博碩士論文 108324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:170 、訪客IP:18.117.158.47
姓名 葉宴廷(Yen-Ting Yeh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用雙塔變壓吸附程序捕獲天然氣電廠煙氣中二氧化碳之模擬暨實驗設計研究
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 2021年政府規劃將燃氣發電占比拉高至五成,相較燃煤發電,燃氣發電可大幅減少很多空汙物排放,為減少空汙、提升國內空氣品質等,政府規劃能源政策,希望在2025年,能達到將電力結構調整為低碳天然氣發電占比50%,並將燃煤發電占比降至30%,再生能源發電量則要成長達20%,因此天然氣廠燃燒後的二氧化碳也逐漸受到重視。
為了減少化石燃料燃燒排放碳排二氧化碳至大氣中,造成溫室效應的惡化,因此捕獲燃燒後煙道氣中二氧化碳為一重要技術,在眾多碳捕獲方法中,變壓吸附法是常用的一種連續性循環程序氣體吸附分離技術,根據吸附劑對於混合氣體選擇性高低的不同,以及高壓時利於吸附劑吸附、低壓利於脫附之特性,進行高低壓循環程序達到氣體分離的目的,其因具有低能耗、低操作成本與容易操作等優點而逐漸備受重視。
本研究以雙塔六步驟變壓吸附法捕獲天然氣電廠所排放之煙道氣中二氧化碳為目的,以5%二氧化碳與95%氮氣作為進料,並選用UOP 13X作為本研究所使用之吸附劑,將之填入吸附塔內進行突破及脫附曲線實驗,藉由改變不同的進料壓力與溫度,觀察其對突破曲線及脫附曲線之影響,並以此參數作為設計基礎,進行後續雙塔變壓吸附程序模擬之依據。
研究中首先藉由單塔三步驟程序實驗與模擬結果進行驗證,確認模擬程式的可信度。接著透過高壓吸附、壓力平衡、同向減壓、逆向減壓之變壓吸附雙塔六步驟與單塔三步驟二階段變壓吸附程序模擬,探討塔底二氧化碳純度及回收率變化。利用第一階段雙塔六步驟和第二階段單塔三步驟變壓吸附程序找到基礎條件,達到塔底產物二氧化碳純度33.18% 和回收率82.75%。
為了有效找出最佳操作條件,利用實驗設計(Design of Experiments, DOE),針對各操作變因進料壓力、進料溫度、抽真空壓力、進料加壓/逆相減壓時間及高壓吸附/同相減壓時間作為操作變因,探討塔底二氧化碳純度及回收率變化,其顯示出最適化所需之操作條件,為進料壓力3.45 atm、進料溫度338K、抽真空壓力0.15 atm、步驟1/4時間20秒和步驟3/6時間30秒的雙塔六步驟程序條件下,能得到塔底產物二氧化碳純度45.35 %及回收率93.32%,能耗為5.31 GJ/t-CO2的最適化結果。接著透過第一階段塔底產物進入第二階段單塔三步驟提高塔底二氧化碳純度,達到塔底產物二氧化碳純度94.83 %及回收率95.20 %,能耗為1.23 GJ/t-CO2,整體回收率為88.84%,整體能耗為6.81 GJ/t-CO2。
摘要(英) In 2021, the government plans to increase the proportion of gas-fired power generation to 50%. Compared to coal-fired power generation, Gas-fired power generation can significantly reduce a lot of air pollution emissions. Government plans energy policy to reduce air pollution and to improve domestic air quality. It wishes to adjust the power structure to low-carbon natural gas power generation accounted for 50% , to reduce the proportion of coal-fired power generation to 30%, and renewable energy power generation will reach by 20% in 2025.Therefore, the carbon dioxide emitted from natural gas power plant has gradually received attention.
In order to mitigate the effects of global warming and reduce emissions, we use pressure swing adsorption process to capture carbon dioxide from flue gas in a natural gas power plant. Among the methods for carbon dioxide capturing, pressure swing adsorption (PSA) is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent, and based on the properties of adsorption at high pressure and desorption at low pressure, PSA uses these characteristics to achieve the target of gas separation, and pressure swing adsorption process (PSA) has obtained more attention, which is characterized by advantages such as low energy consumption, low investment, and simple operation.
This work presents a study for capturing carbon dioxide from simulate dry flue gas (5% CO2 / 95% N2) emitted from a natural gas power plant using UOP 13X as adsorbent.The breakthrough and desorption curves were discussed by changing different feed pressure and temperature,and results were used to conduct the design of experiment of dual-bed PSA process.
Then, the simulation is verified with experiments of a single-bed PSA process.A two stage PSA process is studied to capture CO2 from flue gas of natural gas power plant.The first stage 2-bed 6-step PSA process is used with adsorption, pressure equalization, cocurrent depressurization and countercurrent depressurization steps and the second stage 1-bed 3-step PSA process is used with adsorption, cocurrent depressurization and vacuum steps to separate flue gas with simulation.
In order to find the optimal operating conditions, this study combined the simulation of the first-stage 2-bed 6-step PSA process with design of experiments (DOE) method. Parameter study was implemented to obtain a series of optimized settings of operating variables by investigating the effects of feed pressure, feed temperature, vacuum pressure, pressurization/ countercurrent depressurization time, adsorption/ cocurrent depressurization time. After simulation analysis, the bottom product CO2 purity is 45.35 % with 93.32 % recovery while at feed pressure 3.45 atm, feed temperature 338K, vacuum pressure 0.15 atm, step 1/4 time 20 s, and step 3/6 time 30 s as the optimal results. The mechanical energy consumption was estimated to be 5.31 GJ/t-CO2. Then the purity of carbon dioxide obtained from the second-stage 1-bed 3-step PSA process. The bottom product CO2 purity is 94.83 % with 95.20 % recovery, which makes a total recovery of 88.84% .The energy of the second stage PSA is 1.23 GJ/t-CO2, which makes a total energy consumption of 6.81%
關鍵字(中) ★ 變壓吸附 關鍵字(英)
論文目次 摘要 i
Abstract iii
誌謝 xii
目錄 xiii
圖目錄 xviii
表目錄 xx
第一章、緒論 1
第二章、簡介及文獻回顧 5
2-1吸附之簡介 5
2-1-1 吸附基本原理 5
2-1-2 吸附劑及其選擇性 7
2-2 文獻回顧 9
2-2-1 PSA程序之發展與改進 9
2-2-2 理論之回顧 14
2-3研究背景與目的 16
第三章、 理論 21
3-1 基本假設 22
3-2 統制方程式 23
3-3 吸附平衡關係式 28
3-3-1 等溫吸附平衡關係式 28
3-3-2 質傳驅動力模式 29
3-3-3 吸附熱關係式 29
3-4 參數推導 30
3-4-1 軸向分散係數 30
3-4-2 熱傳係數 33
3-4-3 線性驅動力質傳係數 36
3-5 邊界條件與流速 40
3-5-1 邊界條件與節點流速 40
3-5-2 閥公式 41
3-6 求解步驟 42
3-7 能耗及產率計算公式 45
第四章 吸附平衡 47
4-1等溫平衡吸附曲線實驗 47
4-1-1實驗裝置 47
4-1-2實驗步驟 51
4-1-3 天平校正 52
4-1-4浮力校正 53
4-1-5氣體與吸附劑性質 54
第五章、 吸附曲線與脫附曲線 56
5-1 吸附動力學 57
5-1-1 實驗裝置、各部分規格及特性 57
5-1-2 突破實驗操作步驟 61
5-1-3 脫附實驗操作步驟 61
第六章、變壓吸附程序 62
6-1實驗裝置、各部分規格及特性 62
6-2 變壓吸附程序操作步驟 66
6-3雙塔六步驟變壓吸附程序 69
6-4單塔三步驟變壓吸附程序 71
第七章、數據分析與結果討論 72
7-1 等溫平衡吸附曲線(Isotherm) 72
7-2突破曲線實驗與脫附曲線實驗結果與討論 76
7-2-1 塔內溫度對突破曲線與脫附曲線影響 77
7-2-2 流速對突破曲線與脫附曲線的影響 79
7-2-3 塔內壓力對突破曲線與脫附曲線的影響 81
7-2-4 實驗室規模吸附塔之突破曲線模擬驗證 83
7-3變壓吸附程序之模擬與實驗驗證 85
7-3-1 單塔三步驟變壓吸附法捕獲煙道氣中二氧化碳之驗證 85
7-3-2 雙塔六步驟變壓吸附法捕獲煙道氣中二氧化碳之驗證 89
7-4變壓吸附法捕獲煙道氣中二氧化碳之模擬結果 93
7-5 天然氣電廠煙道氣雙塔六步驟變壓吸附程序模擬之實驗設計分析 97
7-5-1 殘差分析圖(Analysis of residual plots) 99
7-5-2 變異數分析(Analysis of Variance, ANOVA) 102
7-5-4 迴歸分析( Regression analysis ) 108
7-5-5 最適化結果 110
7-5-5-1 塔底二氧化碳純度與回收率最大值 110
7-5-5-2 塔底二氧化碳純度與回收率最大值和能耗最小值 115
第七章、 結論 121
符號說明 123
參考文獻 129
附錄A、流速之估算方法 133
參考文獻 [1] https://blog.pgesolar.com.tw/2021/03/24/%E5%8F%B0%E7%81%A3%E7%94%A8%E9%9B%BB%E7%B5%90%E6%A7%8B台灣用電結構
[2] O. A.A., Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes, J. CO2 Util, vol. 3, pp. 74-92, 2013.
[3] 張育誠, 吳國光, 焦鴻文, 簡國祥, 歐陽湘, 富氧燃燒技術之應用與分析, 台灣能源期刊, 二卷3期, pp. 323-331, 2015.
[4] A. Agarwal, , Advanced strategies for optimal design and operation of pressure swing adsorption processes, Carnegie Mellon University, 2010.
[5] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[6] C. W. Skarstrom, Esso Research and Engineering Company. US Patent 2944627, 1960.
[7] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, Boston, 1988.
[8] W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[9] D. Daniel, M. P. G. De, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[10] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[11] K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[12] J. J. Collins, Air Separation by Adsorption. US Patent 4026680, 1975.
[13] S. J. Doong, R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[14] L. Jiang, V.G. Fox and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[15] A. Fuderer, E. Rudelstorfer, Selective Adsorption Process. US Patent 3986849, 1976.
[16] P. H. Turnock, R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[17] R.T. Yang, S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[18] S. Farooq, D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[19] E. Glueckauf, J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[20] L. Wang, Z. Liu, P. Li, J. Wang, and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18, no. 5-6, pp. 445-459, 2012.
[21] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu , and A. E. Rodrigues, Experimental Evaluation of Adsorption Technology for CO2 Capture, Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[22] Cho S. H., Park J. H., Beum H. T., Han S. S., and Kim J. N, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Stud SUrf Sci Catal, no. 153, pp. 405-410, 2004.
[23] G. N. Nikolaidis, E. S. Kikkinides, and M. C. Georgiadis, Model-Based Approach for the Evaluation of Materials and Processes for Post-Combustion Carbon Dioxide Capture from Flue Gas by PSA/VSA Processes, Industrial & Engineering Chemistry Research, vol. 55, no. 3, pp. 635-646, 2016.
[24] H. Prats, D. Bahamon, G. Alonso, X. Giménez, P. Gamallo, and R. Sayós, Optimal Faujasite structures for post combustion CO2 capture and separation in different swing adsorption processes, Journal of CO2 Utilization, vol. 19, pp. 100-111, 2017.
[25] Q. Huang and M. Eić, "Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process," Sep. Purif. Technol., vol. 103, pp. 203-215, 2013.
[26] J. White, Development of a Pressure Swing Adsorption(PSA) Cycle for CO2 Capture From Flue Gas Using a 4-Bed PSA Apparatus, 2016.
[27] M. Khurana and S. Farooq, Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture, Chemical Engineering Science, vol. 152, pp. 507-515, 2016.
[28] J. H. Park, H. T. Beum, J. N. Kim and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[29] C. T. Chou and C. Y. Chen, Carbon Dioxide Recovery by Vacuum SwingAdsorption, Separation and Purification Technology, vol. 39, pp.51-65, 2004.
[30] D. Duong, Adsorption analysis: equilibria and kinetics, Imperial College Press, 1998.
[31] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[32] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[33] E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[34] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[35] D. F. Fairbanks and C.R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[36] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[37] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[38] S. Farooq and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of The one-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[39] N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[40] G. Carta and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[41] J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[42] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[43] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic study of diffusion in molecular-sieving carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[44] H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[45] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[46] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[47] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 碩士論文,
國立中央大學化學工程與材料工程學系, 2015.
[48] W.L. McCabe, J.C. Smith, P. Harriott, Unit operations of chemical engineering. 7 ed, McGraw-Hill: New York, 2005.
[49] R. A. Fisher, Statistical Methods for Research Worker, Oliver and Boyd, Edinburgh, 1925.
[50] R. G. Lomax, D. L. Hahs-Vaughn, Statistical Concepts: A Second Course, 4th ed., Routledge, New York, 2012.
[51] 田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 國立中央大學,碩士論文, 2013.
[52] G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[53] R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[54] 葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 2005.
[55] D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009.
指導教授 周正堂 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明