博碩士論文 107223049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.135.32
姓名 張士煌(Shih-Huang Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成含苯並噻二唑、喹喔啉和苯並噻唑結構單元之染料分子與其多光子光學性質探討
(Synthesis and Multi-photon Properties of Various Conjugated Chromophores Derived from Benzothiadiazole, Quinoxaline and Benzothiazole Structural Units)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文設計並成功合成出三個系列的模型分子,第一系列為含有苯並噻二唑(benzothiadiazole)結構單元之對稱型分子;第二系列為含有喹喔啉(quinoxaline)結構單元的四叉對稱型分子;第三系列為含有苯並噻唑(benzothiazole)結構單元之模型分子。透過線性光學的實驗測量,可以瞭解模型分子的吸收波長、螢光波長等基本性質;而透過非線性光學的實驗測量,來證實模型分子具有多光子吸收的性質,分析實驗數據以及分子結構間的關聯性,我們可以統整出以下結論:
1. 以D-π-A-π-D設計的第一系列對稱型模型分子,具有良好的螢光產率,隨著增加三鍵的共軛,螢光波長也有隨之紅移的趨勢;而三鍵做為π-bridge能有效的提升雙、三光子吸收效率。以4,4′-dimethoxyfluorenylamine作為推電子基對於分子的雙、三光子吸收效率是明顯優於4,4′-dimethoxytriphenylamine的。
2. 第二系列分子具有quinoxaline中心結構,此系列擁有不錯的螢光產率,在中心quinoxaline接上methoxy官能基,會降低quinoxaline拉電子能力,造成螢光波長藍移,並且會抑制雙光子吸收效率。在diphenylaminofluorenyl外銜接上methoxy的官能基,會增加推電子能力,造成螢光波長紅移,對於雙光子吸收效率有顯著的提升。若是增加三鍵做為π-bridge有助於提升雙光子吸收效率。然而methoxy及三鍵結構上的微調在三光子吸收效率上的正負影響則不一定與雙光子吸收效率同步。
3. 第三系列不對稱型分子含有benzothiazole結構,螢光產率有優異的表現,若加入thiophene單元去提升共軛長度,可使螢光波長紅移,且能夠增加雙、三光子吸收效率。若加入三鍵結構去增加共軛長度,反而會抑制雙、三光子吸收效率。和triazolopyridine比較,若以benzothiazole為拉電子基,其螢光波長有明顯的紅移,且在雙、三光子吸收效率上benzothiazole優於triazolopyridine。
整體來說,如果想要提升雙光子吸收效率,推電子基可使用4,4′-
dimethoxyfluorenylamine,而π-bridge則可以引入thiophene單元或是三鍵結構,至於拉電子基則可以選擇benzothiazole及不含methoxy官能基之quinoxaline結構來組合成最終染料分子;如果想要提升三光子吸收效率, 4,4′-dimethoxyfluorenylamine仍然是個良好的選擇,而π-bridge的部分則可以加入thiophene單元,拉電子基則可以使用benzothiazole結構。儘管分析出提升雙、三光子吸收效率各自適合的官能基,但對於同時提升雙、三光子效率的分子設計要求,可能還是有不同的部分需要研究。
摘要(英) Three model compound systems are designed and successfully synthesized in this thesis. The first system contains the benzothiadiazole structural unit. The second system is composed of the quinoxaline structural unit, and the third system is constructed based on the benzothiazole structural unit. We have measured the linear and nonlinear optical properties of these compounds. Some features are found about the relationship between molecular structure and optical properties and can be listed as follows:
1. For the first series of model chromophores, the structure based on D-π-A-π-D has lead to good quantum yield. The insertion of C-C triple bond into the conjugation has resulted in a red-shift of fluorescence. Also, this insertion of triple bond was found to have positive impact to two- and three-photon efficiencies. On the other hand, diphenylaminofluorenyl is a better electron-donor for the promotion of multiphoton efficiencies compared to a triphenylamine group.
2. For the second series of model chromophores, the structure contains the units of quinoxaline which exhibt good quantum yield also. The addition of methoxy group into the central quinoxaline unit causes a blue-shift of fluorescence and a decrease of the two-photon efficiency. When the diphenylaminofluorenyl is attached by methoxy groups, it will lead to a red-shift of fluorescence and increase the two-photon efficiencies. While three-photon efficiencies does not work in the same way. On the other hand, when the C-C triple bond is inserted into the conjugation, it results in a red-shift of fluorescence. Also, the insertion of triple bond will improve the two-photon efficiencies but the three-photon efficiency does not show the same trend, neither.
3. From the third series of model chromophores, it is found that the addition of thiophene unit into the conjugated framework can promote both two- and three-photon efficiencies. Interestingly, the insertion of C-C triple bond decreases the two- and three-photon efficiencies of these model compunds. Compared to triazolopyridine unit, benzothiazole is a better eletron-acceptor which possesses large improvement on the two- and three-photon efficiencies.
  Overall, if we desire to enhance the two-photon efficiencies, we can select 4,4′-dimethoxyfluorenylamine as the donating group, Thiophene or C-C triple bond as the π-bridge, and benzothiazole or quinoxaline as the acceptors. If we need to improve the three-photon efficiencies, we can utilize 4,4′-dimethoxyfluorenylamine as the donating group, thiophene as the π-bridge, and benzothiazole as the acceptors. Based on the current investigation, we suspect that the requirements for the molecular design toward enhanced two- and three-photon efficiencies should be intrinsically different.
關鍵字(中) ★ 苯並噻二唑
★ 喹喔啉
★ 苯並噻唑
★ 染料分子
★ 多光子
關鍵字(英) ★ Multi-photon Properties
★ Benzothiadiazole
★ Quinoxaline
★ Benzothiazole
論文目次 中文摘要. ………………………………………………………………….....…vi
Abstract………………………………………………………………….…....viii
謝誌………………………………………………………………………….….x
目錄…………………………………………………………………………….xi
圖目錄……………………………………………………………………...….xiii
表目錄…………………………………………………………………...…...xviii
第一章 序論…………………………………………………………………...1
1-1 多光子吸收理論及其歷史發展...........................................................1
1-2 多光子吸收材料之應用性...................................................................3
1-3 多光子吸收材料之分子設計及文獻回顧...........................................4
第二章 模型分子之設計與合成
2-1 第一系列: 以苯並噻二唑(Benzothiadiazole)為中心之長條型模型分子.........................................................................................................14
2-2 第二系列: 以喹喔啉 (Quinoxaline)為中心之四叉型模型分子....22
2-3 第三系列: 含苯並噻唑(Benzothiazole) 之不對稱模型分子…....32
第三章 光學性質探討
3-1 光學實驗及光學儀器之詳述..............................................................41
3-2 各系列模型分子之光學性質探討
3-2-1 第一系列: 以苯並噻二唑(Benzothiadiazole)為中心之長條型模型分子.............................................................................46
3-2-2 第二系列: 以喹喔啉 (Quinoxaline)為中心之四叉型模型分子............................................................................................53
3-2-3 第三系列: 含苯並噻唑(Benzothiazole)之模型分子..........66
第四章 模型分子之合成詳述
4-1 模型分子合成所使用藥品與溶劑.......................................................84
4-2 模型分子合成詳述步驟.......................................................................86
第五章 結構鑑定光譜圖...............................................................................124
參考文獻 Chapter 1
[1] He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N., Chemical reviews., 2008, 108 (4), 1245-1330.
[2] Goeppert-Mayer, M., Ann. Phys. Lpz., 1931, 9, 273-295.
[3] (a) Kaiser, W. and Garret, C. G. B., Phys. Rev. Lett., 1961, 7, 229-231; (b) Peticolas, W. L. and Rieckhoff, K. E., J. Chem. Phys 1963, 39, 1347.
[4] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N., Chemistry of Materials 1998, 10 (7), 1863-1874
[5] Kannan, R.; He, G. S.; Yuan, L.; Xu, F.; Prasad, P. N.; Dombroskie, A. G.; Reinhardt, B. A.; Baur, J. W.; Vaia, R. A.; Tan, L.-S., Chemistry of materials 2001, 13 (5), 1896-1904.
[6] Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R., Science 1998, 281 (5383), 1653-1656
[7] Joshi, M. P.; Swiatkiewicz, J.; Xu, F.; Prasad, P. N.; Reinhardt, B.; Kannan, R., Optics letters 1998, 23 (22), 1742-1744.
[8] Chung, S.-J.; Kim, K.-S.; Lin, T.-C.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N., The Journal of Physical Chemistry B 1999, 103 (49), 10741-10745
[9] Drobizhev, M.; Karotki, A.; Rebane, A.; Spangler, C. W., Optics letters 2001, 26 (14), 1081-1083.
[10] Drobizhev, M.; Karotki, A.; Dzenis, Y.; Rebane, A.; Suo, Z.; Spangler, C. W., The Journal of Physical Chemistry B 2003, 107 (31), 7540-7543.
[11] Drobizhev, M.; Rebane, A.; Suo, Z. Spangler, C. W., J. Lumin. 2005, 111, 291-305.
[12] Cohanoschi, I., Three-photon absorption process in organic dyes enhanced by surface plasmon resonance. 2006.

Chapter 2
[1] Fan, K. W.; Peterson, M. B.; Ellersdorfer, P.; Granville, A. M., RSC advances 2016, 6 (30), 25203-25214.
[2] Zhang, Q.; Xiao, B.; Du, M.; Li, G.; Tang, A.; Zhou, E., Journal of Materials Chemistry C 2018, 6 (40), 10902-10909.
[3] Ebeling, G.; Gonçalves, R.; Costa, V., U.; Quina, FH; Dupont, J. Tetrahedron 2005, 61, 10975–10982
[4] Wang, T.; Scarratt, N. W.; Yi, H.; Coleman, I. F.; Zhang, Y.; Grant, R. T.; Yao, J.; Skoda, M. W.; Dunbar, A. D.; Jones, R. A., Journal of Materials Chemistry C 2015, 3 (16), 4007-4015.
[5] Ward, J. S.; Nobuyasu, R. S.; Fox, M. A.; Aguilar, J. A.; Hall, D.; Batsanov, A. S.; Ren, Z.; Dias, F. B.; Bryce, M. R., The Journal of organic chemistry 2019, 84 (7), 3801-3816.
[6] Lee, M. J.; Kang, M. S.; Shin, M. K.; Park, J. W.; Chung, D. S.; Park, C. E.; Kwon, S. K.; Kim, Y. H., Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (18), 3942-3949.
[7] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N., Chemistry of Materials 1998, 10 (7), 1863-1874.
[8] Nguyen, W. H.; Bailie, C. D.; Burschka, J.; Moehl, T.; Grätzel, M.; McGehee, M. D.; Sellinger, A., Chemistry of Materials 2013, 25 (9), 1519-1525.
[9] Ishiyama, T.; Murata, M.; Miyaura, N., The Journal of Organic Chemistry 1995, 60 (23), 7508-7510.
[10] Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A., Organic letters 2002, 4 (19), 3199-3202.
[11] Stephens, E. B.; Tour, J. M., Macromolecules 1993, 26 (10), 2420-2427.
[12] Abbel, R.; Grenier, C.; Pouderoijen, M. J.; Stouwdam, J. W.; Leclere, P. E.; Sijbesma, R. P.; Meijer, E.; Schenning, A. P., Journal of the American Chemical Society 2009, 131 (2), 833-843.
[13] Mengel, A. K.; He, B.; Wenger, O. S., The Journal of organic chemistry 2012, 77 (15), 6545-6552.
[14] Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S., The Journal of organic chemistry 2010, 75 (18), 6244-6251.
[15] Hancock, J. M.; Gifford, A. P.; Zhu, Y.; Lou, Y.; Jenekhe, S. A., Chemistry of materials 2006, 18 (20), 4924-4932.
[16] Hou, J.; Park, M.-H.; Zhang, S.; Yao, Y.; Chen, L.-M.; Li, J.-H.; Yang, Y., Macromolecules 2008, 41 (16), 6012-6018.
[17] Li, H.; Tam, T. L.; Lam, Y. M.; Mhaisalkar, S. G.; Grimsdale, A. C., Organic letters 2011, 13 (1), 46-49.
[18] Aldakov, D.; Palacios, M. A.; Anzenbacher, P., Chemistry of materials 2005, 17 (21), 5238-5241.
[19] Gangopadhyay, M.; Mukhopadhyay, S. K.; Gayathri, S.; Biswas, S.; Barman, S.; Dey, S.; Singh, N. P., Journal of Materials Chemistry B 2016, 4 (10), 1862-1868.
[20] Saroja, G.; Pingzhu, Z.; Ernsting, N. P.; Liebscher, J., The Journal of organic chemistry 2004, 69 (3), 987-990.
[21] Naeem, K. C.; Neenu, K.; Nair, V. C., ACS omega 2017, 2 (12), 9118-9126.
[22] Costa, S. P.; Oliveira-Campos, A. M.; Ferreira, J. A.; Kirsch, G., Journal of Chemical Research, Synopses 1997, (9), 314-315.
[23] Jiang, Y.; Lu, Y.-X.; Cui, Y.-X.; Zhou, Q.-F.; Ma, Y.; Pei, J., Organic letters 2007, 9 (22), 4539-4542.
指導教授 林子超 審核日期 2021-10-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明