參考文獻 |
1. 黃彥禎、郭瑋汝、李岱洲(2018)。光觸媒產氫。檢自https://www.materialsnet.com.tw/DocView.aspx?id=32994
2. Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38(1), 253–278.
3. Wang, W., Tadé, M. O., & Shao, Z. (2015). Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 44(15), 5371–5408.
4. Inamuddin, Boddula, R., & Asiri, A. M. (Eds.). (2020). Methods for Electrocatalysis. Switzerland: This Springer imprint.
5. Maeda, K., & Domen, K. (2007). New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. The Journal of Physical Chemistry C, 111(22), 7851–7861.
6. YIN, S. (2015). Creation of advanced optical responsive functionality of ceramics by green processes. Journal of the Ceramic Society of Japan, 123(1441), 823–834.
7. Kudo, A., Kato, H., & Tsuji, I. (2004). Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 33(12), 1534–1539.
8. Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16–42.
9. Ayyub, M. M., & Rao, C. N. R. (2020). Design of efficient photocatalysts through band gap engineering. Nanostructured Photocatalysts, 1–18.
10. Shen, S., Chen, J., Wang, X., Zhao, L., & Guo, L. (2011). Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. Journal of Power Sources, 196(23), 10112–10119.
11. Yang, J., Yan, H., Zong, X., Wen, F., Liu, M., & Li, C. (2013). Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996), 20110430–20110430.
12. Xiaobin Liu, Huaqiang Zhuang.(2020) .Recent progresses in photocatalytic hydrogen production: design and construction of Ni-based cocatalysts. Energy Research.
13. Kumaravel, V., Imam, M., Badreldin, A., Chava, R., Do, J., Kang, M., & Abdel-Wahab, A. (2019). Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 9(3), 276.
14. López-Vásquez, A., Suárez-Escobar, A., & López-Suárez, F. E. (2020). Black Sand-Based Photocatalyst for Hydrogen Production from EDTA Solutions Under UV–Vis Irradiation. Topics in Catalysis.
15. Su, Q., Li, Y., Hu, R., Song, F., Liu, S., Guo, C., … Pan, J. (2020). Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Advanced Sustainable Systems, 2000130.
16. Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72–123.
17. Hu, C., Chu, Y.-C., Wang, M.-S., & Wu, X.-H. (2017). Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 348, 8–17.
18. Zhang, H., Liu, F., Wu, H., Cao, X., Sun, J., & Lei, W. (2017). In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light. RSC Advances, 7(64), 40327–40333.
19. Mo, Z., Xu, H., Chen, Z., She, X., Song, Y., Yan, P., … Li, H. (2018). Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. Chinese Journal of Catalysis, 39(4), 760–770
20. Thaweesak, S., Wang, S., Lyu, M., Xiao, M., Peerakiatkhajohn, P., & Wang, L. (2017). Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Transactions, 46(32), 10714–10720.
21. Zhang, Q., Wang, H., Chen, S., Su, Y., & Quan, X. (2017). Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production. RSC Advances, 7(22), 13223–13227.
22. Han, C., Wang, Y., Lei, Y., Wang, B., Wu, N., Shi, Q., & Li, Q. (2014). In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Research, 8(4), 1199–1209.
23. Chen, W., Liu, T.-Y., Huang, T., Liu, X.-H., Duan, G.-R., Yang, X.-J., & Chen, S.-M. (2015). A novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation. RSC Advances, 5(122), 101214–101220.
24. Zhang, J., Wang, Y., Jin, J., Zhang, J., Lin, Z., Huang, F., & Yu, J. (2013). Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS/g-C3N4 Nanowires. ACS Applied Materials & Interfaces, 5(20), 10317–10324.
25. Chen, J., Shen, S., Guo, P., Wang, M., Su, J., Zhao, D., & Guo, L. (2013). Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. Journal of Materials Research, 29(01), 64–70.
26. Lin, W., Lu, K., Zhou, S., Wang, J., Mu, F., Wang, Y., … Kong, Y. (2018). Defects remodeling of g-C3N4 nanosheets by fluorine-containing solvothermal treatment to enhance their photocatalytic activities. Applied Surface Science.
27. Wang, L., Hong, Y., Liu, E., Duan, X., Lin, X., & Shi, J. (2020). A bottom-up acidification strategy engineered ultrathin g-C3N4 nanosheets towards boosting photocatalytic hydrogen evolution. Carbon.
28. Song, T., Zhang, P., Zeng, J., Wang, T., Ali, A., & Zeng, H. (2017). Boosting the photocatalytic H2 evolution activity of Fe2O3 polymorphs (α-, γ- and β-Fe2O3) by fullerene [C60]-modification and dye-sensitization under visible light irradiation. RSC Advances, 7(46), 29184–29192.
29. Wen, J., Li, X., Li, H., Ma, S., He, K., Xu, Y., … Gao, Q. (2015). Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Applied Surface Science, 358, 204–212.
30. Suryawanshi, A., Dhanasekaran, P., Mhamane, D., Kelkar, S., Patil, S., Gupta, N., & Ogale, S. (2012). Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: Electronic and morphological effects. International Journal of Hydrogen Energy, 37(12), 9584–9589.
31. Chen, J., Shen, S., Guo, P., Wu, P., & Guo, L. (2014). Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. Journal of Materials Chemistry A, 2(13), 4605.
32. Hu, B., Cai, F., Chen, T., Fan, M., Song, C., Yan, X., & Shi, W. (2015). Hydrothermal Synthesis g-C3N4/Nano-InVO4 Nanocomposites and Enhanced Photocatalytic Activity for Hydrogen Production under Visible Light Irradiation. ACS Applied Materials & Interfaces, 7(33), 18247–18256.
33. Chen, J., Shen, S., Wu, P., & Guo, L. (2015). Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chemistry, 17(1), 509–517
34. Zhong, Y., Yuan, J., Wen, J., Li, X., Xu, Y., Liu, W., … Fang, Y. (2015). Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution. Dalton Transactions, 44(41), 18260–18269.
35. Feng, L.-L., Zou, Y., Li, C., Gao, S., Zhou, L.-J., Sun, Q., … Zou, X. (2014). Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H2 evolution. International Journal of Hydrogen Energy, 39(28), 15373–15379.
36. Pany, S., & Parida, K. M. (2015). A facile in situ approach to fabricate N,S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution. Physical Chemistry Chemical Physics, 17(12), 8070–8077
37. Zang, Y., Li, L., Xu, Y., Zuo, Y., & Li, G. (2014). Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution. J. Mater. Chem. A, 2(38), 15774–15780.
38. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69.
39. Jana, S. (2015). Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis. Dalton Transactions, 44(43), 18692–18717.
40. Lin, B., Xue, C., Yan, X., Yang, G., Yang, G., & Yang, B. (2015). Facile fabrication of novel SiO 2/g-C3N4 core–shell nanosphere photocatalysts with enhanced visible light activity. Applied Surface Science, 357, 346–355.
41. Sample Injection – Valco 6 port valve. 檢自
https://www.vici.com/support/app/app11.php
42. Tan, C. G., Bowen, B. D., & Epstein, N. (1987). Production of monodisperse colloidal silica spheres: Effect of temperature. Journal of Colloid and Interface Science, 118(1), 290–293.
43. Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review. Journal of Materials Science.
44. Mohammed, A. M., Rahim, R. A., Ibraheem, I. J., Loong, F. K., Hisham, H., Hashim, U., & Al-Douri, Y. (2014). Application of Gold Nanoparticles for Electrochemical DNA Biosensor. Journal of Nanomaterials, 2014, 1–7. |