博碩士論文 108223055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.156.46
姓名 陳峰裕(Fung-Yu Cheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 新型含雜環多光子材料之光學性質探討與 開發應用於鋰電池電解液中之單體材料
(Development of new heterocyclic multiphoton materials and monomers used in lithium batteries)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文分為兩個部分,第一部分著重於分子設計與其特別之處,
並透過實驗探討分子的光學性質與其結構上的關聯性。分子依照結構
歸納成三個系列,它們分別為 NR 3 型式並含有三氮唑吡啶
(triazolopyridine)或苯並噻唑(benzothiazole)基團的三叉分子,結構上分為對稱與非對稱兩種類別。第二系列為以噻唑-三氮唑吡啶
(thiophene-triazolopyridine)為核心,改變不同推電子基或取代基位向的條形分子。第三系列則是在三氮唑吡啶(triazolopyridine)與推電子基間橋接有不同 π -電子橋梁的條形分子。光學性質測量包括線性光學與非線性光學性質兩部分的實驗。線性光學性質量測模型分子的吸收光譜、螢光光譜、螢光量子產率及螢光生命週期;非線性光學相關的實驗則有雙光子與三光子吸收光譜、能量依賴性兩種類別。經過實驗後探討光學性質差異與分子結構的關聯性,可以歸納出下列幾個結論:
[1] 對具有 NR 3 型式的三叉分子而言,無論其分子結構是否對稱,其
雙、三光子最大吸收截面值相等但不對稱型分子的雙、三光子吸收帶
會 略 為 紅 移 。 苯 並 噻 唑 (benzothiazole) 相 較 於 三 氮 唑 吡 啶(triazolopyridine)對於提升雙、三光子吸收效率之效果更好。
[2] 於 π -共軛鏈中加入碳-碳三鍵能顯著提升雙、三光子吸收效率,但對於三光子吸收,甲氧基可能會降低三光子吸收的效率,可能表示影響雙、三光子吸收材料的分子設計法則不盡相同。
[3] 條形分子的 π -共軛長度以碳-碳雙鍵、噻吩(thiophene)、芴(fluorene)延伸能提升雙、三光子吸收效率。其中在分子的雙光子吸收表現上,芴(fluorene)在短波長區域更能增強雙光子吸收效率,而噻吩
(thiophene)則是對於在長波長區域的雙光子吸收效率增幅較顯著。至
於對分子的三光子吸收效率上,則是噻吩(thiophene)在全波長區域對
提升三光子吸收的表現皆略高於芴(fluorene)的表現。
本論文第二部分則是與工研院合作開發應用於鋰電池電解質之
壓克力單體。由於鋰電池現今常使用的液態電解質存在漏液、燃燒的
風險,因此可透過單體的添加形成固態電解質來解決上述問題,但同
時也會有阻抗上升與離子導電度下降的副作用。我們的目標是開發出
具液態電解質同等或更優良的電性表現的固態電解質。目前已開發出
單體 ECMA,在適量的 ECMA 添加進交聯劑 THEA、GIA 後,皆能
改善單純交聯劑聚合後製成鈕扣電池較嚴重的極化現象。甚至由
ECMA 與交聯劑 THEA 做成 1Ah 軟包電池在與只有商用電解液 352
的對照組相比之下,無論能量密度、不可逆性或是 0.2C 放電電容上
都相當,唯阻抗較大。
摘要(英) This thesis includes two parts. The first part is about molecular design, synthesis and characterizations of model compounds. The studied model molecules can be categorized into three series. The first series of model compounds is composed of symmetric and unsymmetric three-branched structures, which uses triazolopyridine and benzothiazole as electron-withdrawing groups and a central nitrogen atom as the electron-donor. The second series of model compounds utilizes thiophene-triazolopyridine as the central core and end-capped with various electron-donating groups to
form linear type structures. The third series of model chromophores possess unsymmetric structures using functionalized fluorene, thiophene and triazolopyridine as the constructing units. Various experiments that measure linear and nonlinear optical properties were performed including linear absorption spectra, linear emission spectra, quantum yields, lifetime, multiphoton absorption spectra and power-dependence measurements. Three features based on the relationship between measured optical properties and molecular structure can be concluded:
[1] For three branched model molecules, the multiphoton absorption efficiency doesn’t show any dependence on the molecular symmetry, but the band position is slightly red-shifted for the asymmetric model compounds. As a structural unit, benzothiazole has a better enhancement on the multiphoton absorption efficiency compared to triazolopyridine.
[2] Both the addition of methoxy groups on the electron-donor sites and the insertion of carbon-carbon triple bond into the π-framework will promote molecular two-photon efficiencies of linear type model compounds. But for the enhancement of three-photon efficiency, only the later exhibits positive impact. This feature indicates that the structure requirements for the promotion of molecular two-photon and three-photon efficiencies may be different.
[3] For linear model compounds, multiphoton absorption efficiency can be promoted by extending π-conjugation length through the insertion of thiophene, fluorene and carbon-carbon double bond. In two-photon absorption, fluorene unit possesses larger positive impact within shorter wavelength region while thiophene unit can promote two-photon
efficiency at longer wavelength region. For three-photon efficiency, thiophene manifests greater overall enhancement at all wavelength compared to fluorene unit.
The second part of this thesis is the development of monomer which can be used in lithium batteries. This research project is supported by Industrial Technology Research Institute (ITRI, Taiwan). Liquid electrolyte nowadays used in lithium batteries has the risk of leakage and combustion. Our goal of this collaborating project is to replace liquid
electrolyte with solid electrolyte which has lesser safety concern but with the similar or better battery performance. Currently we has developed monomer ECMA. Proper amount of ECMA mixed with crosslinking agent THEA or GIA can reduced polarization when made into coin cell. When ECMA and THEA is made into 1Ah pouch cell, the performance of energy density, irreversibility and 0.2C discharging capacitance are matched with the performance of the cell only contains commercial liquid electrolyte 352.
關鍵字(中) ★ 多光子材料 關鍵字(英) ★ multiphoton materials
論文目次 目錄
中文摘要……………………….…………………………………...…….i
Abstract…………………………………….…………………………...iii
謝誌……………………….…………………………………...…...……vi
目錄……………….……………………………………………...……..vii
圖目錄……….……………………………………..……………………ix
表目錄……………….…………………………………………….……xii
一、 緒論…………….……………………………….……….…….1
1-1 多光子吸收原理和發展歷史…………………………………...………1
1-2 鋰電池簡介…………………………………….………………………..7
1-3 研究動機……………………………………...……...………………….8
參考文獻…………………………………...………………………………...10
二、 模型分子簡介……………………….………..……………...13
2-1 分子設計……………………...………………………..…………..…..13
2-2 分子合成途徑…………………………...…………………..…………18
參考文獻……………………………...……………………………………...21
三、 光學性質探討……………………….………………...……..22
3-1 以三氮唑吡啶(triazolopyridine)和苯並噻唑(benzothiazole)為拉電子
基之三叉分子………..………………………….…………..………….22
3-1-1 線性光學………………………………………...………………22
3-1-2 非線性光學……………………………………...………..……..25
3-2 以噻吩三氮唑吡啶(thiophene-triazolopyridine)為核心之條形分子(湯發皓樣品)……………………………………..……………………….28
3-2-1 線性光學…………………………...……………………………28
3-2-2 非線性光學………………………………...………..…………..32
3-3 以含三氮唑吡啶(triazolopyridine)為拉電子基之條形分子(游雅筑樣品)………………………………………………………………………...35
3-3-1 線性光學……………………...………………………..………..35
3-3-2 非線性光學……………………………...………...…………….38
3-4 結論……………………………..……………...………...…………….41
四、 單體合成與應用於鋰電池之結果…………………..………42
4-1 單體之設計與合成………………...…………………………………..42
4-2 單體應用於鋰電池之結果與討論………………...…………..………43
參考文獻………………………...……………………………….…………..49
五、 實驗儀器與藥品……………….………………….…………50
5-1 實驗儀器…………………...…………………………………..………50
5-1-1 吸收光譜……………………………...……..…………………..50
5-1-2 螢光光譜………..……………………...………………………..50
5-1-3 螢光量子產率………..……………………...…………………..50
5-1-4 螢光生命週期………..……………………...…………………..51
5-1-5 雙、三光子吸收截面光譜………..……………...……………..51
5-1-6 NMR 光譜…………………………...…………..……………..53
5-1-7 質譜………………………….…………………………………..53
5-2 實驗藥品…………………………...……………..…………..………..54
六、 詳細合成及鑑定光譜圖………………………….…….……56
圖目錄
圖 1-1 單光子與雙光子吸收並輻射螢光的示意圖……………...……2
圖 2-1 本論文探討的模型分子之組成結構單元………….…………13
圖 2-2 第一系列三叉分子結構及其代號……………….……………14
圖 2-3 第二系列條形分子結構及其代號………….…..……………..16
圖 2-4 第三系列條形分子結構及其代號………………...…………..17
圖 2-5 推電子基 2OMe-diphenylamine 片段之合成……….………..18
圖 2-6 拉電子基前驅物及推電子基之合成…………...……………..18
圖 2-7 兩種拉電子基之合成…………….……………………..……..19
圖 2-8 兩種模型分子(A)、(B)之合成……………..………..………..20
圖 3-1 第一系列三叉分子結構及其代號…………….………..……..22
圖 3-2 第一系列線性吸收光譜圖……………….……………..……..23
圖 3-3 第一系列線性螢光光譜圖…………….………………..……..24
圖 3-4 第一系列雙光子吸收光譜圖…………….……..……………..25
圖 3-5 第一系列三光子吸收光譜圖……..……….…………………..26
圖 3-6 第一系列能量依賴性曲線圖…….…………………..………..27
圖 3-7 第二系列條形分子結構及其代號……..……….……………..29
圖 3-8 第二系列線性吸收光譜圖……..……….……………………..30
圖 3-9 第二系列線性螢光光譜圖……..……….……………………..30
圖 3-10 第二系列雙光子吸收光譜圖……..……….……..…………..32
圖 3-11 第二系列三光子吸收光譜圖……………...…………………33
圖 3-12 第二系列能量依賴性曲線圖..……….………………………34
圖 3-13 第三系列條形分子結構及其代號..…………….……………35
圖 3-14 第三系列線性吸收光譜圖..………….………………………36
圖 3-15 第三系列線性螢光光譜圖..…………….……………………37
圖 3-16 第三系列雙光子吸收光譜圖..…………….…………………38
圖 3-17 第三系列三光子吸收光譜圖..………….……………………39
圖 3-18 第三系列能量依賴性曲線圖……………….…………..……40
圖 4-1 單體分子結構及代號..…………………….………..…………42
圖 4-2 單體 ECMA 之合成途徑..………………….…………………42
圖 4-3 ECMA 與 THEA 做成鈕扣電池之充放電性質..………..…44
圖 4-4 ECMA 與 THEA 做成鈕扣電池後之線性掃描伏安圖....…45
圖 4-5 ECMA 與 THEA 做成鈕扣電池後之循環壽命…..……..…46
圖 4-6 ECMA 與 GIA 做成鈕扣電池後之充放電性質….…...……47
圖 4-7 ECMA 與 GIA 做成鈕扣電池後之循環壽命…..………..…48
圖 4-8 ECMA 與 GIA 做成鈕扣電池後之充放電率(C-rate) ..……48
圖 5-1 量測雙、三光子吸收截面光譜光路示意圖….……..……..…52
圖 5-2 標準物結構….…………………….………………………...…52
NMR spectrum & Mass spectrum…………………...………..….71~86
表目錄
表 表 3-1 第一系列於 toluene 中線性光學數據………….……….…….25
表 表 3-2 第二系列於 toluene 中線性光學數據……..………...………..31
表 表 3-3 第三系列於 toluene 中線性光學數據..…………….…………37
表 表 4-1 ECMA 與 THEA 聚合後製成軟包電池與對照組之電性比
較……………………………………………………..………....46
參考文獻 [1] Göppert-Mayer, M., Über Elementarakte mit zwei Quantensprüngen. Ann Phys
1931, 401, 273-294.
[2] Kaiser, W.; Garrett, C. G. B., Two-Photon Excitation in CaF 2 : Eu 2+ . Phys. Rev.
Lett. 1961, 7, 229-231.
[3] Peticolas, W. L.; Rieckhoff, K. E., Double‐Photon Excitation of Organic
Molecules in Dilute Solution. J. Chem. Phys. 1963, 39, 1347-1348.
[4] He, G. S.; Tan, L.-S.; Zheng, Q.; Prasad, P. N., Multiphoton Absorbing Materials:
Molecular Designs, Characterizations, and Applications. Chem. Rev. 2008, 108,
1245-1330.
[5] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan,
R.; Yuan, L.; He, G. S.; Prasad, P. N., Highly Active Two-Photon Dyes: Design,
Synthesis, and Characterization toward Application. Chem. Mater. 1998, 10,
1863-1874.
[6] Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.;
Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry,
J. W.; Röckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C.,
Design of Organic Molecules with Large Two-Photon Absorption Cross Sections.
Science 1998, 281, 1653-1656.
[7] Bhawalkar, J. D.; He, G. S.; Prasad, P. N., Three-photon induced upconverted
fluorescence from an organic compound: application to optical power limiting.
Opt. Commun. 1995, 119, 587-590.
[8] Bhawalkar, J. D.; He, G. S.; Prasad, P. N., Nonlinear multiphoton processes in
organic and polymeric materials. Rep. Prog. Phys. 1996, 59, 1041-1070.
[9] Kim, O.-K.; Lee, K.-S.; Woo, H. Y.; Kim, K.-S.; He, G. S.; Swiatkiewicz, J.;
Prasad, P. N., New Class of Two-Photon-Absorbing Chromophores Based on
Dithienothiophene. Chem. Mater. 2000, 12, 284-286.
[10] Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-
Maughon, D.; Parker, T. C.; Röckel, H.; Thayumanavan, S.; Marder, S. R.;
Beljonne, D.; Brédas, J.-L., Structure−Property Relationships for Two-Photon
Absorbing Chromophores: Bis-Donor Diphenylpolyene and Bis(styryl)benzene
Derivatives. J. Am. Chem. Soc. 2000, 122, 9500-9510.
[11] Kannan, R.; He, G. S.; Yuan, L.; Xu, F.; Prasad, P. N.; Dombroskie, A. G.;
Reinhardt, B. A.; Baur, J. W.; Vaia, R. A.; Tan, L.-S., Diphenylaminofluorene-
Based Two-Photon-Absorbing Chromophores with Various π-Electron Acceptors.
Chem. Mater. 2001, 13, 1896-1904.
[12] Cho, B. R.; Son, K. H.; Lee, S. H.; Song, Y.-S.; Lee, Y.-K.; Jeon, S.-J.; Choi, J.
H.; Lee, H.; Cho, M., Two Photon Absorption Properties of 1,3,5-Tricyano-2,4,6-
tris(styryl)benzene Derivatives. J. Am. Chem. Soc. 2001, 123, 10039-10045.
[13] Dougherty, T. J., Photodynamic therapy—new approaches. Semin. Surg. Oncol.
1989, 5, 6-16.
[14] Wang, X.; Krebs, L. J.; Al-Nuri, M.; Pudavar, H. E.; Ghosal, S.; Liebow, C.; Nagy,
A. A.; Schally, A. V.; Prasad, P. N., A chemically labeled cytotoxic agent: Two-
photon fluorophore for optical tracking of cellular pathway in chemotherapy.
PNAS 1999, 96, 11081-11084.
[15] Parthenopoulos, D. A.; Rentzepis, P. M., Three-Dimensional Optical Storage
Memory. Science 1989, 245, 843-845.
[16] Joshi, M. P.; Pudavar, H. E.; Swiatkiewicz, J.; Prasad, P. N.; Reianhardt, B. A.,
Three-dimensional optical circuitry using two-photon-assisted polymerization.
Appl. Phys. Lett. 1999, 74, 170-172.
[17] He, G. S.; Yuan, L.; Cheng, N.; Bhawalkar, J. D.; Prasad, P. N.; Brott, L. L.;
Clarson, S. J.; Reinhardt, B. A., Nonlinear optical properties of a new
chromophore. J. Opt. Soc. Am. B 1997, 14, 1079-1087.
[18] Rumi, M.; Perry, J. W., Two-photon absorption: an overview of measurements
and principles. Adv. Opt. Photon. 2010, 2, 451-518.
[19] Sperber, P.; Penzkofer, A., S 0 -S n two-photon absorption dynamics of rhodamine
dyes. Opt Quantum Electron 1986, 18, 381-401.
[20] Sheik-Bahae, M.; Said, A. A.; Wei, T.; Hagan, D. J.; Stryland, E. W. V., Sensitive
measurement of optical nonlinearities using a single beam. IEEE J Quantum
Electron 1990, 26, 760-769.
[21] Tian, P.; Warren, W. S., Ultrafast measurement of two-photon absorption by loss
modulation. Opt. Lett. 2002, 27, 1634-1636.
[22] C. Xu and W. W. Webb, “Multiphoton excitation of molecular fluorophores and
nonlinear laser microscopy,” in Nonlinear and Two-Photon-Induced Fluorescence,
Vol. 5 of Topics in Fluorescence Spectroscopy, J. Lakowicz, ed. (Plenum, 1997),
pp. 471–540.
[23] R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
[24] Esherick, P.; Zinsli, P.; El-Sayed, M. A., The low energy two-photon spectrum of
pyrazine using the phosphorescence photoexcitation method. Chem. Phys. 1975,
10, 415-432.
[25] Twarowski, A. J.; Kliger, D. S., Multiphoton absorption spectra using thermal
blooming: I. Theory. Chem. Phys. 1977, 20, 253-258.
[26] Johnson, P. M., Molecular multiphoton ionization spectroscopy. Acc. Chem. Res.
1980, 13, 20-26.
[27] Oulianov, D. A.; Tomov, I. V.; Dvornikov, A. S.; Rentzepis, P. M., Observations
on the measurement of two-photon absorption cross-section. Opt. Commun. 2001,
191, 235-243.
[28]Li, M.; Wang, Z.; Liang, M.; Liu, L.; Wang, X.; Sun, Z.; Xue, S., Low-Cost
Carbazole-Based Hole-Transporting Materials for Perovskite Solar Cells:
Influence of S,N-Heterocycle. J. Phys. Chem. C 2018, 122, 24014-24024.
[29] Lee, M.-J.; Kang, M. S.; Shin, M.-K.; Park, J.-W.; Chung, D. S.; Park, C. E.; Kwon,
S.-K.; Kim, Y.-H., Synthesis and characterization of poly(1,4-bis((E)-2-(3-
dodecylthiophen-2-yl)vinyl)benzene) derivatives. J Polym Sci A Polym Chem
2010, 48, 3942-3949.
[30] Capodilupo, A.-L.; Manni, F.; Corrente, G. A.; Accorsi, G.; Fabiano, E.; Cardone,
A.; Giannuzzi, R.; Beneduci, A.; Gigli, G., Arylamino-fluorene derivatives:
Optically induced electron transfer investigation, redox-controlled modulation of
absorption and fluorescence. Dyes Pigm. 2020, 177.
[31] Nguyen, W. H.; Bailie, C. D.; Burschka, J.; Moehl, T.; Grätzel, M.; McGehee, M.
D.; Sellinger, A., Molecular Engineering of Organic Dyes for Improved
Recombination Lifetime in Solid-State Dye-Sensitized Solar Cells. Chem. Mater.
2013, 25, 1519-1525.
[32] Sołoducho, J.; Roszak, S.; Chyla, A.; Tajchert, K., Synthetic routes to
bis(pyrrolyl)arylenes. Experimental and molecular modeling studies. New J.
Chem. 2001, 25, 1175-1181.
[33] Ueda, S.; Nagasawa, H., Facile Synthesis of 1,2,4-Triazoles via a Copper-
Catalyzed Tandem Addition-Oxidative Cyclization. J. Am. Chem. Soc. 2009, 131,
15080.
[34] Markiewicz, J. T.; Wiest, O.; Helquist, P., Synthesis of primary aryl amines
through a copper-assisted aromatic substitution reaction with sodium azide. J Org
Chem 2010, 75, 4887-90.
[35] Kauffman, J. M.; Moyna, G., Diarylamino groups as photostable auxofluors in 2-
benzoxazolylfluorene, 2,5-diphenyloxazoles, 1,3,5-hexatrienes, 1,4-
distyrylbenzenes, and 2,7-distyrylfluorenes. J. Org. Chem. 2003, 68, 839-853.
[36] Deligeorgiev, T.; Minkovska, S.; Jejiazkova, B.; Rakovsky, S., Synthesis of
photochromic chelating spironaphthoxazines. Dyes Pigm. 2002, 53, 101-108.
[37]Fraser, B. H.; Perlmutter, P.; Wijesundera, C., Practical Syntheses of
Triacylglycerol Regioisomers Containing Long-chain Polyunsaturated Fatty
Acids. J Am Oil Chem Soc 2006, 84, 11-21.
指導教授 林子超(Tzu-Chau Lin) 審核日期 2021-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明