL-6 in patients with DLBCL treated with R-CHOP. Sci Rep, 8(1), 14814. doi:10.1038/s41598-018-33230-3
Piwoni, K., Jaeckel, G., Rasa, A., & Alberts, P. (2021). 4-Week repeated dose rat GLP toxicity study of oncolytic ECHO-7 virus Rigvir administered intramuscularly with a 4-week recovery period. Toxicol Rep, 8, 230-238. doi:10.1016/j.toxrep.2021.01.009
Powell, E., Piwnica-Worms, D., & Piwnica-Worms, H. (2014). Contribution of p53 to metastasis. Cancer Discov, 4(4), 405-414. doi:10.1158/2159-8290.Cd-13-0136
Proboka, G., Tilgase, A., Isajevs, S., Zablocka, T., Olmane, E., Rasa, A., & Alberts, P. (2020). Adrenal Gland and Gastric Malignant Melanoma without Evidence of Skin Lesion Treated with the Oncolytic Virus Rigvir. Case Rep Oncol, 13(1), 424-430. doi:10.1159/000506978
Puca, R., Nardinocchi, L., Porru, M., Simon, A. J., Rechavi, G., Leonetti, C., . . . D′Orazi, G. (2011). Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle, 10(10), 1679-1689. doi:10.4161/cc.10.10.15642
Quist, S. R., Wang-Gohrke, S., Köhler, T., Kreienberg, R., & Runnebaum, I. B. (2004). Cooperative effect of adenoviral p53 gene therapy and standard chemotherapy in ovarian cancer cells independent of the endogenous p53 status. Cancer Gene Ther, 11(8), 547-554. doi:10.1038/sj.cgt.7700727
Raaijmakers, M. I. G., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., . . . Levesque, M. P. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163-77174. doi:10.18632/oncotarget.12848
Rafei, H., Kantarjian, H. M., & Jabbour, E. J. (2020). Targeted therapy paves the way for the cure of acute lymphoblastic leukaemia. Br J Haematol, 188(2), 207-223. doi:10.1111/bjh.16207
Raja, J., Ludwig, J. M., Gettinger, S. N., Schalper, K. A., & Kim, H. S. (2018). Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer, 6(1), 140. doi:10.1186/s40425-018-0458-z
Raje, N., Berdeja, J., Lin, Y., Siegel, D., Jagannath, S., Madduri, D., . . . Kochenderfer, J. N. (2019). Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med, 380(18), 1726-1737. doi:10.1056/NEJMoa1817226
Raman, S. S., Hecht, J. R., & Chan, E. (2019). Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy, 11(8), 705-723. doi:10.2217/imt-2019-0033
Ramezankhani, R., Torabi, S., Minaei, N., Madani, H., Rezaeiani, S., Hassani, S. N., . . . Hajizadeh-Saffar, E. (2020). Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies. Frontiers in cell and developmental biology, 8, 547653-547653. doi:10.3389/fcell.2020.547653
Rehman, H., Silk, A. W., Kane, M. P., & Kaufman, H. L. (2016). Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer, 4, 53. doi:10.1186/s40425-016-0158-5
Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & cancer, 2(4), 466-474. doi:10.1177/1947601911408889
Roberts, Z. J., Better, M., Bot, A., Roberts, M. R., & Ribas, A. (2018). Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma, 59(8), 1785-1796. doi:10.1080/10428194.2017.1387905
Russell, L., & Peng, K. W. (2018). The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol, 7(2), 16. doi:10.21037/cco.2018.04.04
Sakamoto, K., Morishita, T., Aburai, K., Ito, D., Imura, T., Sakai, K., . . . Sakai, H. (2021). Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature. Sci Rep, 11(1), 31. doi:10.1038/s41598-020-79518-1
Saland, E., Boutzen, H., Castellano, R., Pouyet, L., Griessinger, E., Larrue, C., . . . Sarry, J. E. (2015). A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J, 5(3), e297. doi:10.1038/bcj.2015.19
Scherz-Shouval, R., Weidberg, H., Gonen, C., Wilder, S., Elazar, Z., & Oren, M. (2010). p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A, 107(43), 18511-18516. doi:10.1073/pnas.1006124107
Scheuermann, R. H., & Racila, E. (1995). CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma, 18(5-6), 385-397. doi:10.3109/10428199509059636
Senapati, D., Patra, B. C., Kar, A., Chini, D. S., Ghosh, S., Patra, S., & Bhattacharya, M. (2019). Promising approaches of small interfering RNAs (siRNAs) mediated cancer gene therapy. Gene, 719, 144071. doi:10.1016/j.gene.2019.144071
Shah, N., Chari, A., Scott, E., Mezzi, K., & Usmani, S. Z. (2020). B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia, 34(4), 985-1005. doi:10.1038/s41375-020-0734-z
Shahryari, A., Saghaeian Jazi, M., Mohammadi, S., Razavi Nikoo, H., Nazari, Z., Hosseini, E. S., . . . Lickert, H. (2019). Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in genetics, 10, 868-868. doi:10.3389/fgene.2019.00868
Shi, W. Y., Xiao, D., Wang, L., Dong, L. H., Yan, Z. X., Shen, Z. X., . . . Zhao, W. L. (2012). Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis, 3(3), e275. doi:10.1038/cddis.2012.13
Skehel, J. J., Cross, K., Steinhauer, D., & Wiley, D. C. (2001). Influenza fusion peptides. Biochem Soc Trans, 29(Pt 4), 623-626. doi:10.1042/bst0290623
Sommermeyer, D., Hudecek, M., Kosasih, P. L., Gogishvili, T., Maloney, D. G., Turtle, C. J., & Riddell, S. R. (2016). Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia, 30(2), 492-500. doi:10.1038/leu.2015.247
Styczyński, J., Tridello, G., Koster, L., Iacobelli, S., van Biezen, A., van der Werf, S., . . . Gratwohl, A. (2020). Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant, 55(1), 126-136. doi:10.1038/s41409-019-0624-z
Su, X., Chen, W. J., Xiao, S. W., Li, X. F., Xu, G., Pan, J. J., & Zhang, S. W. (2016). Effect and Safety of Recombinant Adenovirus-p53 Transfer Combined with Radiotherapy on Long-Term Survival of Locally Advanced Cervical Cancer. Hum Gene Ther, 27(12), 1008-1014. doi:10.1089/hum.2016.043
Suck, G., Linn, Y. C., & Tonn, T. (2016). Natural Killer Cells for Therapy of Leukemia. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie, 43(2), 89-95. doi:10.1159/000445325
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209-249. doi:10.3322/caac.21660
Szabo, E., Rampalli, S., Risueno, R. M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., . . . Bhatia, M. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468(7323), 521-526. doi:10.1038/nature09591
Tan, B. S., Tiong, K. H., Choo, H. L., Chung, F. F., Hii, L. W., Tan, S. H., . . . Leong, C. O. (2015). Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis, 6(7), e1826. doi:10.1038/cddis.2015.191
Tang, Q., Su, Z., Gu, W., & Rustgi, A. K. (2020). Mutant p53 on the Path to Metastasis. Trends Cancer, 6(1), 62-73. doi:10.1016/j.trecan.2019.11.004
Taylor, W. R., & Stark, G. R. (2001). Regulation of the G2/M transition by p53. Oncogene, 20(15), 1803-1815. doi:10.1038/sj.onc.1204252
Teoh, J., Johnstone, T. G., Christin, B., Yost, R., Haig, N. A., Mallaney, M., . . . Larson, R. P. (2019). Lisocabtagene Maraleucel (liso-cel) Manufacturing Process Control and Robustness across CD19+ Hematological Malignancies. Blood, 134(Supplement_1), 593-593. doi:10.1182/blood-2019-127150
Terzi, M. Y., Izmirli, M., & Gogebakan, B. (2016). The cell fate: senescence or quiescence. Mol Biol Rep, 43(11), 1213-1220. doi:10.1007/s11033-016-4065-0
Tilgase, A., Grīne, L., Blāķe, I., Borodušķis, M., Rasa, A., & Alberts, P. (2020). Effect of oncolytic ECHO-7 virus strain Rigvir on uveal melanoma cell lines. BMC Res Notes, 13(1), 222. doi:10.1186/s13104-020-05068-4
Tilgase, A., Patetko, L., Blāķe, I., Ramata-Stunda, A., Borodušķis, M., & Alberts, P. (2018). Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro. J Cancer, 9(6), 1033-1049. doi:10.7150/jca.23242
Tudzarova, S., Mulholland, P., Dey, A., Stoeber, K., Okorokov, A. L., & Williams, G. H. (2016). p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress. Cell cycle (Georgetown, Tex.), 15(21), 2958-2972. doi:10.1080/15384101.2016.1231281
Tyagarajan, S., Spencer, T., & Smith, J. (2020). Optimizing CAR-T Cell Manufacturing Processes during Pivotal Clinical Trials. Mol Ther Methods Clin Dev, 16, 136-144. doi:10.1016/j.omtm.2019.11.018
Ulasov, A. V., Rosenkranz, A. A., & Sobolev, A. S. (2018). Transcription factors: Time to deliver. J Control Release, 269, 24-35. doi:10.1016/j.jconrel.2017.11.004
Vairy, S., Garcia, J. L., Teira, P., & Bittencourt, H. (2018). CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des Devel Ther, 12, 3885-3898. doi:10.2147/dddt.S138765
van der Stegen, S. J. C., Hamieh, M., & Sadelain, M. (2015). The pharmacology of second-generation chimeric antigen receptors. Nature reviews. Drug discovery, 14(7), 499-509. doi:10.1038/nrd4597
Vitale, M., Di Matola, T., Bifulco, M., Casamassima, A., Fenzi, G., & Rossi, G. (1999). Apoptosis induced by denied adhesion to extracellular matrix (anoikis) in thyroid epithelial cells is p53 dependent but fails to correlate with modulation of p53 expression. FEBS Lett, 462(1-2), 57-60. doi:10.1016/s0014-5793(99)01512-4
Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307-310. doi:10.1038/35042675
Vongchan, P., & Linhardt, R. J. (2007). Expression of human liver HSPGs on acute myeloid leukemia. Clin Immunol, 122(2), 194-206. doi:10.1016/j.clim.2006.08.017
Vousden, K. H., & Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell, 137(3), 413-431. doi:10.1016/j.cell.2009.04.037
Wadia, J. S., & Dowdy, S. F. (2002). Protein transduction technology. Curr Opin Biotechnol, 13(1), 52-56. doi:10.1016/s0958-1669(02)00284-7
Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 10(3), 310-315. doi:10.1038/nm996
Walasek, A. (2019). The new perspectives of targeted therapy in acute myeloid leukemia. Adv Clin Exp Med, 28(2), 271-276. doi:10.17219/acem/81610
Walker, K. K., & Levine, A. J. (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A, 93(26), 15335-15340. doi:10.1073/pnas.93.26.15335
Wang, M., Munoz, J., Goy, A., Locke, F. L., Jacobson, C. A., Hill, B. T., . . . Reagan, P. M. (2020). KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med, 382(14), 1331-1342. doi:10.1056/NEJMoa1914347
Willis, A., Jung, E. J., Wakefield, T., & Chen, X. (2004). Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene, 23(13), 2330-2338. doi:10.1038/sj.onc.1207396
Xia, Z. J., Chang, J. H., Zhang, L., Jiang, W. Q., Guan, Z. Z., Liu, J. W., . . . Zheng, X. (2004). [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Ai Zheng, 23(12), 1666-1670.
Xiao, J., Zhou, J., Fu, M., Liang, L., Deng, Q., Liu, X., & Liu, F. (2017). Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncology letters, 13(5), 3676-3680. doi:10.3892/ol.2017.5901
Xu, Z., Ku, X., Tomioka, A., Xie, W., Liang, T., Zou, X., . . . Zhang, Y. (2020). O-linked N-acetylgalactosamine modification is present on the tumor suppressor p53. Biochim Biophys Acta Gen Subj, 1864(8), 129635. doi:10.1016/j.bbagen.2020.129635
Yan, H., Liu, N., Zhao, Z., Zhang, X., Xu, H., Shao, B., & Yan, W. (2012). Expression and purification of human TAT-p53 fusion protein in Pichia pastoris and its influence on HepG2 cell apoptosis. Biotechnol Lett, 34(7), 1217-1223. doi:10.1007/s10529-012-0905-8
Yang-Hartwich, Y., Tedja, R., Roberts, C. M., Goodner-Bingham, J., Cardenas, C., Gurea, M., . . . Mor, G. (2019). p53-Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT. Mol Cancer Res, 17(1), 153-164. doi:10.1158/1541-7786.Mcr-18-0238
Yang, Y., Kohler, M. E., Chien, C. D., Sauter, C. T., Jacoby, E., Yan, C., . . . Fry, T. J. (2017). TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci Transl Med, 9(417). doi:10.1126/scitranslmed.aag1209
Yang, Z., Lee, M. M. M., & Chan, M. K. (2021). Efficient intracellular delivery of p53 protein by engineered protein crystals restores tumor suppressing function in vivo. Biomaterials, 271, 120759. doi:10.1016/j.biomaterials.2021.120759
Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., & Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature, 352(6333), 345-347. doi:10.1038/352345a0
Yu, B., Jiang, T., & Liu, D. (2020). BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol, 13(1), 125. doi:10.1186/s13045-020-00962-7
Yu, W., & Fang, H. (2007). Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets, 7(2), 141-148. doi:10.2174/156800907780058817
Zenz, T., Krober, A., Scherer, K., Habe, S., Buhler, A., Benner, A., . . . Stilgenbauer, S. (2008). Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood, 112(8), 3322-3329. doi:10.1182/blood-2008-04-154070
Zhang, Q. N., Li, Y., Zhao, Q., Tian, M., Chen, L. L., Miao, L. Y., & Zhou, Y. J. (2021). Recombinant human adenovirus type 5 (Oncorine) reverses resistance to immune checkpoint inhibitor in a patient with recurrent non-small cell lung cancer: A case report. Thorac Cancer. doi:10.1111/1759-7714.13947
Zhang, W. W., Li, L., Li, D., Liu, J., Li, X., Li, W., . . . Lam, D. M. (2018). The First Approved Gene Therapy Product for Cancer Ad-p53 (Gendicine): 12 Years in the Clinic. Hum Gene Ther, 29(2), 160-179. doi:10.1089/hum.2017.218
Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., . . . Ding, S. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381-384. doi:10.1016/j.stem.2009.04.005
指導教授 陳盛良 劉俊揚(Shen-Liang Chen Jun-Yang Liou) 審核日期 2021-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明