參考文獻 |
Abida, W. M., & Gu, W. (2008). p53-Dependent and p53-independent activation of autophagy by ARF. Cancer research, 68(2), 352-357. doi:10.1158/0008-5472.CAN-07-2069
Abramson, J. S., Palomba, M. L., Gordon, L. I., Lunning, M. A., Wang, M., Arnason, J., . . . Siddiqi, T. (2020). Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet, 396(10254), 839-852. doi:10.1016/s0140-6736(20)31366-0
Agarwal, M. L., Agarwal, A., Taylor, W. R., & Stark, G. R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 92(18), 8493-8497. doi:10.1073/pnas.92.18.8493
Alberts, P., Olmane, E., Brokāne, L., Krastiņa, Z., Romanovska, M., Kupčs, K., . . . Venskus, D. (2016). Long-term treatment with the oncolytic ECHO-7 virus Rigvir of a melanoma stage IV M1c patient, a small cell lung cancer stage IIIA patient, and a histiocytic sarcoma stage IV patient-three case reports. Apmis, 124(10), 896-904. doi:10.1111/apm.12576
Albrechtsen, N., Dornreiter, I., Grosse, F., Kim, E., Wiesmüller, L., & Deppert, W. (1999). Maintenance of genomic integrity by p53: complementary roles for activated and non-activated p53. Oncogene, 18(53), 7706-7717. doi:10.1038/sj.onc.1202952
Andtbacka, R. H., Kaufman, H. L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., . . . Coffin, R. S. (2015). Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol, 33(25), 2780-2788. doi:10.1200/jco.2014.58.3377
Andtbacka, R. H. I., Collichio, F., Harrington, K. J., Middleton, M. R., Downey, G., Ӧhrling, K., & Kaufman, H. L. (2019). Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer, 7(1), 145. doi:10.1186/s40425-019-0623-z
Asghari, H., & Talati, C. (2020). Tumor protein 53 mutations in acute myeloid leukemia: conventional induction chemotherapy or novel therapeutics. Curr Opin Hematol, 27(2), 66-75. doi:10.1097/moh.0000000000000568
Babiker, H. M., Riaz, I. B., Husnain, M., & Borad, M. J. (2017). Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma. Oncolytic virotherapy, 6, 11-18. doi:10.2147/OV.S100072
Backendorf, C., & Noteborn, M. H. (2014). Apoptin towards safe and efficient anticancer therapies. Adv Exp Med Biol, 818, 39-59. doi:10.1007/978-1-4471-6458-6_3
Baker, S. J., Fearon, E. R., Nigro, J. M., Hamilton, S. R., Preisinger, A. C., Jessup, J. M., . . . Vogelstein, B. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 244(4901), 217-221. doi:10.1126/science.2649981
Banerji, U., Affolter, A., Judson, I., Marais, R., & Workman, P. (2008). BRAF and NRAS mutations in melanoma: potential relationships to clinical response to HSP90 inhibitors. Mol Cancer Ther, 7(4), 737-739. doi:10.1158/1535-7163.Mct-08-0145
Basu, S., Gnanapradeepan, K., Barnoud, T., Kung, C. P., Tavecchio, M., Scott, J., . . . Murphy, M. E. (2018). Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1α. Genes Dev, 32(3-4), 230-243. doi:10.1101/gad.309062.117
Beljanski, V., & Hiscott, J. (2012). The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol, 2(5), 629-635. doi:10.1016/j.coviro.2012.07.006
Bell, S., Hansen, S., & Buchner, J. (2002). Refolding and structural characterization of the human p53 tumor suppressor protein. Biophys Chem, 96(2-3), 243-257. doi:10.1016/s0301-4622(02)00011-x
Belting, M. (2003). Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci, 28(3), 145-151. doi:10.1016/s0968-0004(03)00031-8
Biaoxue, R., Hui, P., Wenlong, G., & Shuanying, Y. (2016). Evaluation of efficacy and safety for recombinant human adenovirus-p53 in the control of the malignant pleural effusions via thoracic perfusion. Sci Rep, 6, 39355. doi:10.1038/srep39355
Bilsland, A. E., Spiliopoulou, P., & Evans, T. R. (2016). Virotherapy: cancer gene therapy at last? F1000Res, 5. doi:10.12688/f1000research.8211.1
Bischoff, J. R., Kirn, D. H., Williams, A., Heise, C., Horn, S., Muna, M., . . . McCormick, F. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 274(5286), 373-376. doi:10.1126/science.274.5286.373
Blazar, B. R., Hill, G. R., & Murphy, W. J. (2020). Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol, 17(8), 475-492. doi:10.1038/s41571-020-0356-4
Boehme, K. A., & Blattner, C. (2009). Regulation of p53--insights into a complex process. Crit Rev Biochem Mol Biol, 44(6), 367-392. doi:10.3109/10409230903401507
Bommareddy, P. K., Patel, A., Hossain, S., & Kaufman, H. L. (2017). Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am J Clin Dermatol, 18(1), 1-15. doi:10.1007/s40257-016-0238-9
Bonini, C., Peccatori, J., Stanghellini, M. T., Vago, L., Bondanza, A., Cieri, N., . . . Ciceri, F. (2015). Haploidentical HSCT: a 15-year experience at San Raffaele. Bone Marrow Transplant, 50 Suppl 2, S67-71. doi:10.1038/bmt.2015.99
Bonyhadi, M., Frohlich, M., Rasmussen, A., Ferrand, C., Grosmaire, L., Robinet, E., . . . Berenson, R. J. (2005). In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J Immunol, 174(4), 2366-2375. doi:10.4049/jimmunol.174.4.2366
Brady, C. A., Jiang, D., Mello, S. S., Johnson, T. M., Jarvis, L. A., Kozak, M. M., . . . Attardi, L. D. (2011). Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell, 145(4), 571-583. doi:10.1016/j.cell.2011.03.035
Bressy, C., Hastie, E., & Grdzelishvili, V. Z. (2017). Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy. Mol Ther Oncolytics, 5, 20-40. doi:10.1016/j.omto.2017.03.002
Cao, Z., Livas, T., & Kyprianou, N. (2016). Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit Rev Oncog, 21(3-4), 155-168. doi:10.1615/CritRevOncog.2016016955
Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., . . . Hung, M. C. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol, 13(3), 317-323. doi:10.1038/ncb2173
Chawla, S. P., Bruckner, H., Morse, M. A., Assudani, N., Hall, F. L., & Gordon, E. M. (2018). A Phase I-II Study Using Rexin-G Tumor-Targeted Retrovector Encoding a Dominant-Negative Cyclin G1 Inhibitor for Advanced Pancreatic Cancer. Molecular therapy oncolytics, 12, 56-67. doi:10.1016/j.omto.2018.12.005
Chen, S., Chen, J., Xi, W., Xu, W., & Yin, G. (2014). Clinical therapeutic effect and biological monitoring of p53 gene in advanced hepatocellular carcinoma. Am J Clin Oncol, 37(1), 24-29. doi:10.1097/COC.0b013e3181fe4688
Cheng, L., Yang, L., Meng, F., & Zhong, Z. (2018). Protein Nanotherapeutics as an Emerging Modality for Cancer Therapy. Adv Healthc Mater, 7(20), e1800685. doi:10.1002/adhm.201800685
Chesney, J., Puzanov, I., Collichio, F., Singh, P., Milhem, M. M., Glaspy, J., . . . Kaufman, H. L. (2018). Randomized, Open-Label Phase II Study Evaluating the Efficacy and Safety of Talimogene Laherparepvec in Combination With Ipilimumab Versus Ipilimumab Alone in Patients With Advanced, Unresectable Melanoma. J Clin Oncol, 36(17), 1658-1667. doi:10.1200/jco.2017.73.7379
Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265(5170), 346-355. doi:10.1126/science.8023157
Chow, V. A., Shadman, M., & Gopal, A. K. (2018). Translating anti-CD19 CAR T-cell therapy into clinical practice for relapsed/refractory diffuse large B-cell lymphoma. Blood, 132(8), 777-781. doi:10.1182/blood-2018-04-839217
Christianson, H. C., & Belting, M. (2014). Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol, 35, 51-55. doi:10.1016/j.matbio.2013.10.004
Ciceri, F., Bonini, C., Stanghellini, M. T., Bondanza, A., Traversari, C., Salomoni, M., . . . Bordignon, C. (2009). Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol, 10(5), 489-500. doi:10.1016/s1470-2045(09)70074-9
Conry, R. M., Westbrook, B., McKee, S., & Norwood, T. G. (2018). Talimogene laherparepvec: First in class oncolytic virotherapy. Human vaccines & immunotherapeutics, 14(4), 839-846. doi:10.1080/21645515.2017.1412896
DeLeo, A. B., Jay, G., Appella, E., Dubois, G. C., Law, L. W., & Old, L. J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A, 76(5), 2420-2424. doi:10.1073/pnas.76.5.2420
Delphin, C., Cahen, P., Lawrence, J. J., & Baudier, J. (1994). Characterization of baculovirus recombinant wild-type p53. Dimerization of p53 is required for high-affinity DNA binding and cysteine oxidation inhibits p53 DNA binding. Eur J Biochem, 223(2), 683-692. doi:10.1111/j.1432-1033.1994.tb19041.x
Dippold, W. G., Jay, G., DeLeo, A. B., Khoury, G., & Old, L. J. (1981). p53 transformation-related protein: detection by monoclonal antibody in mouse and human cells. Proc Natl Acad Sci U S A, 78(3), 1695-1699. doi:10.1073/pnas.78.3.1695
Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., & Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), 215-221. doi:10.1038/356215a0
Doniņa, S., Strēle, I., Proboka, G., Auziņš, J., Alberts, P., Jonsson, B., . . . Muceniece, A. (2015). Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res, 25(5), 421-426. doi:10.1097/cmr.0000000000000180
Duan, J., & Nilsson, L. (2006). Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry, 45(24), 7483-7492. doi:10.1021/bi0603165
Eliyahu, D., Michalovitz, D., Eliyahu, S., Pinhasi-Kimhi, O., & Oren, M. (1989). Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A, 86(22), 8763-8767.
Emami Riedmaier, A., Fisel, P., Nies, A. T., Schaeffeler, E., & Schwab, M. (2013). Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci, 34(2), 126-135. doi:10.1016/j.tips.2012.11.005
Endo, Y., Sakai, R., Ouchi, M., Onimatsu, H., Hioki, M., Kagawa, S., . . . Fujiwara, T. (2008). Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene, 27(17), 2375-2381. doi:10.1038/sj.onc.1210884
Fahrer, J., Schweitzer, B., Fiedler, K., Langer, T., Gierschik, P., & Barth, H. (2013). C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells. Bioconjug Chem, 24(4), 595-603. doi:10.1021/bc300563c
Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol, 9, 1300. doi:10.3389/fphar.2018.01300
Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R., & Prives, C. (1992). Wild-type p53 activates transcription in vitro. Nature, 358(6381), 83-86. doi:10.1038/358083a0
Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61(5), 759-767. doi:10.1016/0092-8674(90)90186-i
Finlay, C. A., Hinds, P. W., & Levine, A. J. (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57(7), 1083-1093. doi:10.1016/0092-8674(89)90045-7
Finlay, C. A., Hinds, P. W., & Levine, A. J. (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57(7), 1083-1093. doi:10.1016/0092-8674(89)90045-7
Fischer, N. W., Prodeus, A., Malkin, D., & Gariépy, J. (2016). p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle, 15(23), 3210-3219. doi:10.1080/15384101.2016.1241917
Friedman, K. M., Garrett, T. E., Evans, J. W., Horton, H. M., Latimer, H. J., Seidel, S. L., . . . Morgan, R. A. (2018). Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells. Hum Gene Ther, 29(5), 585-601. doi:10.1089/hum.2018.001
Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol, 124(4), 619-626. doi:10.1083/jcb.124.4.619
Fuchs, S. Y., Adler, V., Buschmann, T., Wu, X., & Ronai, Z. (1998). Mdm2 association with p53 targets its ubiquitination. Oncogene, 17(19), 2543-2547. doi:10.1038/sj.onc.1202200
Funk, W. D., Pak, D. T., Karas, R. H., Wright, W. E., & Shay, J. W. (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol, 12(6), 2866-2871. doi:10.1128/mcb.12.6.2866
Galanis, E., Carlson, S. K., Foster, N. R., Lowe, V., Quevedo, F., McWilliams, R. R., . . . Rubin, J. (2008). Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol Ther, 16(5), 979-984. doi:10.1038/mt.2008.29
Gambacorta, V., Gnani, D., Vago, L., & Di Micco, R. (2019). Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Frontiers in cell and developmental biology, 7, 207-207. doi:10.3389/fcell.2019.00207
Gencel-Augusto, J., & Lozano, G. (2020). p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev, 34(17-18), 1128-1146. doi:10.1101/gad.340976.120
Giaccia, A. J., & Kastan, M. B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev, 12(19), 2973-2983. doi:10.1101/gad.12.19.2973
Giebel, S., Boumendil, A., Labopin, M., Seesaghur, A., Baron, F., Ciceri, F., . . . Nagler, A. (2019). Trends in the use of hematopoietic stem cell transplantation for adults with acute lymphoblastic leukemia in Europe: a report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Ann Hematol, 98(10), 2389-2398. doi:10.1007/s00277-019-03771-2
Giono, L. E., & Manfredi, J. J. (2006). The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol, 209(1), 13-20. doi:10.1002/jcp.20689
Goldmann, C., Petry, H., Frye, S., Ast, O., Ebitsch, S., Jentsch, K. D., . . . Lüke, W. (1999). Molecular cloning and expression of major structural protein VP1 of the human polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies. Journal of virology, 73(5), 4465-4469. doi:10.1128/JVI.73.5.4465-4469.1999
Goldsmith, K., Chen, W., Johnson, D. C., & Hendricks, R. L. (1998). Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response. The Journal of experimental medicine, 187(3), 341-348. doi:10.1084/jem.187.3.341
Gordon, E. M., & Hall, F. L. (2009). The ′timely′ development of Rexin-G: first targeted injectable gene vector (review). Int J Oncol, 35(2), 229-238.
Gordon, E. M., & Hall, F. L. (2010). Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther, 10(5), 819-832. doi:10.1517/14712598.2010.481666
Gordon, E. M., Ravicz, J. R., Liu, S., Chawla, S. P., & Hall, F. L. (2018). Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad-spectrum cancer gene therapy - A review of molecular mechanisms for oncologists. Molecular and clinical oncology, 9(2), 115-134. doi:10.3892/mco.2018.1657
Greenblatt, M. S., Bennett, W. P., Hollstein, M., & Harris, C. C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res, 54(18), 4855-4878.
Greig, S. L. (2016). Talimogene Laherparepvec: First Global Approval. Drugs, 76(1), 147-154. doi:10.1007/s40265-015-0522-7
Guan, Y. S., Liu, Y., He, Q., Li, X., Yang, L., Hu, Y., & La, Z. (2011). p53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: one-year follow-up. World J Gastroenterol, 17(16), 2143-2149. doi:10.3748/wjg.v17.i16.2143
Haferlach, C., Dicker, F., Herholz, H., Schnittger, S., Kern, W., & Haferlach, T. (2008). Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia, 22(8), 1539-1541. doi:10.1038/leu.2008.143
Hall, F. L., Liu, L., Zhu, N. L., Stapfer, M., Anderson, W. F., Beart, R. W., & Gordon, E. M. (2000). Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum Gene Ther, 11(7), 983-993. doi:10.1089/10430340050015293
Han, D., Xu, Z., Zhuang, Y., Ye, Z., & Qian, Q. (2021). Current Progress in CAR-T Cell Therapy for Hematological Malignancies. J Cancer, 12(2), 326-334. doi:10.7150/jca.48976
Hayakawa, J., Hsieh, M. M., Uchida, N., Phang, O., & Tisdale, J. F. (2009). Busulfan produces efficient human cell engraftment in NOD/LtSz-Scid IL2Rgamma(null) mice. Stem cells (Dayton, Ohio), 27(1), 175-182. doi:10.1634/stemcells.2008-0583
Hidalgo, P., Ip, W. H., Dobner, T., & Gonzalez, R. A. (2019). The biology of the adenovirus E1B 55K protein. FEBS Lett, 593(24), 3504-3517. doi:10.1002/1873-3468.13694
Hirai, H., Tani, T., Katoku-Kikyo, N., Kellner, S., Karian, P., Firpo, M., & Kikyo, N. (2011). Radical acceleration of nuclear reprogramming by chromatin remodeling with the transactivation domain of MyoD. Stem Cells, 29(9), 1349-1361. doi:10.1002/stem.684
Hitzler, J., & Estey, E. (2019). Gemtuzumab ozogamicin in acute myeloid leukemia: act 2, with perhaps more to come. Haematologica, 104(1), 7-9. doi:10.3324/haematol.2018.205948
Hodgson, J. (2021). Refreshing the biologic pipeline 2020. Nature biotechnology, 39(2), 135-143. doi:10.1038/s41587-021-00814-w
Hu, Q., Chen, R., Teesalu, T., Ruoslahti, E., & Clegg, D. O. (2014). Reprogramming human retinal pigmented epithelial cells to neurons using recombinant proteins. Stem Cells Transl Med, 3(12), 1526-1534. doi:10.5966/sctm.2014-0038
Huang, C. H., Chen, P. M., Lu, T. C., Kung, W. M., Chiou, T. J., Yang, M. H., . . . Wu, K. J. (2010). Purified recombinant TAT-homeobox B4 expands CD34(+) umbilical cord blood and peripheral blood progenitor cells ex vivo. Tissue Eng Part C Methods, 16(3), 487-496. doi:10.1089/ten.TEC.2009.0163
Hunter, A. M., & Sallman, D. A. (2019). Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol, 32(2), 134-144. doi:10.1016/j.beha.2019.05.004
Imamura, J., Miyoshi, I., & Koeffler, H. P. (1994). p53 in hematologic malignancies. Blood, 84(8), 2412-2421.
Inoue, A., Narumi, K., Matsubara, N., Sugawara, S., Saijo, Y., Satoh, K., & Nukiwa, T. (2000). Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett, 157(1), 105-112. doi:10.1016/s0304-3835(00)00480-8
Inoue, M., Tomizawa, K., Matsushita, M., Lu, Y. F., Yokoyama, T., Yanai, H., . . . Matsui, H. (2006). p53 protein transduction therapy: successful targeting and inhibition of the growth of the bladder cancer cells. Eur Urol, 49(1), 161-168. doi:10.1016/j.eururo.2005.08.019
Jackson, D. A., Symons, R. H., & Berg, P. (1972). Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A, 69(10), 2904-2909. doi:10.1073/pnas.69.10.2904
Jaunalksne, I., Brokāne, L., Petroška, D., Rasa, A., & Alberts, P. (2020). ECHO-7 oncolytic virus Rigvir® in an adjuvant setting for stage I uveal melanoma; A retrospective case report. Am J Ophthalmol Case Rep, 17, 100615. doi:10.1016/j.ajoc.2020.100615
Jiang, L., Liu, R., Wang, Y., Li, C., Xi, Q., Zhong, J., . . . Fang, Z. (2015). The role of Cyclin G1 in cellular proliferation and apoptosis of human epithelial ovarian cancer. J Mol Histol, 46(3), 291-302. doi:10.1007/s10735-015-9622-7
Kabouridis, P. S. (2003). Biological applications of protein transduction technology. Trends in biotechnology, 21(11), 498-503. doi:10.1016/j.tibtech.2003.09.008
Kalos, M., Levine, B. L., Porter, D. L., Katz, S., Grupp, S. A., Bagg, A., & June, C. H. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med, 3(95), 95ra73. doi:10.1126/scitranslmed.3002842
Kane, J. F. (1995). Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 6(5), 494-500. doi:10.1016/0958-1669(95)80082-4
Kataoka, Y., Iwasaki, T., Kuroiwa, T., Seto, Y., Iwata, N., Hashimoto, N., . . . Kakishita, E. (2001). The role of donor T cells for target organ injuries in acute and chronic graft-versus-host disease. Immunology, 103(3), 310-318. doi:10.1046/j.1365-2567.2001.01240.x
Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., . . . Izpisúa Belmonte, J. C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140-1144. doi:10.1038/nature08311
Kennedy, J. A., & Barabé, F. (2008). Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia. Leukemia, 22(11), 2029-2040. doi:10.1038/leu.2008.206
Kim, S., Federman, N., Gordon, E. M., Hall, F. L., & Chawla, S. P. (2017). Rexin-G(®), a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: A case report. Molecular and clinical oncology, 6(6), 861-865. doi:10.3892/mco.2017.1231
Kleeff, J., Ishiwata, T., Kumbasar, A., Friess, H., Buchler, M. W., Lander, A. D., & Korc, M. (1998). The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest, 102(9), 1662-1673. doi:10.1172/jci4105
Lafevre-Bernt, M., Wu, S., & Lin, X. (2008). Recombinant, refolded tetrameric p53 and gonadotropin-releasing hormone-p53 slow proliferation and induce apoptosis in p53-deficient cancer cells. Mol Cancer Ther, 7(6), 1420-1429. doi:10.1158/1535-7163.Mct-08-0078
Lakin, N. D., & Jackson, S. P. (1999). Regulation of p53 in response to DNA damage. Oncogene, 18(53), 7644-7655. doi:10.1038/sj.onc.1203015
Lamb, M. G., Rangarajan, H. G., Tullius, B. P., & Lee, D. A. (2021). Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther, 12(1), 211. doi:10.1186/s13287-021-02277-x
Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., . . . Weirauch, M. T. (2018). The Human Transcription Factors. Cell, 172(4), 650-665. doi:10.1016/j.cell.2018.01.029
Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature, 358(6381), 15-16. doi:10.1038/358015a0
Lane, D. P., Cheok, C. F., & Lain, S. (2010). p53-based cancer therapy. Cold Spring Harb Perspect Biol, 2(9), a001222. doi:10.1101/cshperspect.a001222
Lane, D. P., & Crawford, L. V. (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature, 278(5701), 261-263. doi:10.1038/278261a0
Laptenko, O., Shiff, I., Freed-Pastor, W., Zupnick, A., Mattia, M., Freulich, E., . . . Prives, C. (2015). The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Molecular cell, 57(6), 1034-1046. doi:10.1016/j.molcel.2015.02.015
Lee, D. W., Gardner, R., Porter, D. L., Louis, C. U., Ahmed, N., Jensen, M., . . . Mackall, C. L. (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 124(2), 188-195. doi:10.1182/blood-2014-05-552729
Leone, A., Di Gennaro, E., Bruzzese, F., Avallone, A., & Budillon, A. (2014). New perspective for an old antidiabetic drug: metformin as anticancer agent. Cancer Treat Res, 159, 355-376. doi:10.1007/978-3-642-38007-5_21
Levine, A. J., & Oren, M. (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9(10), 749-758. doi:10.1038/nrc2723
Li, J. L., Cai, Y., Zhang, S. W., Xiao, S. W., Li, X. F., Duan, Y. J., . . . Yan, K. (2011). Combination of Recombinant Adenovirus-p53 with Radiochemotherapy in Unresectable Pancreatic Carcinoma. Chin J Cancer Res, 23(3), 194-200. doi:10.1007/s11670-011-0194-0
Li, L., Spendlove, I., Morgan, J., & Durrant, L. G. (2001). CD55 is over-expressed in the tumour environment. British journal of cancer, 84(1), 80-86. doi:10.1054/bjoc.2000.1570
Li, P., Zhao, M., Parris, A. B., Feng, X., & Yang, X. (2015). p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. Biochem Biophys Res Commun, 464(4), 1267-1274. doi:10.1016/j.bbrc.2015.07.117
Li, Y., Huo, Y., Yu, L., & Wang, J. (2019). Quality Control and Nonclinical Research on CAR-T Cell Products: General Principles and Key Issues. Engineering, 5(1), 122-131. doi:https://doi.org/10.1016/j.eng.2018.12.003
Li, Y., Li, B., Li, C. J., & Li, L. J. (2015). Key points of basic theories and clinical practice in rAd-p53 ( Gendicine ™) gene therapy for solid malignant tumors. Expert Opin Biol Ther, 15(3), 437-454. doi:10.1517/14712598.2015.990882
Li, Y., Li, L. J., Wang, L. J., Zhang, Z., Gao, N., Liang, C. Y., . . . Han, B. (2014). Selective intra-arterial infusion of rAd-p53 with chemotherapy for advanced oral cancer: a randomized clinical trial. BMC Med, 12, 16. doi:10.1186/1741-7015-12-16
Liang, M. (2018). Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets, 18(2), 171-176. doi:10.2174/1568009618666171129221503
Linzer, D. I., & Levine, A. J. (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell, 17(1), 43-52. doi:10.1016/0092-8674(79)90293-9
Liu, B. L., Robinson, M., Han, Z. Q., Branston, R. H., English, C., Reay, P., . . . Coffin, R. S. (2003). ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther, 10(4), 292-303. doi:10.1038/sj.gt.3301885
Liu, J., Pandya, P., & Afshar, S. (2021). Therapeutic Advances in Oncology. International journal of molecular sciences, 22(4), 2008. doi:10.3390/ijms22042008
Liu, J., Zhang, C., Hu, W., & Feng, Z. (2015). Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett, 356(2 Pt A), 197-203. doi:10.1016/j.canlet.2013.12.025
Liu, Y., Elf, S. E., Miyata, Y., Sashida, G., Liu, Y., Huang, G., . . . Nimer, S. D. (2009). p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell, 4(1), 37-48. doi:10.1016/j.stem.2008.11.006
Locke, F. L., Ghobadi, A., Jacobson, C. A., Miklos, D. B., Lekakis, L. J., Oluwole, O. O., . . . Neelapu, S. S. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol, 20(1), 31-42. doi:10.1016/s1470-2045(18)30864-7
Locke, F. L., Neelapu, S. S., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., . . . Go, W. Y. (2017). Clinical and biologic covariates of outcomes in ZUMA-1: A pivotal trial of axicabtagene ciloleucel (axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (r-NHL). Journal of Clinical Oncology, 35(15_suppl), 7512-7512. doi:10.1200/JCO.2017.35.15_suppl.7512
Méplan, C., Richard, M. J., & Hainaut, P. (2000). Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene, 19(46), 5227-5236. doi:10.1038/sj.onc.1203907
Ma, W. S., Ma, J. G., & Xing, L. N. (2017). Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anticancer Drugs, 28(2), 230-236. doi:10.1097/CAD.0000000000000448
Mantovani, F., Collavin, L., & Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. Cell Death Differ, 26(2), 199-212. doi:10.1038/s41418-018-0246-9
Marión, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., . . . Blasco, M. A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149-1153. doi:10.1038/nature08287
Matlashewski, G., Lamb, P., Pim, D., Peacock, J., Crawford, L., & Benchimol, S. (1984). Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. Embo j, 3(13), 3257-3262.
Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., . . . Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 371(16), 1507-1517. doi:10.1056/NEJMoa1407222
McBride, O. W., Merry, D., & Givol, D. (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A, 83(1), 130-134. doi:10.1073/pnas.83.1.130
Menendez, S., Camus, S., & Izpisua Belmonte, J. C. (2010). p53: guardian of reprogramming. Cell Cycle, 9(19), 3887-3891. doi:10.4161/cc.9.19.13301
Mercer, W. E., Shields, M. T., Amin, M., Sauve, G. J., Appella, E., Romano, J. W., & Ullrich, S. J. (1990). Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci U S A, 87(16), 6166-6170. doi:10.1073/pnas.87.16.6166
Michalovitz, D., Halevy, O., & Oren, M. (1990). Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell, 62(4), 671-680. doi:10.1016/0092-8674(90)90113-s
Munshi, N. C., Anderson, L. D., Jr., Shah, N., Madduri, D., Berdeja, J., Lonial, S., . . . San-Miguel, J. (2021). Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med, 384(8), 705-716. doi:10.1056/NEJMoa2024850
Nair, M. S., Lee, M. M., Bonnegarde-Bernard, A., Wallace, J. A., Dean, D. H., Ostrowski, M. C., . . . Chan, M. K. (2015). Cry protein crystals: a novel platform for protein delivery. PLoS One, 10(6), e0127669. doi:10.1371/journal.pone.0127669
Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L., Miklos, D., Jacobson, C. A., . . . Go, W. Y. (2016). Kte-C19 (anti-CD19 CAR T Cells) Induces Complete Remissions in Patients with Refractory Diffuse Large B-Cell Lymphoma (DLBCL): Results from the Pivotal Phase 2 Zuma-1. Blood, 128(22), LBA-6-LBA-6. doi:10.1182/blood.V128.22.LBA-6.LBA-6
Nguyen, K., Devidas, M., Cheng, S. C., La, M., Raetz, E. A., Carroll, W. L., . . . Children′s Oncology, G. (2008). Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children′s Oncology Group study. Leukemia, 22(12), 2142-2150. doi:10.1038/leu.2008.251
Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol, 2(1), a001008. doi:10.1101/cshperspect.a001008
Pan, J. J., Zhang, S. W., Chen, C. B., Xiao, S. W., Sun, Y., Liu, C. Q., . . . Lu, Y. Y. (2009). Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol, 27(5), 799-804. doi:10.1200/JCO.2008.18.9670
Pant, V., Quintás-Cardama, A., & Lozano, G. (2012). The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. Blood, 120(26), 5118-5127. doi:10.1182/blood-2012-05-356014
Paszkiewicz, P. J., Fräßle, S. P., Srivastava, S., Sommermeyer, D., Hudecek, M., Drexler, I., . . . Busch, D. H. (2016). Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest, 126(11), 4262-4272. doi:10.1172/jci84813
Peng, Z. (2005). Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther, 16(9), 1016-1027. doi:10.1089/hum.2005.16.1016
Peroja, P., Pedersen, M., Mantere, T., Nørgaard, P., Peltonen, J., Haapasaari, K. M., . . . Kuittinen, O. (2018). Mutation of TP53, translocation analysis and immunohistochemical expression of MYC, BCL-2 and BCL-6 in patients with DLBCL treated with R-CHOP. Sci Rep, 8(1), 14814. doi:10.1038/s41598-018-33230-3
Piwoni, K., Jaeckel, G., Rasa, A., & Alberts, P. (2021). 4-Week repeated dose rat GLP toxicity study of oncolytic ECHO-7 virus Rigvir administered intramuscularly with a 4-week recovery period. Toxicol Rep, 8, 230-238. doi:10.1016/j.toxrep.2021.01.009
Powell, E., Piwnica-Worms, D., & Piwnica-Worms, H. (2014). Contribution of p53 to metastasis. Cancer Discov, 4(4), 405-414. doi:10.1158/2159-8290.Cd-13-0136
Proboka, G., Tilgase, A., Isajevs, S., Zablocka, T., Olmane, E., Rasa, A., & Alberts, P. (2020). Adrenal Gland and Gastric Malignant Melanoma without Evidence of Skin Lesion Treated with the Oncolytic Virus Rigvir. Case Rep Oncol, 13(1), 424-430. doi:10.1159/000506978
Puca, R., Nardinocchi, L., Porru, M., Simon, A. J., Rechavi, G., Leonetti, C., . . . D′Orazi, G. (2011). Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle, 10(10), 1679-1689. doi:10.4161/cc.10.10.15642
Quist, S. R., Wang-Gohrke, S., Köhler, T., Kreienberg, R., & Runnebaum, I. B. (2004). Cooperative effect of adenoviral p53 gene therapy and standard chemotherapy in ovarian cancer cells independent of the endogenous p53 status. Cancer Gene Ther, 11(8), 547-554. doi:10.1038/sj.cgt.7700727
Raaijmakers, M. I. G., Widmer, D. S., Narechania, A., Eichhoff, O., Freiberger, S. N., Wenzina, J., . . . Levesque, M. P. (2016). Co-existence of BRAF and NRAS driver mutations in the same melanoma cells results in heterogeneity of targeted therapy resistance. Oncotarget, 7(47), 77163-77174. doi:10.18632/oncotarget.12848
Rafei, H., Kantarjian, H. M., & Jabbour, E. J. (2020). Targeted therapy paves the way for the cure of acute lymphoblastic leukaemia. Br J Haematol, 188(2), 207-223. doi:10.1111/bjh.16207
Raja, J., Ludwig, J. M., Gettinger, S. N., Schalper, K. A., & Kim, H. S. (2018). Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer, 6(1), 140. doi:10.1186/s40425-018-0458-z
Raje, N., Berdeja, J., Lin, Y., Siegel, D., Jagannath, S., Madduri, D., . . . Kochenderfer, J. N. (2019). Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med, 380(18), 1726-1737. doi:10.1056/NEJMoa1817226
Raman, S. S., Hecht, J. R., & Chan, E. (2019). Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy, 11(8), 705-723. doi:10.2217/imt-2019-0033
Ramezankhani, R., Torabi, S., Minaei, N., Madani, H., Rezaeiani, S., Hassani, S. N., . . . Hajizadeh-Saffar, E. (2020). Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies. Frontiers in cell and developmental biology, 8, 547653-547653. doi:10.3389/fcell.2020.547653
Rehman, H., Silk, A. W., Kane, M. P., & Kaufman, H. L. (2016). Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer, 4, 53. doi:10.1186/s40425-016-0158-5
Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes & cancer, 2(4), 466-474. doi:10.1177/1947601911408889
Roberts, Z. J., Better, M., Bot, A., Roberts, M. R., & Ribas, A. (2018). Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma, 59(8), 1785-1796. doi:10.1080/10428194.2017.1387905
Russell, L., & Peng, K. W. (2018). The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol, 7(2), 16. doi:10.21037/cco.2018.04.04
Sakamoto, K., Morishita, T., Aburai, K., Ito, D., Imura, T., Sakai, K., . . . Sakai, H. (2021). Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature. Sci Rep, 11(1), 31. doi:10.1038/s41598-020-79518-1
Saland, E., Boutzen, H., Castellano, R., Pouyet, L., Griessinger, E., Larrue, C., . . . Sarry, J. E. (2015). A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia. Blood Cancer J, 5(3), e297. doi:10.1038/bcj.2015.19
Scherz-Shouval, R., Weidberg, H., Gonen, C., Wilder, S., Elazar, Z., & Oren, M. (2010). p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A, 107(43), 18511-18516. doi:10.1073/pnas.1006124107
Scheuermann, R. H., & Racila, E. (1995). CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma, 18(5-6), 385-397. doi:10.3109/10428199509059636
Senapati, D., Patra, B. C., Kar, A., Chini, D. S., Ghosh, S., Patra, S., & Bhattacharya, M. (2019). Promising approaches of small interfering RNAs (siRNAs) mediated cancer gene therapy. Gene, 719, 144071. doi:10.1016/j.gene.2019.144071
Shah, N., Chari, A., Scott, E., Mezzi, K., & Usmani, S. Z. (2020). B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia, 34(4), 985-1005. doi:10.1038/s41375-020-0734-z
Shahryari, A., Saghaeian Jazi, M., Mohammadi, S., Razavi Nikoo, H., Nazari, Z., Hosseini, E. S., . . . Lickert, H. (2019). Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in genetics, 10, 868-868. doi:10.3389/fgene.2019.00868
Shi, W. Y., Xiao, D., Wang, L., Dong, L. H., Yan, Z. X., Shen, Z. X., . . . Zhao, W. L. (2012). Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis, 3(3), e275. doi:10.1038/cddis.2012.13
Skehel, J. J., Cross, K., Steinhauer, D., & Wiley, D. C. (2001). Influenza fusion peptides. Biochem Soc Trans, 29(Pt 4), 623-626. doi:10.1042/bst0290623
Sommermeyer, D., Hudecek, M., Kosasih, P. L., Gogishvili, T., Maloney, D. G., Turtle, C. J., & Riddell, S. R. (2016). Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia, 30(2), 492-500. doi:10.1038/leu.2015.247
Styczyński, J., Tridello, G., Koster, L., Iacobelli, S., van Biezen, A., van der Werf, S., . . . Gratwohl, A. (2020). Death after hematopoietic stem cell transplantation: changes over calendar year time, infections and associated factors. Bone Marrow Transplant, 55(1), 126-136. doi:10.1038/s41409-019-0624-z
Su, X., Chen, W. J., Xiao, S. W., Li, X. F., Xu, G., Pan, J. J., & Zhang, S. W. (2016). Effect and Safety of Recombinant Adenovirus-p53 Transfer Combined with Radiotherapy on Long-Term Survival of Locally Advanced Cervical Cancer. Hum Gene Ther, 27(12), 1008-1014. doi:10.1089/hum.2016.043
Suck, G., Linn, Y. C., & Tonn, T. (2016). Natural Killer Cells for Therapy of Leukemia. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie, 43(2), 89-95. doi:10.1159/000445325
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209-249. doi:10.3322/caac.21660
Szabo, E., Rampalli, S., Risueno, R. M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., . . . Bhatia, M. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468(7323), 521-526. doi:10.1038/nature09591
Tan, B. S., Tiong, K. H., Choo, H. L., Chung, F. F., Hii, L. W., Tan, S. H., . . . Leong, C. O. (2015). Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis, 6(7), e1826. doi:10.1038/cddis.2015.191
Tang, Q., Su, Z., Gu, W., & Rustgi, A. K. (2020). Mutant p53 on the Path to Metastasis. Trends Cancer, 6(1), 62-73. doi:10.1016/j.trecan.2019.11.004
Taylor, W. R., & Stark, G. R. (2001). Regulation of the G2/M transition by p53. Oncogene, 20(15), 1803-1815. doi:10.1038/sj.onc.1204252
Teoh, J., Johnstone, T. G., Christin, B., Yost, R., Haig, N. A., Mallaney, M., . . . Larson, R. P. (2019). Lisocabtagene Maraleucel (liso-cel) Manufacturing Process Control and Robustness across CD19+ Hematological Malignancies. Blood, 134(Supplement_1), 593-593. doi:10.1182/blood-2019-127150
Terzi, M. Y., Izmirli, M., & Gogebakan, B. (2016). The cell fate: senescence or quiescence. Mol Biol Rep, 43(11), 1213-1220. doi:10.1007/s11033-016-4065-0
Tilgase, A., Grīne, L., Blāķe, I., Borodušķis, M., Rasa, A., & Alberts, P. (2020). Effect of oncolytic ECHO-7 virus strain Rigvir on uveal melanoma cell lines. BMC Res Notes, 13(1), 222. doi:10.1186/s13104-020-05068-4
Tilgase, A., Patetko, L., Blāķe, I., Ramata-Stunda, A., Borodušķis, M., & Alberts, P. (2018). Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro. J Cancer, 9(6), 1033-1049. doi:10.7150/jca.23242
Tudzarova, S., Mulholland, P., Dey, A., Stoeber, K., Okorokov, A. L., & Williams, G. H. (2016). p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress. Cell cycle (Georgetown, Tex.), 15(21), 2958-2972. doi:10.1080/15384101.2016.1231281
Tyagarajan, S., Spencer, T., & Smith, J. (2020). Optimizing CAR-T Cell Manufacturing Processes during Pivotal Clinical Trials. Mol Ther Methods Clin Dev, 16, 136-144. doi:10.1016/j.omtm.2019.11.018
Ulasov, A. V., Rosenkranz, A. A., & Sobolev, A. S. (2018). Transcription factors: Time to deliver. J Control Release, 269, 24-35. doi:10.1016/j.jconrel.2017.11.004
Vairy, S., Garcia, J. L., Teira, P., & Bittencourt, H. (2018). CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des Devel Ther, 12, 3885-3898. doi:10.2147/dddt.S138765
van der Stegen, S. J. C., Hamieh, M., & Sadelain, M. (2015). The pharmacology of second-generation chimeric antigen receptors. Nature reviews. Drug discovery, 14(7), 499-509. doi:10.1038/nrd4597
Vitale, M., Di Matola, T., Bifulco, M., Casamassima, A., Fenzi, G., & Rossi, G. (1999). Apoptosis induced by denied adhesion to extracellular matrix (anoikis) in thyroid epithelial cells is p53 dependent but fails to correlate with modulation of p53 expression. FEBS Lett, 462(1-2), 57-60. doi:10.1016/s0014-5793(99)01512-4
Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307-310. doi:10.1038/35042675
Vongchan, P., & Linhardt, R. J. (2007). Expression of human liver HSPGs on acute myeloid leukemia. Clin Immunol, 122(2), 194-206. doi:10.1016/j.clim.2006.08.017
Vousden, K. H., & Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell, 137(3), 413-431. doi:10.1016/j.cell.2009.04.037
Wadia, J. S., & Dowdy, S. F. (2002). Protein transduction technology. Curr Opin Biotechnol, 13(1), 52-56. doi:10.1016/s0958-1669(02)00284-7
Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 10(3), 310-315. doi:10.1038/nm996
Walasek, A. (2019). The new perspectives of targeted therapy in acute myeloid leukemia. Adv Clin Exp Med, 28(2), 271-276. doi:10.17219/acem/81610
Walker, K. K., & Levine, A. J. (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci U S A, 93(26), 15335-15340. doi:10.1073/pnas.93.26.15335
Wang, M., Munoz, J., Goy, A., Locke, F. L., Jacobson, C. A., Hill, B. T., . . . Reagan, P. M. (2020). KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med, 382(14), 1331-1342. doi:10.1056/NEJMoa1914347
Willis, A., Jung, E. J., Wakefield, T., & Chen, X. (2004). Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene, 23(13), 2330-2338. doi:10.1038/sj.onc.1207396
Xia, Z. J., Chang, J. H., Zhang, L., Jiang, W. Q., Guan, Z. Z., Liu, J. W., . . . Zheng, X. (2004). [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Ai Zheng, 23(12), 1666-1670.
Xiao, J., Zhou, J., Fu, M., Liang, L., Deng, Q., Liu, X., & Liu, F. (2017). Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncology letters, 13(5), 3676-3680. doi:10.3892/ol.2017.5901
Xu, Z., Ku, X., Tomioka, A., Xie, W., Liang, T., Zou, X., . . . Zhang, Y. (2020). O-linked N-acetylgalactosamine modification is present on the tumor suppressor p53. Biochim Biophys Acta Gen Subj, 1864(8), 129635. doi:10.1016/j.bbagen.2020.129635
Yan, H., Liu, N., Zhao, Z., Zhang, X., Xu, H., Shao, B., & Yan, W. (2012). Expression and purification of human TAT-p53 fusion protein in Pichia pastoris and its influence on HepG2 cell apoptosis. Biotechnol Lett, 34(7), 1217-1223. doi:10.1007/s10529-012-0905-8
Yang-Hartwich, Y., Tedja, R., Roberts, C. M., Goodner-Bingham, J., Cardenas, C., Gurea, M., . . . Mor, G. (2019). p53-Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT. Mol Cancer Res, 17(1), 153-164. doi:10.1158/1541-7786.Mcr-18-0238
Yang, Y., Kohler, M. E., Chien, C. D., Sauter, C. T., Jacoby, E., Yan, C., . . . Fry, T. J. (2017). TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci Transl Med, 9(417). doi:10.1126/scitranslmed.aag1209
Yang, Z., Lee, M. M. M., & Chan, M. K. (2021). Efficient intracellular delivery of p53 protein by engineered protein crystals restores tumor suppressing function in vivo. Biomaterials, 271, 120759. doi:10.1016/j.biomaterials.2021.120759
Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., & Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature, 352(6333), 345-347. doi:10.1038/352345a0
Yu, B., Jiang, T., & Liu, D. (2020). BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol, 13(1), 125. doi:10.1186/s13045-020-00962-7
Yu, W., & Fang, H. (2007). Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets, 7(2), 141-148. doi:10.2174/156800907780058817
Zenz, T., Krober, A., Scherer, K., Habe, S., Buhler, A., Benner, A., . . . Stilgenbauer, S. (2008). Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood, 112(8), 3322-3329. doi:10.1182/blood-2008-04-154070
Zhang, Q. N., Li, Y., Zhao, Q., Tian, M., Chen, L. L., Miao, L. Y., & Zhou, Y. J. (2021). Recombinant human adenovirus type 5 (Oncorine) reverses resistance to immune checkpoint inhibitor in a patient with recurrent non-small cell lung cancer: A case report. Thorac Cancer. doi:10.1111/1759-7714.13947
Zhang, W. W., Li, L., Li, D., Liu, J., Li, X., Li, W., . . . Lam, D. M. (2018). The First Approved Gene Therapy Product for Cancer Ad-p53 (Gendicine): 12 Years in the Clinic. Hum Gene Ther, 29(2), 160-179. doi:10.1089/hum.2017.218
Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., . . . Ding, S. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381-384. doi:10.1016/j.stem.2009.04.005 |