博碩士論文 108324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.226.88.63
姓名 林家琪(Chia-Chi Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 SiO2@g-C3N4奈米殼層結構光觸媒的合成與 其光催化產氫研究
(Photocatalytic Hydrogen Production based on SiO2@g-C3N4 Core-shell Nanoparticles)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 現今社會環境汙染問題十分嚴重,加上化石能源的大量消耗,因此尋找可再生且乾淨的替代能源是當務之急。由於太陽能取之不盡用之不竭,故被視為克服這項難題的最佳候選。我們利用光觸媒吸收太陽光來分解水產生氫氣,氫能燃燒過後只會產生能量及水,並不會對環境造成負擔。綜合上述,開發高產氫效率的光觸媒是增加可再生能源的關鍵。
g-C3N4 (Graphitic carbon nitride) 屬於n型半導體光觸媒,因出色的光學、電性、形貌等等受到越來越多的關注,但是它照光後生成的電子電洞對容易再結合,為了改善此問題,我們透過在氮氣環境下鍛燒二氧化矽和熔融的氰胺混合物來合成SiO2@g-C3N4 core-shell光觸媒,使g-C3N4厚度變薄,縮短光生電子遷移到表面反應位點的距離,進而抑制再結合發生,提高產氫效率,並且探討不同比例下g-C3N4包覆二氧化矽的效果與光催化能力,最後透過調整犧牲試劑的濃度來優化光觸媒的產氫效率。
摘要(英) Nowadays, the environmental pollution and enormous consumption of fossil fuel has become a severe problem. Hence, it is urgent to find renewable and clean energy. Since solar energy is inexhaustible, it is regarded as the best candidate to overcome this difficult problem. With the photocatalysts to absorb sunlight, hydrogen can be produced by water splitting. After hydrogen combustion, it only produces energy and water, will not cause damage to the environment. To sum up, the development of photocatalysts with high hydrogen production efficiency is the key to renewable energy.
Graphitic carbon nitride (g-C3N4) is n-type semiconductor photocatalyst, which has attracted considerable attention due to its excellent optical and electrical properties. However, a major barrier to g-C3N4 is its high recombination of photogenerated electron–hole pairs. In order to improve this drawback, SiO2@ g-C3N4 core–shell photocatalyst was synthesized by calcining the silica nanoparticle and molten cyanamide in nitrogen atmosphere. The lamellar g-C3N4 was covered on the surface of SiO2, the thickness of g-C3N4 layer was very thin, which could shorten the propagation distance of the photogenerated charges from g-C3N4 bulk to reaction active sites on the surface. This process can inhibit the possibility of photogenerated electron–hole pairs recombination, increasing the hydrogen evolution rate. The catalytic activity of SiO2@ g-C3N4 with different mass ratios of SiO2 and cyanamide calcined has also been investigated. Moreover, the photocatalytic efficiency is optimized by adjusting the concentration of sacrificial reagent.
關鍵字(中) ★ 光觸媒 關鍵字(英) ★ photocatalyst
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章、 緒論 1
1-1前言 1
1-2光觸媒發展 3
1-3研究動機 4
第二章、 文獻回顧 5
2-1光觸媒吸收光分解水產氫 5
2-2光觸媒材料 8
2-3提升光觸媒產氫效率的方式 12
2-3-1能帶工程 12
2-3-2 摻雜金屬 13
2-3-3負載共觸媒 14
2-3-4 縮小光觸媒材料尺寸 16
2-3-5選擇適合的犧牲試劑 13
2-3-6異質接面 20
2-4 g-C3N4光觸媒 22
2-5 二氧化矽奈米粒子合成 28
第三章、 研究方法 32
3-1 實驗藥品 32
3-2 實驗儀器 34
3-3 實驗步驟 36
3-3-1 不同溫度下鍛燒製備g-C3N4 36
3-3-2 以不同前驅物鍛燒製備g-C3N4 36
3-3-3溶膠¬-凝膠法製備二氧化矽奈米粒子 36
3-3-4定溫下以不同比例鍛燒製備SiO2@g-C3N4 37
3-3-5光觸媒粉體溶液產氫效率量測 37
第四章、 結果與討論 41
4-1 不同溫度下合成g-C3N4 41
4-1-1 X光繞射分析 41
4-1-2紫外光可見光光譜分析 45
4-1-3產氫效率 47
4-2 以不同前驅物合成g-C3N4 48
4-2-1 X光繞射分析 48
4-2-2紫外光可見光光譜分析 50
4-2-3產氫效率 51
4-3 二氧化矽奈米粒子 52
4-4 定溫下以不同比例合成SiO2@g-C3N4 54
4-4-1 X光繞射分析 54
4-4-2傅立葉轉換紅外線光譜分析 56
4-4-3 TEM形貌分析 58
4-4-4螢光光譜分析 60
4-4-5產氫效率 61
4-5犧牲試劑對光觸媒產氫效率之影響 66
第五章、 結論 68
第六章、 未來建議 69
參考文獻 70
附錄 74
參考文獻 1. 黃彥禎、郭瑋汝、李岱洲(2018)。光觸媒產氫。檢自https://www.materialsnet.com.tw/DocView.aspx?id=32994
2. Kudo, A., & Miseki, Y. (2009). Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 38(1), 253–278.
3. Wang, W., Tadé, M. O., & Shao, Z. (2015). Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 44(15), 5371–5408.
4. Inamuddin, Boddula, R., & Asiri, A. M. (Eds.). (2020). Methods for Electrocatalysis. Switzerland: This Springer imprint.
5. Maeda, K., & Domen, K. (2007). New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. The Journal of Physical Chemistry C, 111(22), 7851–7861.
6. YIN, S. (2015). Creation of advanced optical responsive functionality of ceramics by green processes. Journal of the Ceramic Society of Japan, 123(1441), 823–834.
7. Kudo, A., Kato, H., & Tsuji, I. (2004). Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 33(12), 1534–1539.
8. Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16–42.
9. Ayyub, M. M., & Rao, C. N. R. (2020). Design of efficient photocatalysts through band gap engineering. Nanostructured Photocatalysts, 1–18.
10. Shen, S., Chen, J., Wang, X., Zhao, L., & Guo, L. (2011). Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. Journal of Power Sources, 196(23), 10112–10119.
11. Yang, J., Yan, H., Zong, X., Wen, F., Liu, M., & Li, C. (2013). Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1996), 20110430–20110430.
12. Xiaobin Liu, Huaqiang Zhuang.(2020) .Recent progresses in photocatalytic hydrogen production: design and construction of Ni-based cocatalysts. Energy Research.
13. Kumaravel, V., Imam, M., Badreldin, A., Chava, R., Do, J., Kang, M., & Abdel-Wahab, A. (2019). Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 9(3), 276.
14. López-Vásquez, A., Suárez-Escobar, A., & López-Suárez, F. E. (2020). Black Sand-Based Photocatalyst for Hydrogen Production from EDTA Solutions Under UV–Vis Irradiation. Topics in Catalysis.
15. Su, Q., Li, Y., Hu, R., Song, F., Liu, S., Guo, C., … Pan, J. (2020). Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Advanced Sustainable Systems, 2000130.
16. Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72–123.
17. Hu, C., Chu, Y.-C., Wang, M.-S., & Wu, X.-H. (2017). Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 348, 8–17.
18. Zhang, H., Liu, F., Wu, H., Cao, X., Sun, J., & Lei, W. (2017). In situ synthesis of g-C3N4/TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light. RSC Advances, 7(64), 40327–40333.
19. Mo, Z., Xu, H., Chen, Z., She, X., Song, Y., Yan, P., … Li, H. (2018). Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. Chinese Journal of Catalysis, 39(4), 760–770
20. Thaweesak, S., Wang, S., Lyu, M., Xiao, M., Peerakiatkhajohn, P., & Wang, L. (2017). Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Transactions, 46(32), 10714–10720.
21. Zhang, Q., Wang, H., Chen, S., Su, Y., & Quan, X. (2017). Three-dimensional TiO2 nanotube arrays combined with g-C3N4 quantum dots for visible light-driven photocatalytic hydrogen production. RSC Advances, 7(22), 13223–13227.
22. Han, C., Wang, Y., Lei, Y., Wang, B., Wu, N., Shi, Q., & Li, Q. (2014). In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Research, 8(4), 1199–1209.
23. Chen, W., Liu, T.-Y., Huang, T., Liu, X.-H., Duan, G.-R., Yang, X.-J., & Chen, S.-M. (2015). A novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation. RSC Advances, 5(122), 101214–101220.
24. Zhang, J., Wang, Y., Jin, J., Zhang, J., Lin, Z., Huang, F., & Yu, J. (2013). Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS/g-C3N4 Nanowires. ACS Applied Materials & Interfaces, 5(20), 10317–10324.
25. Chen, J., Shen, S., Guo, P., Wang, M., Su, J., Zhao, D., & Guo, L. (2013). Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. Journal of Materials Research, 29(01), 64–70.
26. Lin, W., Lu, K., Zhou, S., Wang, J., Mu, F., Wang, Y., … Kong, Y. (2018). Defects remodeling of g-C3N4 nanosheets by fluorine-containing solvothermal treatment to enhance their photocatalytic activities. Applied Surface Science.
27. Wang, L., Hong, Y., Liu, E., Duan, X., Lin, X., & Shi, J. (2020). A bottom-up acidification strategy engineered ultrathin g-C3N4 nanosheets towards boosting photocatalytic hydrogen evolution. Carbon.
28. Song, T., Zhang, P., Zeng, J., Wang, T., Ali, A., & Zeng, H. (2017). Boosting the photocatalytic H2 evolution activity of Fe2O3 polymorphs (α-, γ- and β-Fe2O3) by fullerene [C60]-modification and dye-sensitization under visible light irradiation. RSC Advances, 7(46), 29184–29192.
29. Wen, J., Li, X., Li, H., Ma, S., He, K., Xu, Y., … Gao, Q. (2015). Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Applied Surface Science, 358, 204–212.
30. Suryawanshi, A., Dhanasekaran, P., Mhamane, D., Kelkar, S., Patil, S., Gupta, N., & Ogale, S. (2012). Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: Electronic and morphological effects. International Journal of Hydrogen Energy, 37(12), 9584–9589.
31. Chen, J., Shen, S., Guo, P., Wu, P., & Guo, L. (2014). Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. Journal of Materials Chemistry A, 2(13), 4605.
32. Hu, B., Cai, F., Chen, T., Fan, M., Song, C., Yan, X., & Shi, W. (2015). Hydrothermal Synthesis g-C3N4/Nano-InVO4 Nanocomposites and Enhanced Photocatalytic Activity for Hydrogen Production under Visible Light Irradiation. ACS Applied Materials & Interfaces, 7(33), 18247–18256.
33. Chen, J., Shen, S., Wu, P., & Guo, L. (2015). Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chemistry, 17(1), 509–517
34. Zhong, Y., Yuan, J., Wen, J., Li, X., Xu, Y., Liu, W., … Fang, Y. (2015). Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution. Dalton Transactions, 44(41), 18260–18269.
35. Feng, L.-L., Zou, Y., Li, C., Gao, S., Zhou, L.-J., Sun, Q., … Zou, X. (2014). Nanoporous sulfur-doped graphitic carbon nitride microrods: A durable catalyst for visible-light-driven H2 evolution. International Journal of Hydrogen Energy, 39(28), 15373–15379.
36. Pany, S., & Parida, K. M. (2015). A facile in situ approach to fabricate N,S-TiO2/g-C3N4 nanocomposite with excellent activity for visible light induced water splitting for hydrogen evolution. Physical Chemistry Chemical Physics, 17(12), 8070–8077
37. Zang, Y., Li, L., Xu, Y., Zuo, Y., & Li, G. (2014). Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution. J. Mater. Chem. A, 2(38), 15774–15780.
38. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69.
39. Jana, S. (2015). Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis. Dalton Transactions, 44(43), 18692–18717.
40. Lin, B., Xue, C., Yan, X., Yang, G., Yang, G., & Yang, B. (2015). Facile fabrication of novel SiO 2/g-C3N4 core–shell nanosphere photocatalysts with enhanced visible light activity. Applied Surface Science, 357, 346–355.
41. Sample Injection – Valco 6 port valve. 檢自
https://www.vici.com/support/app/app11.php
42. Tan, C. G., Bowen, B. D., & Epstein, N. (1987). Production of monodisperse colloidal silica spheres: Effect of temperature. Journal of Colloid and Interface Science, 118(1), 290–293.
43. Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review. Journal of Materials Science.
44. Mohammed, A. M., Rahim, R. A., Ibraheem, I. J., Loong, F. K., Hisham, H., Hashim, U., & Al-Douri, Y. (2014). Application of Gold Nanoparticles for Electrochemical DNA Biosensor. Journal of Nanomaterials, 2014, 1–7.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明