參考文獻 |
1. Johnson, A. W.; LaCount, R. B. The Chemistry of Ylides. VI.
Dimethylsulfonium Fluorenylide—A Synthesis of Epoxides1. J. Am. Chem.
Soc. 1961, 83 (2), 417-423.
2. Corey, E.; Chaykovsky, M. Dimethylsulfoxonium methylide. J. Am. Chem. Soc.
1962, 84 (5), 867-868.
3. Franzen, V.; H-E. Driesen. Umsetzung von Sulfonium‐Yliden mit polaren
Doppelbindungen. Chem. Ber, 1963. 96 (7), 1881-1890.
4. Corey, E.; Chaykovsky, M. Dimethyloxosulfonium methylide ((CH3)2SOCH2)
and dimethylsulfonium methylide ((CH3)2SCH2). Formation and application to
organic synthesis. J. Am. Chem. Soc. 1965. 87 (6), 1353-1364
5. Li, A.-H.; Dai, L.-X.; Hou, X.-L. Facile preparation of vinylaziridines by the
reaction of N-sulfonylimines and cinnamyl bromide mediated by a catalytic
amount of dimethyl sulfide. J. Am. Chem. Soc, 1996 (9), 867-869.
6. Saito, T.; Sakairi, M.; Akiba, D. Enantioselective synthesis of aziridines from
imines and alkyl halides using a camphor-derived chiral sulfide mediator via
the imino Corey–Chaykovsky reaction. Tetrahedron Lett., 2001. 42 (32), 5451-
5454.
7. Furukawa, N.; Sugihara, Y.; Fujihara, H. Camphoryl sulfide as a chiral auxiliary
and a mediator for one-step synthesis of optically active 1, 2-diaryloxiranes. J.
Org. Chem., 1989. 54 (17), 4222-4224.
8. Li, A.-H.; Dai, LX.; Hou, XL.; Huang, YZ.; Li, FW. Preparation of
Enantiomerically Enriched (2 R, 3 R)-or (2 S, 3 S)-trans-2, 3-Diaryloxiranes
via Camphor-Derived Sulfonium Ylides. J. Org. Chem., 1996. 61 (2), 489-493.
110
9. Julienne, K., Karine J.; Patrick Metzner,; Henryon,V.; Greiner, A. A simple C 2
symmetrical sulfide for a one-pot asymmetric conversion of aldehydes into
oxiranes. J. Org. Chem., 1998. 63 (13): p. 4532-4534.
10. Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. A catalytic
cycle for the asymmetric synthesis of epoxides using sulfur ylides. J. Org.
Chem., 2001. 66 (16), 5620-5623.
11. Hayakawa, R.; Shimizu, M. Synthesis of chiral epoxides from aldehydes using
sulfur ylide derived from reduced product of bakers′ yeast reduction. Synlett,
1999. 1999 (08), 1328-1330.
12. Saito, T.; Akiba, D.; Sakairi, M.; Kanazawa, S. Preparation of a novel,
camphor-derived sulfide and its evaluation as a chiral auxiliary mediator in
asymmetric epoxidation via the Corey–Chaykovsky reaction. Tetrahedron
Lett, 2001. 42 (1), 57-59.
13. Winn, C.L.; Bellenie, B.R.; Goodman, J.M. A highly enantioselective one-pot
sulfur ylide epoxidation reaction. Tetrahedron Lett., 2002. 43 (31), 5427-5430
14. Miyake, Y.; Oyamada, A.; Nishibayashi, Y.; Uemura, S. Asymmetric synthesis
of epoxides from aromatic aldehydes and benzyl halides catalyzed by C2
symmetric optically active sulfides having a binaphthyl skeleton. Heteroat.
Chem., 2002. 13 (3), 270-275.
15. Ishizaki, M.; Hoshino, O. Synthesis of novel C2‐symmetrical chiral sulfides
and their utility in asymmetric epoxidation of aldehydes. Chirality, 2003. 15
(4), 300-305.
16. Mikael, J.; Södergren, Sophie K. Bertilsson.; Andersson, Pher G. Catalytic
ferrocenyl sulfides for the asymmetric transformation of aldehydes into
111
epoxides. Tetrahedron: Asymmetry, 2004. 15 (20), 3275-3280.
17. Davoust, M.; Brière, J.-F.; Jaffrès, P.-A.; Metzner, P. Design of sulfides with a
locked conformation as promoters of catalytic and asymmetric sulfonium
ylide epoxidation. J. Org. Chem, 2005. 70 (10), 4166-4169.
18. Aggarwal, V.K.; Abdel-Rahman, H.; Fan, L.; Jones, R.V.H.; Standen, M.C.H.
Novel catalytic cycle for the synthesis of epoxides from aldehydes and sulfur
ylides mediated by catalytic quantities of sulfides and Rh2(OAc)4. J. Am.
Chem. Soc., 1994. 116 (13), 5973-5974
19. Aggarwal, V.K.; Abdel-Rahman, H.; Fan, L.; Jones, R.V.H.; Standen, M.C.H.
A novel catalytic cycle for the synthesis-of epoxides using sulfur ylides:
Application to base sensitive aldehydes. Tetrahedron letters, 1995. 36 (10),
1731-1732.
20. Aggarwal, V.K.; Abdel-Rahman, H.; Fan, L.; Jones, R.V.H.; Standen, M.C.H.
A novel catalytic cycle for the synthesis of epoxides using sulfur ylides. Chem.
Eur. J, 1996. 2 (8), 1024-1030.
21. Aggarwal, V.K..; Alonso, E.; Bae, I.; Hynd.; Lydon, K.M.; Palmer, M.J.; Patel,
M.; Porcelloni, M.; Richardson, J.; Stenson, R.A.; Studley, J.R.; Vasse, J.L.;
Winn, C.L. A new protocol for the in situ generation of aromatic,
heteroaromatic, and unsaturated diazo compounds and its application in
catalytic and asymmetric epoxidation of carbonyl compounds. Extensive
studies to map out scope and limitations, and rationalization of diastereo-and
enantioselectivities. J. Am. Chem. Soc, 2003. 125 (36), 10926-10940.
22. Wang, C.; Tunge,J.A. Asymmetric cycloadditions of palladium-polarized azao-xylylenes. J. Am. Chem. Soc. 2008. 8118-8119.
112
23. Rayner, C.M. Synthesis of thiols, selenols, sulfides, selenides, sulfoxides,
selenoxides, sulfones and selenones. Contemp Org Synth, 1996. 3 (6), 499-
533.
24. Huang, M.-T.; Wu, H.-Y.; Chein, R.-J. Enantioselective synthesis of diaryl
aziridines using tetrahydrothiophene-based chiral sulfides as organocatalysts.
Commun. Chem, 2014. 50 (9), 1101-1103.
25. Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; Wu,
Y.-D.; Dai, L.-X. Enantioselective synthesis of vinylcyclopropanes and
vinylepoxides mediated by camphor-derived sulfur ylides: rationale of
enantioselectivity, scope, and limitation. J. Am. Chem. Soc, 2006. 128 (30),
9730-9740.
26. Aggarwal, V.K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M.
Application of chiral sulfides to catalytic asymmetric aziridination and
cyclopropanation with in situ generation of the diazo compound. Angew.
Chem. Int. Ed, 2001.40 (8), 1433-1436.
27. Lu, L.-Q.; Li, F.; An, J.; Cheng, Y.; Chen, J.-R.; Xiao, W.-J. Hydrogen‐Bond‐
Mediated Asymmetric Cascade Reaction of Stable Sulfur Ylides with
Nitroolefins: Scope, Application and Mechanism. Chem. Eur. J, 2012. 18 (13),
4073-4079.
28. Lu, L.-Q.; Li F, An, J.; Zhang, J.-J.; An, X.-L.; Hua, Q.-L.; Xiao, W.-J.
Construction of fused heterocyclic architectures by formal [4+ 1] / [3+ 2]
cycloaddition cascade of sulfur ylides and nitroolefins. Angew. Chem. Int. Ed,
2009. 121 (50), 9706-9709.
29. Yang, Q.-Q.; Xiao, W.-J. Catalytic Asymmetric Synthesis of Chiral
113
Dihydrobenzofurans through a Formal [4+ 1] Annulation Reaction of Sulfur
Ylides and In Situ Generated ortho‐Quinone Methides. Eur. J. Org. Chem,
2017. 2017 (2), 233-236.
30. Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.; Bolm, C.
Enantioselective synthesis of dihydropyrazoles by formal [4+ 1] cycloaddition
of in situ-derived azoalkenes and sulfur ylides. J. Am. Chem. Soc, 2012. 134
(16), 6924-6927.
31. Klimczyk, S.; Misale, A.; Huang, X.; Maulide, N. Dimeric TADDOL
phosphoramidites in asymmetric catalysis: domino deracemization and
cyclopropanation of sulfonium ylides. Angew. Chem. Int. Ed, 2015. 54 (35),
10365-10369.
32. Weaver, J.D.; Recio, A. Ⅲ; Grenning, A.J.; Tunge, J.A. Transition metalcatalyzed decarboxylative allylation and benzylation reactions. Chem. Rev,
2011. 111 (3), 1846-1913.
33. Li, T.-R.; Tan, F. Lu, L.-Q.; Wei, Y.; Wang, Y.-N.; Liu, Y.-Y.; Yang, Q.-Q.;
Chen, J.-.; Shi, D.-Q.; Xiao, W.-J. Asymmetric trapping of zwitterionic
intermediates by sulphur ylides in a palladium-catalysed decarboxylationcycloaddition sequence. Nat. Commun, 2014. 5 (1), 1-10.
34. Guo, C.; Janssen-Müller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C.G.; Glorius,
F. Mechanistic studies on a cooperative NHC organocatalysis/palladium
catalysis system: uncovering significant lessons for mixed chiral Pd
(NHC)(PR3) catalyst design. J. Am. Chem. Soc, 2017. 139 (12), 4443-4451.
35. Wang, Q.; Li, T.-R.; Lu, L.-Q.; Li, M.-M.; Zhang, K.; Xiao, W.-J. Catalytic
asymmetric [4+ 1] annulation of sulfur ylides with copper–allenylidene
114
intermediates. J. Am. Chem. Soc, 2016. 138 (27), 8360-8363.
36. Dairo, T.O.; Woo, L.K. Scope and Mechanism of Iridium Porphyrin-Catalyzed
S–H Insertion Reactions between Thiols and Diazo Esters. Organometallics,
2017. 36 (4), 927-934.
37. Tian, H.; Zhang, Pengxiang.; Peng, F.; Yang, H.; Fu H. Chiral cyclic ligandenabled iridium-catalyzed asymmetric arylation of unactivated racemic allylic
alcohols with anilines. Org. Lett, 2017. 19 (14), 3775-3778.
38. Qi, Z.; Kong, L.; Li, X. Rhodium (III)-catalyzed regio-and stereoselective C–
H allylation of arenes with vinyl benzoxazinanones. Org. Lett, 2016. 18 (17),
4392-4395.
39. Côté, A.P..; Benin, A. I.; Ockwig, N.W.; Michael Ò.; Matzger, A.J.; Yaghi, O.
M. Porous, crystalline, covalent organic frameworks. Science, 2005. 310
(5751), 1166-1170.
40. El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortés, J.L.; Côté, A.P.; Taylor, R.E.;
O′Keeffe, M.; Yaghi, O.M. Designed synthesis of 3D covalent organic
frameworks. Science, 2007. 316 (5822), 268-272.
41. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A belt‐shaped, blue luminescent,
and semiconducting covalent organic framework. Angew. Chem. Int. Ed, 2008.
47 (46), 8826-8830.
42. Spitler, E.L.; Koo, B.T. Novotney, J.L.; Colson, J.W.; Uribe-Romo, F.J.;
Gutierrez, G.D.; Clancy, P.; Dichtel W.R. A 2D covalent organic framework
with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc,
2011. 133 (48), 19416-19421.
43. Zhou, T.-Y.; Xu, S.-Q.; Wen, Q.; Pang, Z.-F.; Zhao, X. One-step construction
115
of two different kinds of pores in a 2D covalent organic framework. J. Am.
Chem. Soc, 2014. 136 (45), 15885-15888.
44. Lin, G.; Ding, H.; Chen, R.; Peng, Z.; Wang, B.; Wang C. 3D porphyrin-based
covalent organic frameworks. J. Am. Chem. Soc, 2017. 139 (25), 8705-8709.
45. Uribe-Romo, F.J.; Hunt, J.R.; Furukawa, H.; Klöck, C.; ÒKeeffe, M.; Yaghi,
O.M. A crystalline imine-linked 3-D porous covalent organic framework. J.
Am. Chem. Soc, 2009. 131 (13), 4570-4571.
46. Ma,Y.-X.; Li, Z.-J., Wei, L.; Ding, S.-Y.; Zhang, Y.-B. Wang, W. A dynamic
three-dimensional covalent organic framework. J. Am. Chem. Soc, 2017. 139
(14), 4995-4998.
47. Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S.H.; Calik, M.; Hettstedt, C.;
Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K.W.; Auras, F.; Bein
T. Molecular docking sites designed for the generation of highly crystalline
covalent organic frameworks. Nat. Chem, 2016. 8 (4), 310-316.
48. Zhu, Y.; Wan, S.; Jin, Y.; Zhang. W. Desymmetrized vertex design for the
synthesis of covalent organic frameworks with periodically heterogeneous
pore structures. J. Am. Chem. Soc, 2015. 137 (43), 13772-13775.
49. Li, Z.; Feng, X.; Zou, Y.; Zhang, Y.; Xia, H.; Liu, X.; Mu, Y. A 2D azine-linked
covalent organic framework for gas storage applications. ChemComm, 2014.
50 (89), 13825-13828.
50. Li, Z.; Zhi, Y.; Feng, X.; Ding, X.; Zou, Y.; Liu, X.; Mu, Y. An azine‐linked
covalent organic framework: synthesis, characterization and efficient gas
storage. Chem. Eur. J, 2015. 21 (34), 12079-12084.
51. Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R.B.; Zheng, J.; Wang, J.; Qiu S.; Yan
116
Y. Designed synthesis of large-pore crystalline polyimide covalent organic
frameworks. Nat. Commun, 2014. 5 (1), 1-8.
52. Fang, Q.; Wang, J.; Gu, S.; Kaspar, R.B.; Zhuang, Z. Zheng, J.; Guo, H.; Qiu,
S.; Yan Y. 3D porous crystalline polyimide covalent organic frameworks for
drug delivery. J. Am. Chem. Soc, 2015. 137 (26), 8352-8355.
53. Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M.A. Xu, H.;
Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Two-dimensional sp2 carbon–
conjugated covalent organic frameworks. Science, 2017. 357 (6352), 673-676.
54. Jin, E.; Li,J.; Geng, K.;Jiang, Q.; Xu, H.; Xu, Q.;Jiang, D. Designed synthesis
of stable light-emitting two-dimensional sp 2 carbon-conjugated covalent
organic frameworks. Nat. Commun, 2018. 9 (1), 1-10
55. Xu, H.; Wang, G.; Biswal, B.P.;. Addicoat, M.; Sheng, S.P..W.; Zhuang, X.;
Brunner E.; Heine, T.; Berger, R.; Feng, X. A Nitrogen‐Rich 2D sp2‐Carbon‐
Linked Conjugated Polymer Framework as a High‐Performance Cathode for
Lithium‐Ion Batteries. Angew. Chem. Int. Ed, 2019. 131 (3), 859-863.
56. Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irleb, S.; Jiang, D. Catalytic
covalent organic frameworks via pore surface engineering. ChemComm, 2014.
50 (11), 1292-1294.
57. Xu, H.; Gao, J.; Jiang, D. Stable, crystalline, porous, covalent organic
frameworks as a platform for chiral organocatalysts. Nat. Chem, 2015. 7 (11),
905-912.
58. Zhang, S.; Zheng, Y.; An, H.; Aguila, B.; Yang, C.-X.; Dong, Y.; Xie, W.;
Cheng, Peng.; Zhang, Z.; Chen, Y.; Ma, S. Covalent organic frameworks with
chirality enriched by biomolecules for efficient chiral separation. Angew.
117
Chem. Int. Ed, 2018. 57 (51), 16754-16759.
59. Sun, Qi.; Fu, C.-W.; Aguila, B.; Perman, J.; Wang, S.; Huang, H.-Y.; Xiao, F.-
S.; Ma S. Pore environment control and enhanced performance of enzymes
infiltrated in covalent organic frameworks. J. Am. Chem. Soc, 2018. 140 (3),
984-992.
60. Yuan, C.; Wu, X.; Gao, R.; Han, X.; Liu, Y.; Long, Y.; Cui, Y. Nanochannels
of covalent organic frameworks for chiral selective transmembrane transport
of amino acids. J. Am. Chem. Soc, 2019. 141 (51), 20187-20197.
61. Han, X., et al., Chiral covalent organic frameworks with high chemical
stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc, 2017. 139
(25), 8693-8697.
62. Han, X.; Xia, Q.; Huang, J.; Liu, Y.; Tan, C.; Cui, Y. Construction of a
hydrazone-linked chiral covalent organic framework–silica composite as the
stationary phase for high performance liquid chromatography. J. Chromatogr.
A, 2017. 1519, 100-109.
63. Zhang, J.; Han, X. Wu, X.; Liu, Yan.; Cui. Y. Multivariate chiral covalent
organic frameworks with controlled crystallinity and stability for asymmetric
catalysis. J. Am. Chem. Soc, 2017. 139 (24), 8277-8285.
64. Wan, H.; Lv, M.; Liu, X.; Chen, G.; Zhang, N.; Cao, Y.; Wang, H.; Ma, R.;
Qiu G.Activating hematite nanoplates via partial reduction for electrocatalytic
oxygen reduction reaction. ACS Sustain. Chem. Eng, 2019. 7 (13), 11841-
11849.
65. Wang, X.; Han, X.; Zhang, J.; Wu, X.; Liu, Y.; Cui, Y. Homochiral 2D porous
covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am.
118
Chem. Soc, 2016. 138 (38), 12332-12335.
66. Zhang, Y.; Duan, J.; Ma, D.; Li, P.; Li, S.; Li, H.; Zhou, J.; Ma, X.; Feng, X.;
Wang, B. Three‐dimensional anionic cyclodextrin‐based covalent organic
frameworks. Angew. Chem. Int. Ed, 2017. 56(51): p. 16313-16317.
67. Han, X.; Zhang, J.; Huang, J.; Wu, X.; Yuan, D.; Liu, Y.; Cui, Y. Chiral
induction in covalent organic frameworks. Nat. Commun, 2018. 9 (1), 1-10.
68. Ma, H.-C.; Kan, J.-L.; Chen, G.-J.; Chen, C.-X.; Dong Y.-B. Pd NPs-loaded
homochiral covalent organic framework for heterogeneous asymmetric
catalysis. Chem. Mater, 2017. 29 (15), 6518-6524.
69. Ishihara, K.; Nakamura, S.; Yamamoto, H. The first enantioselective
biomimetic cyclization of polyprenoids. J. Am. Chem. Soc, 1999. 121 (20),
4906-4907.
70. Nakamura, S.; Ishihara, K.; Yamamoto, H. Enantioselective biomimetic
cyclization of isoprenoids using lewis acid-assisted chiral brønsted acids:
abnormal claisen rearrangements and successive cyclizations. J. Am. Chem.
Soc, 2000. 122 (34), 8131-8140.
71. Kumazawa, K.; Ishihara, K.; Yamamoto, H. Tin (IV) chloride-chiral
pyrogallol derivatives as new Lewis acid-assisted chiral Brønsted acids for
enantioselective polyene cyclization. Org. Lett, 2004. 6 (15), 2551-2554.
72. Surendra, K.; Corey, E.J. Highly enantioselective proton-initiated
polycyclization of polyenes. J. Am. Chem. Soc, 2012. 134 (29), 11992-11994.
73. Sakakura A.; Sakuma, M.; Ishihara, K. Chiral Lewis base-assisted Brønsted
acid (LBBA)-catalyzed enantioselective cyclization of 2-geranylphenols. Org.
Lett, 2011. 13 (12), 3130-3133.
119
74. Zhao, Y.-J.; Chng, S.-S.; Loh, T.-P. Lewis acid-promoted intermolecular
acetal-initiated cationic polyene cyclizations. J. Am. Chem. Soc, 2007. 129 (3),
492-493.
75. Zhao, Y.-J.; Loh, T.-P. Bioinspired polyene cyclization promoted by
intermolecular chiral acetal-SnCl4 or chiral N-acetal-TiCl4: Investigation of
the mechanism and identification of the key intermediates. J. Am. Chem. Soc,
2008. 130 (30), 10024-10029.
76. Knowles, R.R.; Lin, S.; Jacobsen, E.N. Enantioselective thiourea-catalyzed
cationic polycyclizations. J. Am. Chem. Soc, 2010. 132 (14), 5030-5032.
77. Mullen, C.A.; Gagne, M.R. Regioselective oxidative cation-olefin cyclization
of polyenes: catalyst turnover via hydride abstraction. J. Am. Chem. Soc, 2007.
129 (39), 11880-11881.
78. Sethofer, S.G.; Mayer, T.; Toste, F.D. Gold (I)-catalyzed enantioselective poly
cyclization reactions. J. Am. Chem. Soc, 2010. 132 (24), 8276-8277.
79. Lin, S.-C.; Chein, R.-J. Total synthesis of the labdane diterpenes galanal A and
B from geraniol. J. Org. Chem, 2017. 82 (3), 1575-1583.
80. Gopalakrishnan, D.; Dichtel, W.R. Direct detection of RDX vapor using a
conjugated polymer network. J. Am. Chem. Soc, 2013. 135 (22), 8357-8362.
81. Valente, C.; Choi, E.; Belowich, M.E.; Doonan, C.J.; Li, Q.; Gasa, T.B.; Botros,
Y.Y.; Yaghi, O.M.; Stoddart, J.F. Metal–organic frameworks with designed
chiral recognition sites. ChemComm, 2010. 46 (27), 4911-4913.
82. Lee, S.J.; Hu, A.; Lin, W. The first chiral organometallic triangle for
asymmetric catalysis. J. Am. Chem. Soc, 2002. 124 (44), 12948-12949.
83. Accurso, A.A.; Delaney, M.; ÒBrien, J.; Kim, H.; Iovine, P.M.; Díaz, D.D.;
120
Finn, MG. Improved Metal‐Adhesive Polymers from Copper (I)‐Catalyzed
Azide–Alkyne Cycloaddition. Chem. Eur. J, 2014. 20 (34), 10710-10719.
84. Sellner, H.; Faber, C.; Rheiner, P.B.; Seebach, D. Immobilization of BINOL
by cross‐linking copolymerization of styryl derivatives with styrene, and
applications in enantioselective Ti and Al Lewis acid mediated additions of
Et2Zn and Me3SiCN to aldehydes and of diphenyl nitrone to enol ethers. Chem.
Eur. J, 2000. 6 (20), 3692-3705.
85. Shu, W.; Guan, C.; Guo, W.; Wang, C.; Shen, Y. Conjugated poly
(aryleneethynylenesiloles) and their application in detecting explosives. J.
Mater. Chem, 2012. 22 (7), 3075-3081.
86. Yang, Z.-Z.; Zhao, Y.; Zhang, H.; Yu, B.; Ma, Z.; Jia, G.; Liu, Z. Fluorinated
microporous organic polymers: design and applications in CO2 adsorption and
conversion. ChemComm, 2014. 50 (90), 13910-13913.
87. Liang, Z.; Chen, J.; Chen, X.; Zang, K.; Lv, J.; Zhao, H.; Zhang, G.; Xie, C.;
Zong, X. Porous organic polymer supported rhodium as a heterogeneous
catalyst for hydroformylation of alkynes to α,β-unsaturated aldehydes. Chem.
Commun, 2019. 55 (91), 13721-13724.
88. Poupon, J.C.; Marcoux, D.; Cloarec, J.-M.; Charette, A.B. Removal, Recovery,
and Recycling of Triarylphosphonium-Supported Tin Reagents for Various
Organic Transformations. Org. Lett, 2007. 9 (18), 3591-3594.
89. Su, D.; Menger, F.M. Tetrastyrylmethane. Tetrahedron Lett, 1997. 38 (9),
1485-1488. |