參考文獻 |
1. Halkos, George E.; Gkampoura, Eleni-Christina (2020). Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies, 13(11), 2906.
2. Ellabban, Omar; Abu-Rub, Haitham; Blaabjerg, Frede (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.
3. Ahmed, Razin; Sreeram, Victor; Mishra, Yateendra; Arif, Muammer Din (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792.
4. Islam, Md. Rabiul;Rahman, Saifur;Roy, Naruttam Kumar (2018). Renewable Energy and the Environment. Singapore:Springer Nature.
5. Tursi, Antonio (2019). A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 22, 962-979.
6. Ahorsu, Richard; Medina, Francesc; Constantí, Magda (2018). Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies, 11(12), 3366.
7. Jesper Tor Jacobsson (2018). Photo Electrochemical Water Splitting: An idea heading towards obsolescence? Energy & Environmental Science, 11(8), 1977-1979.
8. David Tilley (2018). Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion. Advanced Energy Materials, 9(2), 1802877.
9. Islam, Md. Shofiqul (2017). Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Organic Electronics, 41, 143–156.
10. Prévot, Mathieu S.; Sivula, Kevin (2013). Photoelectrochemical Tandem Cells for Solar Water Splitting. The Journal of Physical Chemistry C, 117(35), 17879–17893.
11. Wu, Yi-Hsuan; Guo, Wei-Ru; Mishra, Mrinalini; Huang, Yen-Chen; Chang, Jeng-Kuei; Lee, Tai-Chou (2018). Combinatorial Studies on Wet-Chemical Synthesized Ti-Doped α-Fe2O3: How Does Ti4+ Improve Photoelectrochemical Activity ? ACS Applied Nano Materials., 1(7), 3145–3154.
12. Cha, Hyun Gil; Choi, Kyoung-Shin (2015). Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature Chemistry, 7(4), 328–333.
13. Karthikeyan, Chelladurai; Arunachalam, Prabhakarn; Ramachandran, Kaliappan; Al-Mayouf, Abdullah Manar; Karuppuchamy, Subbian (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 828(5), 154281.
14. Rajeshwar, Krishnan. (2007). Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry. Encyclopedia of Electrochemistry, 6, 1-53.
15. Fujishima, Akira; Honda, Kenichi (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37–38.
16. Tolod, Kristine Rodulfo; Hernández, Simelys; Quadrell, Elsje Alessandra; Russo, Nunzio (2019). Chapter 4 - Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries. Studies in Surface Science and Catalysis, 178, 65-84.
17. 吳季珍 (民104)。擺脫庫倫作用力的光觸媒。科學發展,508,28-33。
18. 蘇建仁 (民93)。功率積體電路之接面隔離研究。碩士論文,國立陽明交通大學。
19. Jiang, Chaoran; Moniz, Savio J. A.; Wang, Aiqin; Zhang, Tao; Tang, Junwang (2017). Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews, 46, 4645.
20. Mun, Seong Jun; Park, Soo-Jin (2019). Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts, 9(10), 805.
21. Sharma, Pankaj; Jang, Ji-Wook; Lee, Jae Sung (2018). Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α-Fe2O3 Photoanode. ChemCatChem, 11, 157–179.
22. Sivula, Kevin; Zboril, Radek; Le Formal, Florian; Robert, Rosa; Weidenkaff, Anke; Tucek, Jiri; Frydrych, Jiri; Grätzel, Michael (2010). Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. Journal of the American Chemical Society, 132(21), 7436–7444.
23. Hardee, Kenneth L.; Bard, Allen Joseph (1976). Semiconductor Electrodes: V . The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis. The Electrochemical Society, 123(7), 1024..
24. Dias, Paula; Vilanova, António; Lopes, Tânia; Andrade, Luísa; Mendes, Adélio (2016). Extremely stable bare hematite photoanode for solar water splitting. Nano Energy, 23, 70–79.
25. Yuan, Ding; Zhang, Lin; Lai, Junhui; Xie, Liqiang; Mao, Bingwei; Zhan, Dongping (2016). SECM evaluations of the crystal-facet-correlated photocatalytic activity of hematites for water splitting. Electrochemistry Communications, 73, 29–32.
26. Ahn, Hyo-Jin; Kwak, Myung-Jun; Lee, Jung-Soo; Yoon, Ki-Yong; Jang, Ji-Hyun (2014). Nanoporous hematite structures to overcome short diffusion lengths in water splitting. Journal of Materials Chemistry A, 2(47), 19999–20003.
27. Sivula, Kevin; Le Formal, Florian; Grätzel, Michael (2011). Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem, 4(4), 432–449.
28. Phuan, Yi Wen; Ong, Wee-Jun; Chong, Meng Nan; Ocon, Joey D. (2017). Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 33, 54–82.
29. Jorand Sartoretti, Chantal; Alexander, Bruce D.; Solarska, Renata; Rutkowska, Iwona A.; Augustynski, Jan; Cerny, Radovan (2005). Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes. The Journal of Physical Chemistry B, 109(28), 13685–13692.
30. Sivula, Kevin; Zboril, Radek; Le Formal, Florian; Robert, Rosa; Weidenkaff, Anke; Tucek, Jiri; Frydrych, Jiri; Grätzel, Michael (2010). Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. Journal of the American Chemical Society, 132(21), 7436–7444.
31. Tamirat, Andebet Gedamu; Rick, John; Dubale, Amare Aregahegn; Su, Wei-Nien; Hwang, Bing-Joe (2016). Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz., 1, 243-267
32. Vincent, Tracey; Gross, Moran; Dotan, Hen; Rothschild, Avner (2012). Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. International Journal of Hydrogen Energy, 37(9), 8102–8109.
33. Li, Linsen; Yu, Yanghai; Meng, Fei; Tan, Yizheng; Hamers, Robert J.; Jin, Song (2012). Facile Solution Synthesis of α-FeF3·3H2O Nanowires and Their Conversion to α-Fe2O3 Nanowires for Photoelectrochemical Application. Nano Letters, 12(2), 724–731.
34. Li, C.; Wang, D.; Gu, J.; Liu,Y.; Zhang, X. (2021). Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment. Catalysts, 11, 8.
35. Ling, Yichuan; Wang, Gongming; Wheeler, Damon A.; Zhang, Jin Z.; Li, Yat (2011). Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Letters, 11(5), 2119–2125.
36. Zhao, Le; Xiao, Jingran; Huang, Huali; Huang, Qiuyang; Zhao, Yicheng; Li, Yongdan (2018). Enhanced efficiency of hematite photoanode for water splitting with the doping of Ge. International Journal of Hydrogen Energy, 43(28), 12646-12652.
37. Bai, Song; Yin, Wenjie; Wang, Lili; Li, Zhengquan; Xiong, Yujie (2016). Surface and interface design of cocatalysts toward photocatalytic water splitting and CO2 reduction. RSC Advances, 6, 57446-57463.
38. Kanan, Matthew W.; Nocera, Daniel George (2008). In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science, 321(5892), 1072–1075..
39. Chadderdon, David J.;Wu, Ling-Pin;McGraw, Zachary A.;Panthani, Matthew;Li, Wenzhen (2019). Heterostructured Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPO‐Mediated Oxidation of 5‐Hydroxymethylfurfural. ChemElectroChem, 6(13), 3387–3392.
40. Chong, Ruifeng; Wang, Baoyun; Li, Deliang; Chang, Zhixian; Zhang, Ling (2017). Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell. Solar Energy Materials and Solar Cells, 160, 287–293.
41. Liu, Guang; Zhao, Yong; Li, Na; Yao, Rui; Wang, Muheng; Wu, Yun; Zhao, Fei; Li, Jinping (2019). Ti-doped hematite photoanode with surface phosphate ions functionalization for synergistic enhanced photoelectrochemical water oxidation. Electrochimica Acta, 307, 197–205..
42. Lan, Huiwen; Xia, Yujian; Feng, Kun; Wei, Aimin; Kang, Zhenhui; Zhong, Jun (2019). Co-doped Carbon Layer to Lower the Onset Potential of Hematite for Solar Water Oxidation. Applied Catalysis B: Environmental, 258, 117962.
43. Han, Hyungkyu; Kment, Stepan; Karlicky, Frantisek; Wang, Lei; Naldoni, Alberto; Schmuki, Patrik; Zboril, Radek (2018). Sb-Doped SnO2 Nanorods Underlayer Effect to the α-Fe2O3 Nanorods Sheathed with TiO2 for Enhanced Photoelectrochemical Water Splitting. Small, 14(19), 1703860
44. Deng, Jiujun; Zhuo, Qiqi; Lv, Xiaoxin (2019). Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 835, 287–292.
45. Ng, Andrew Yun Ru; Boruah, Bhanupriya; Chin, Kek Foo; Modak, Jayant M.; Soo, Han Sen (2019). Photoelectrochemical Cells for Artificial Photosynthesis: Alternatives to Water Oxidation. ChemNanoMat, 6(2), 185-203.
46. Lhermitte, Charles R.; Plainpan, Nukorn; Canjura, Pamela; Boudoirea, Florent; Sivula, Kevin (2021). Direct photoelectrochemical oxidation of hydroxymethylfurfural on tungsten trioxide photoanodes. RSC Advances, 11, 198-202.
47. Allegri, Alessandro; Maslova, Valeriia; Blosi, Magda; Costa, Anna Luisa; Ortelli, Simona; Basile, Francesco; Albonetti, Stefania (2020). Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO2-Based Materials. Molecules, 25(22), 5225.
48. Ayed, Cyrine; Huang, Wei; Kizilsavas, Gönül; Landfester, Katharina; Zhang, Kai A. I. (2020). Photocatalytic partial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) over a covalent triazine framework in water. ChemPhotoChem, 4, 571–576.
49. Wu, Yi-Hsuan; Kuznetsov, Denis A.; Pflug, Nicholas C.; Fedorov, Alexey; Müller, Christoph R. (2021). Solar-driven valorisation of glycerol on BiVO4 photoanodes: effect of co-catalyst and reaction media on reaction selectivity. Journal of Materials Chemistry A, 9 (10), 6252 – 6260.
50. Liu, Dong; Liu, Jin-Cheng; Cai, Weizheng; Ma, Jun; Yang, Hong Bin; Xiao, Hai; Li, Jun; Xiong, Yujie; Huang, Yanqiang; Liu, Bin (2019). Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature Communications, 10(1), 1779.
51. Eerhart, Aloysius J.J.E.; Faaij, André P.C.; Pate, Martin Kumar (2012). Replacing fossil based PET with biobased PEF; Process analysis, energy and GHG balance. Energy & Environmental Science, 5(4), 6407-6422.
52. Amarasekara, Ananda S.; H. Nguyen, Loc; Okorie, Nnaemeka C.; M. Jamal, Saad (2017). A two step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose and application in polyester synthesis. Green Chemistry, 19(6), 1570–1575.
53. Roman-Leshkov, Yuriy; Chheda, Juben; Dumesic, James A. (2006). Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 312(5782), 1933-1937.
54. Shih, Ruey-Fu; Hsu, Hsi-Yen (2012). United States Patent No. 20120016141. United States.
55. Sajid, Muhammad; Zhao, Xuebing; Liu, Dehua (2018). Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethyl furfural (HMF): A recent progress focusing on the chemical-catalytic routes. Green Chemistry, 20(6), 5427-5453.
56. Colmenares, Juan Carlos; Luque, Rafael (2013). Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 43(3), 765-778.
57. Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun (2012). Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chemical Science, 3(9), 2812-2822.
58. Park, Jin Woo; Subramanian, Arunprabaharan; Mahadik, Mahadeo A.; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk (2018). Insights into enhanced photoelectrochemical performance of hydrothermally controlled Hematite Nanostructures for Proficient Solar Water Oxidation. Dalton Transactions, 47, 4076-4086.
59. Huang, Xiaopeng; Hou, Xiaojing; Zhang, Xin; Rosso, Kevin M.; Zhang, Lizhi (2018). Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environmental Science: Nano, 5, 1790-1806.
60. Wu, Changzheng; Yin, Ping; Zhu, Xi; OuYang, Chuanzi; Xie, Yi (2006). Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors. The Journal of Physical Chemistry B, 110(36), 17806-17812.
61. Tauc, Jan; Menth, A. (1972). States in the Gap. Journal of Non-Crystalline Solids, 8(10), 569-585.
62. Fondell, Mattis; Jacobsson, Tor Jesper; Boman, Mats; Edvinsson, Tomas (2014). Optical quantum confinement in low dimensional hematite. Journal of Materials Chemistry A, 2(10), 3352.
63. Garoufalis, Christos S.; Poulopoulos, Panagiotis; Bouropoulos, Nikolaos; Barnasas, Alexandros; Baskoutas, Sotirios (2017). Growth and optical properties of Fe2O3 thin films: A study of quantum confinement effects by experiment and theory. Physica E: Low-dimensional Systems and Nanostructures, 89, 67–71.
64. Park, Geun Chul; Hwang, Soo Min; Choi, Jun Hyuk; Kwon, Yong Hun; Cho, Hyung Koun; Kim, Sang-Woo; Lim, Jun Hyung; Joo, Jinho (2013). Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. Physica Status Solidi (A), 210(8), 1552–1556.
65. 謝宗雍、黃郁仁、黃胤諴 (民100)。GeSbTe 薄膜之摻雜、電性質分析及其應用於相變化記憶體 (PRAM) 元件之研究。行政院國家科學委員會補助專題研究計畫成果報告 (編號:NSC 97-2221-E-009-029-MY3),未出版。
66. Zhou, Zhaohui; Huo, Pengju; Guo, Liejin; Prezhdo, Oleg V. (2015). Understanding Hematite Doping with Group IV Elements: A DFT+U Study. The Journal of Physical Chemistry C, 119(47), 26303–26310.
67. Kim, Jae Young; Jang, Ji-Wook; Youn, Duck Hyun; Magesh, Ganesan; Lee, Jae Sung (2014). A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting: Towards Stability Engineering. Advanced Energy Materials, 4(13), 1400476.
68. Mohan, Chandra (2003). Buffers. A guide for the preparation and use of buffers in biological systems. Germany:CALBIOCHEM.
69. Cardiel, Allison C.; Taitt, Brandon J.; Choi, Kyoung-Shin (2019). Stabilities, Regeneration Pathways, and Electrocatalytic Properties of Nitroxyl Radicals for the Electrochemical Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering, 7 (13), 11138-11149.
70. Zhou, Zhonggao; Liu, Liangxian (2014). TEMPO and its Derivatives: Synthesis and Applications. Current Organic Chemistry, 18(4), 459 – 474.
71. Moulder, John F.; Stickle, William F.; Sobol, Peter E.; Bombenr, Kennetlf D. (1992). Handbook of X-ray Photoelectron Spectroscopy. America:Physical Electronics Division, Perkin-Elmer Corporation.
72. Yao, Ying; Gao, Bin; Chen, Jianjun; Yang, Liuyan (2013). Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer. Environmental Science & Technology, 47(15), 8700–8708.
73. 趙冠傑 (民109)。BiVO4為基底的光陽極應用在選擇性氧化HMF及其衍生物。碩士論文,國立中央大學。 |