博碩士論文 108821017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.19.30.232
姓名 楊伯瑜(Bo-Yu Yang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 菸草嵌紋病毒移動蛋白於阿拉伯芥中影響內源性訊息核糖核酸長距離運輸
(Tobacco mosaic virus movement protein influence endogenous mRNA long-distance movement in Arabidopsis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 植物 mRNA 可經由原生質絲 (plasmodesmata, PD) 和韌皮部 (phloem) 進行細胞間及長距離運輸以影響植物發育,而 RNA 病毒也可藉由原生質絲和韌皮部運輸病毒 RNA 以完成系統性感染。病毒移動蛋白 (movement protein, MP) 為非序列專一性 RNA 結合蛋白,可將病毒 RNA 運輸至原生質絲以促進病毒 RNA 運輸至鄰近細胞。透過先前 RNA 即時成像系統結果表明菸草嵌紋病毒 (tobacco mosaic virus, TMV) 移動蛋白 (TMV MP) 可與非病毒 RNA 結合並帶至原生質絲。然而是否病毒移動蛋白可促進非病毒內源性 mRNAs運輸至鄰近細胞仍未清楚。為了檢驗此一假設,我們以綠色螢光蛋白 (green fluorescent protein, GFP) 標定TMV MP (TMVMP-GFP) 轉基因至阿拉伯芥中,轉殖株具有早開花之表現型且TMV MP-GFP蛋白質累積。進一步轉殖 SUC2 promoter 驅動紅色螢光蛋白 (red fluorescent protein, RFP) 於野生型 (Columbia, Col) 和 TMV MP-GFP 轉殖株中觀測mRNAs 之運輸。藉由嫁接結果顯示在 TMV MP-GFP 嫁接嵌合體中RFP 及TMV MP mRNAs可進行長距離運輸。此外,將TMV MP-GFP轉殖至 CHOLINE TRANSPORTER-LIKE 1 (CHER1) 突變株,為一種囊泡運輸和原生質絲突變株。TMV MP-GFP/cher1-4具有晚開花之表現型,且有 TMV MP mRNA表現但無蛋白質累積。綜合以上,我們提出 TMV MP-GFP 可帶非移動性mRNAs 經由囊泡運輸至原生質絲後,再帶至韌皮部進行長距離運輸。
摘要(英) Plant mRNA can move cell-to-cell and long-distance via plasmodesmata (PD) and phloem to influence plant development, RNA viruses can also transport viral RNA by PD and phloem to complete systemic infection. Viral movement protein (MP), which is a non-sequence-specific RNA binding protein, target viral RNA to plasmodesmata (PD), in turn promoting the viral RNA transport to neighboring cells. RNA live imaging system results indicated that tobacco mosaic virus movement protein (TMV MP) can bind non-viral RNA to PD. However, it is still unclear whether the viral movement protein affects non-viral endogenous mRNAs transport to neighboring cells. To test this hypothesis, we used green fluorescent protein (GFP) to label TMV MP (TMVMP-GFP) and transformed into Arabidopsis. The transformant shows an early flowering phenotype and TMV MP-GFP protein accumulation. Further we transformed SUC2 promoter fusion red fluorescent protein (RFP) into wildtype and TMV MP-GFP to observe the mRNA mobilization in Arabidopsis. The grafting assay suggested that RFP and TMV MP mRNAs can move long-distance in TMV MP-GFP grafting chimera. In addition, we induced TMV MP-GFP into CHOLINE TRANSPORTER-LIKE 1 (CHER1) mutant, which is a vesicles transport and PD mutant. TMV MP-GFP/cher1-4 showed a late flowering phenotype, and TMV MP mRNA expression but no protein accumulation. Taken together, we propose that TMV MP-GFP can transport non-mobile mRNAs via vesicles to PD, and then transport into phloem for long-distance transport.
關鍵字(中) ★ 菸草嵌紋病毒移動蛋白
★ 阿拉伯芥
★ mRNA 移動
★ CHOLINE TRANSPORTER-LIKE 1
關鍵字(英) ★ tobacco mosaic virus movement protein
★ Arabidopsis thaliana
★ mRNA movement
★ CHOLINE TRANSPORTER-LIKE 1
論文目次 目錄
論文口試委員審定書 ………………………………………………………………………………………………… I
論文指導教授推薦書 ………………………………………………………………………………………………… II
謝誌 …………………………………………………………………………………………………………………………………… III
中文摘要 ………………………………………………………………………………………………………………………… IV
英文摘要 …………………………………………………………………………………………………………………………… V
第一章 前言 …………………………………………………………………………………………………………………… 1
植物細胞間及長距離運輸mRNA………………………………………………………………………………… 1
植物病毒感染途徑以及移動蛋白 (movement protein) 之功能………… 2
CHOLINE TRANSPORTER-LIKE 1 之發現與研究…………………………………………… 5
研究目的……………………………………………………………………………………………………………………………… 5
第二章 材料與方法………………………………………………………………………………………………………… 7
植物材料……………………………………………………………………………………………………………………………… 7
植物RNA之萃取………………………………………………………………………………………………………………… 7
Dnase I 處理…………………………………………………………………………………………………………………… 8
反轉錄反應………………………………………………………………………………………………………………………… 8
聚合酶連鎖反應………………………………………………………………………………………………………………… 8
即時定量聚合酶連鎖反應…………………………………………………………………………………………… 9
植物蛋白質之萃取…………………………………………………………………………………………………………… 10
蛋白質濃度測定………………………………………………………………………………………………………………… 10
SDS-PAGE 和西方墨點法……………………………………………………………………………………………… 10
質體 (plasmid) DNA 之建構 (GFP-CHER1)…………………………………………………… 11
質體DNA轉型至農桿菌…………………………………………………………………………………………………… 11
阿拉伯芥之轉殖………………………………………………………………………………………………………………… 11
阿拉伯芥種苗嫁接法……………………………………………………………………………………………………… 12
農桿菌感染菸草之暫時表現螢光蛋白…………………………………………………………………… 12
碘化丙啶、苯胺藍螢光染劑染色……………………………………………………………………………… 13
共軛焦雷射顯微鏡…………………………………………………………………………………………………………… 13
第三章 結果……………………………………………………………………………………………………………………… 14
TMV MP-GFP於阿拉伯芥表現並聚集於原生質絲……………………………………………… 14
TMV MP影響內源性 RFP mRNA長距離運輸能力……………………………………………… 16
TMV MP-GFP在細胞內移動至原生質絲之機制…………………………………………………… 17
第四章 討論……………………………………………………………………………………………………………………… 20
TMVMP-GFP 於阿拉伯芥表現,並影響其開花…………………………………………………… 20
TMVMP-GFP 影響內源非移動性 RFP mRNA 之長距離運輸能力……………… 21
CHER1 可能影響 TMVMP 及移動性 mRNA 於細胞內移動機制………………… 22
總結……………………………………………………………………………………………………………………………………… 24
圖表……………………………………………………………………………………………………………………………………… 25
參考文獻……………………………………………………………………………………………………………………………… 39
參考文獻 Almon, E., Horowitz, M., Wang, H.L., Lucas, W.J., Zamski, E., and Wolf, S. (1997). Phloem-Specific Expression of the Tobacco Mosaic Virus Movement Protein Alters Carbon Metabolism and Partitioning in Transgenic Potato Plants. Plant Physiol 115, 1599-1607.
Amari, K., Di Donato, M., Dolja, V.V., and Heinlein, M. (2014). Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathog 10, e1004448.
Ashby, J., Boutant, E., Seemanpillai, M., Groner, A., Sambade, A., Ritzenthaler, C., and Heinlein, M. (2006). Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80, 8329-8344.
Balachandran, S., Xiang, Y., Schobert, C., Thompson, G.A., and Lucas, W.J. (1997). Phloem sap proteins from <em>Cucurbita maxima</em> and <em>Ricinus communis</em> have the capacity to traffic cell to cell through plasmodesmata. Proceedings of the National Academy of Sciences 94, 14150-14155.
Banerjee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18, 3443-3457.
Berna, A., Gafny, R., Wolf, S., Lucas, W.J., Holt, C.A., and Beachy, R.N. (1991). The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function. Virology 182, 682-689.
Buhtz, A., Pieritz, J., Springer, F., and Kehr, J. (2010). Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10, 64.
Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C., and Kehr, J. (2008). Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53, 739-749.
Cai, G., Wang, Y., Yan, W., Luan, S., and Lan, W. (2020). Choline transporter-like 1 (CTL1) positively regulates apical hook development in etiolated Arabidopsis seedlings. Biochemical and Biophysical Research Communications 525, 491-497.
Carlsbecker, A., Lee, J.Y., Roberts, C.J., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, M.A., Vatén, A., Thitamadee, S., Campilho, A., Sebastian, J., Bowman, J.L., Helariutta, Y., and Benfey, P.N. (2010). Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316-321.
Carrington, J.C., Kasschau, K.D., Mahajan, S.K., and Schaad, M.C. (1996). Cell-to-Cell and Long-Distance Transport of Viruses in Plants. Plant Cell 8, 1669-1681.
Chen, M.H., and Citovsky, V. (2003). Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35, 386-392.
Chen, M.H., Sheng, J., Hind, G., Handa, A.K., and Citovsky, V. (2000). Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. Embo j 19, 913-920.
Chitwood, D.H., Nogueira, F.T., Howell, M.D., Montgomery, T.A., Carrington, J.C., and Timmermans, M.C. (2009). Pattern formation via small RNA mobility. Genes Dev 23, 549-554.
Citovsky, V., Knorr, D., Schuster, G., and Zambryski, P. (1990). The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60, 637-647.
Citovsky, V., McLean, B.G., Zupan, J.R., and Zambryski, P. (1993). Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7, 904-910.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743.
Dardick, C.D., Golem, S., and Culver, J.N. (2000). Susceptibility and symptom development in Arabidopsis thaliana to Tobacco mosaic virus is influenced by virus cell-to-cell movement. Mol Plant Microbe Interact 13, 1139-1144.
Deeken, R., Ache, P., Kajahn, I., Klinkenberg, J., Bringmann, G., and Hedrich, R. (2008). Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55, 746-759.
Dettmer, J., Ursache, R., Campilho, A., Miyashima, S., Belevich, I., O′Regan, S., Mullendore, D.L., Yadav, S.R., Lanz, C., Beverina, L., Papagni, A., Schneeberger, K., Weigel, D., Stierhof, Y.D., Moritz, T., Knoblauch, M., Jokitalo, E., and Helariutta, Y. (2014). CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nat Commun 5, 4276.
Ding, B., Turgeon, R., and Parthasarathy, M.V. (1992a). Substructure of freeze-substituted plasmodesmata. Protoplasma 169, 28-41.
Ding, B., Haudenshield, J.S., Hull, R.J., Wolf, S., Beachy, R.N., and Lucas, W.J. (1992b). Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4, 915-928.
Dreher, T.W. (2010). Viral tRNAs and tRNA-like structures. Wiley Interdiscip Rev RNA 1, 402-414.
Ehlers, K., and Kollmann, R. (2001). Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216, 1-30.
Freytes, S.N., Canelo, M., and Cerdán, P.D. (2021). Regulation of Flowering Time: When and Where? Curr Opin Plant Biol 63, 102049.
Gómez, G., and Pallás, V. (2004). A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J Virol 78, 10104-10110.
Gómez, G., Torres, H., and Pallás, V. (2005). Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J 41, 107-116.
Gao, Y.Q., Chen, J.G., Chen, Z.R., An, D., Lv, Q.Y., Han, M.L., Wang, Y.L., Salt, D.E., and Chao, D.Y. (2017). A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis. PLoS Biol 15, e2002978.
Golem, S., and Culver, J.N. (2003). Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 16, 681-688.
Ham, B.K., Brandom, J.L., Xoconostle-Cázares, B., Ringgold, V., Lough, T.J., and Lucas, W.J. (2009). A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21, 197-215.
Haywood, V., Yu, T.S., Huang, N.C., and Lucas, W.J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42, 49-68.
Heinlein, M., and Epel, B.L. (2004). Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235, 93-164.
Heinlein, M., Epel, B.L., Padgett, H.S., and Beachy, R.N. (1995). Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270, 1983-1985.
Heinlein, M., Padgett, H.S., Gens, J.S., Pickard, B.G., Casper, S.J., Epel, B.L., and Beachy, R.N. (1998). Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10, 1107-1120.
Huang, N.C., and Yu, T.S. (2015). A pin-fasten grafting method provides a non-sterile and highly efficient method for grafting Arabidopsis at diverse developmental stages. Plant Methods 11, 38.
Hughes, R.K., Perbal, M.C., Maule, A.J., and Hull, R. (1995). Evidence for proteolytic processing of tobacco mosaic virus movement protein in Arabidopsis thaliana. Mol Plant Microbe Interact 8, 658-665.
Jin, Z.L., Hong, J.K., Yun, D.-J., Lee, S.Y., Choi, Y.J., Bahk, J.D., Beachy, R.N., Cho, M.J., and Lim, C.O. (2002). Expression of the tobacco mosaic virus movement protein alters starch accumulation inNicotiana benthamiana. Journal of Plant Biology 45, 77.
Kahn, T.W., Lapidot, M., Heinlein, M., Reichel, C., Cooper, B., Gafny, R., and Beachy, R.N. (1998). Domains of the TMV movement protein involved in subcellular localization. Plant J 15, 15-25.
Kawakami, S., Watanabe, Y., and Beachy, R.N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101, 6291-6296.
Kim, M., Canio, W., Kessler, S., and Sinha, N. (2001). Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293, 287-289.
Kobayashi, Y., and Weigel, D. (2007). Move on up, it′s time for change--mobile signals controlling photoperiod-dependent flowering. Genes Dev 21, 2371-2384.
Kraner, M.E., Müller, C., and Sonnewald, U. (2017a). Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. Plant J 92, 696-709.
Kraner, M.E., Link, K., Melzer, M., Ekici, A.B., Uebe, S., Tarazona, P., Feussner, I., Hofmann, J., and Sonnewald, U. (2017b). Choline transporter-like1 (CHER1) is crucial for plasmodesmata maturation in Arabidopsis thaliana. Plant J 89, 394-406.
Kumar, G., and Dasgupta, I. (2021). Variability, Functions and Interactions of Plant Virus Movement Proteins: What Do We Know So Far? Microorganisms 9, 695.
Leonard, D.A., and Zaitlin, M. (1982). A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology 117, 416-424.
Levy, A., Guenoune-Gelbart, D., and Epel, B.L. (2007). beta-1,3-Glucanases: Plasmodesmal Gate Keepers for Intercellular Communication. Plant Signal Behav 2, 404-407.
Levy, A., Zheng, J.Y., and Lazarowitz, S.G. (2015). Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr Biol 25, 2018-2025.
Lewis, J.D., and Lazarowitz, S.G. (2010). Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci U S A 107, 2491-2496.
Li, C., Zhang, K., Zeng, X., Jackson, S., Zhou, Y., and Hong, Y. (2009). A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol 83, 3540-3548.
Liu, L., and Chen, X. (2018). Intercellular and systemic trafficking of RNAs in plants. Nat Plants 4, 869-878.
Liu, Y., Huang, C., Zeng, J., Yu, H., Li, Y., and Yuan, C. (2020). Identification of two additional plasmodesmata localization domains in the tobacco mosaic virus cell-to-cell-movement protein. Biochem Biophys Res Commun 521, 145-151.
Lough, T.J., and Lucas, W.J. (2006). Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57, 203-232.
Lu, K.J., Huang, N.C., Liu, Y.S., Lu, C.A., and Yu, T.S. (2012). Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biol 9, 653-662.
Lucas, W.J., Bouché-Pillon, S., Jackson, D.P., Nguyen, L., Baker, L., Ding, B., and Hake, S. (1995). Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270, 1980-1983.
Luo, K.R., Huang, N.C., and Yu, T.S. (2018). Selective Targeting of Mobile mRNAs to Plasmodesmata for Cell-to-Cell Movement. Plant Physiol 177, 604-614.
McLean, B.G., Zupan, J., and Zambryski, P.C. (1995). Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7, 2101-2114.
Olesinski, A.A., Lucas, W.J., Galun, E., and Wolf, S. (1995). Pleiotropic effects of tobacco-mosaic-virus movement protein on carbon metabolism in transgenic tobacco plants. Planta 197, 118-126.
Olesinski, A.A., Almon, E., Navot, N., Perl, A., Galun, E., Lucas, W.J., and Wolf, S. (1996). Tissue-Specific Expression of the Tobacco Mosaic Virus Movement Protein in Transgenic Potato Plants Alters Plasmodesmal Function and Carbohydrate Partitioning. Plant Physiol 111, 541-550.
Pant, B.D., Buhtz, A., Kehr, J., and Scheible, W.R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53, 731-738.
Peiró, A., Martínez-Gil, L., Tamborero, S., Pallás, V., Sánchez-Navarro, J.A., and Mingarro, I. (2014). The Tobacco mosaic virus movement protein associates with but does not integrate into biological membranes. J Virol 88, 3016-3026.
Radford, J.E., Vesk, M., and Overall, R.L. (1998). Callose deposition at plasmodesmata. Protoplasma 201, 30-37.
Reichel, C., and Beachy, R.N. (2000). Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J Virol 74, 3330-3337.
Robards, A. (1971). The ultrastructure of plasmodesmata. Protoplasma 72, 315-323.
Ruiz-Medrano, R., Xoconostle-Cázares, B., and Lucas, W.J. (1999). Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405-4419.
Sasaki, T., Chino, M., Hayashi, H., and Fujiwara, T. (1998). Detection of Several mRNA Species in Rice Phloem Sap. Plant and Cell Physiology 39, 895-897.
Sosnová, V., and Polák, Z. (1975). Susceptibility ofArabidopsis thaliana (L.)Heynh. to infection with some plant viruses. Biologia Plantarum 17, 156-158.
Sparkes, I.A., Runions, J., Kearns, A., and Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1, 2019-2025.
Su, Z., Wang, N., Hou, Z., Li, B., Li, D., Liu, Y., Cai, H., Qin, Y., and Chen, X. (2020). Regulation of Female Germline Specification via Small RNA Mobility in Arabidopsis. Plant Cell 32, 2842-2854.
Thieme, C.J., Rojas-Triana, M., Stecyk, E., Schudoma, C., Zhang, W., Yang, L., Miñambres, M., Walther, D., Schulze, W.X., Paz-Ares, J., Scheible, W.R., and Kragler, F. (2015). Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1, 15025.
Vatén, A., Dettmer, J., Wu, S., Stierhof, Y.D., Miyashima, S., Yadav, S.R., Roberts, C.J., Campilho, A., Bulone, V., Lichtenberger, R., Lehesranta, S., Mähönen, A.P., Kim, J.Y., Jokitalo, E., Sauer, N., Scheres, B., Nakajima, K., Carlsbecker, A., Gallagher, K.L., and Helariutta, Y. (2011). Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21, 1144-1155.
Waigmann, E., Lucas, W.J., Citovsky, V., and Zambryski, P. (1994). Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci U S A 91, 1433-1437.
Waigmann, E., Chen, M.H., Bachmaier, R., Ghoshroy, S., and Citovsky, V. (2000). Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. Embo j 19, 4875-4884.
Wang, Y., Yang, L., Tang, Y., Tang, R., Jing, Y., Zhang, C., Zhang, B., Li, X., Cui, Y., Zhang, C., Shi, J., Zhao, F., Lan, W., and Luan, S. (2017). Arabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth. PLoS Biol 15, e2004310.
Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843-859.
Wolf, S., Deom, C.M., Beachy, R.N., and Lucas, W.J. (1989). Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246, 377-379.
Xoconostle-Cázares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H.L., Monzer, J., Yoo, B.C., McFarland, K.C., Franceschi, V.R., and Lucas, W.J. (1999). Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283, 94-98.
Yang, L., Perrera, V., Saplaoura, E., Apelt, F., Bahin, M., Kramdi, A., Olas, J., Mueller-Roeber, B., Sokolowska, E., Zhang, W., Li, R., Pitzalis, N., Heinlein, M., Zhang, S., Genovesio, A., Colot, V., and Kragler, F. (2019). m(5)C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants. Curr Biol 29, 2465-2476.e2465.
Yoo, B.C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y.M., Lough, T.J., and Lucas, W.J. (2004). A systemic small RNA signaling system in plants. Plant Cell 16, 1979-2000.
Yuan, C., Lazarowitz, S.G., and Citovsky, V. (2016). Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein. mBio 7, e02052-02015.
Zhang, S., Sun, L., and Kragler, F. (2009). The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 150, 378-387.
Zhang, W., Thieme, C.J., Kollwig, G., Apelt, F., Yang, L., Winter, N., Andresen, N., Walther, D., and Kragler, F. (2016). tRNA-Related Sequences Trigger Systemic mRNA Transport in Plants. Plant Cell 28, 1237-1249.
指導教授 余天心 陸重安(Tien-Shin Yu Chung-An Lu) 審核日期 2021-11-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明