博碩士論文 108226071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.223.158.193
姓名 林竑帆(Hong-Fan Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以經驗模態分析疊紋二值圖振動量測人工智慧分類之研究
(Research on Artificial Intelligence Classification for Vibration Measurement by Moiré Binary Graph Analysis Based on Empirical Mode)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 接觸式和非接觸式是獲得物體表面信息的兩種方法。 前者需要與被測物接觸,這使得獲取信息的效率非常差,並且在接觸期間被測物或檢測端可能變形或損壞。 導致結果不准確。 後者不會接觸被測物,量測效率更高,本研究之目的為創立一量化生理指標的非接觸式系統。
在這項研究中使用三角測量來估計距離可以追溯到公元前 600 多年。 希臘哲學家泰勒斯利用相似性原理(交集定理)來測量自己與金字塔的影子長度以及高度。若以此為基準輔以Moiré疊紋藉此放大振動情形,可使量測更為容易。而本研究系統就是利用投影出的光柵與電腦後製上去的光柵產生之Moiré疊紋變化偵測微小顫動。
投影機投射光柵,雖然方便操作且可隨被測物不同及時更換適合的光柵,但其投影的閃爍頻率卻會對所測出的數據產生(0.6hz與10hz)影響,所以過往所得到的量測結果為相對數值而非絕對數值,因此以二值化方式消除其影響,並用區域多點平均方式消除因光線角度產生陰影而量測數值經fft後為無任何頻率變化的無效點,最後使用經驗模態分析獲取振動之瞬時頻率彌補傅立葉轉換無法明確了解資料的瞬時頻率的劣勢,在處理非平穩及非線性數據上具有優勢。
本研究之實驗以可調整振動頻率之體感振動器進行實驗,導入人工智慧卷積神經網絡(Convolutional Neural Networks,CNN)進行分辨不同頻率,本論文方法的平均準確率高達98.07%,原使方法在相同訓練權重、相同訓練樣本數下平均準確率僅為53.76%,本論文方法準確率提高了44.31%。
摘要(英) Contact and non-contact are two methods to obtain surface information. The former needs to be in contact with the measured object, which makes the efficiency of obtaining information very poor, and the measured object or the detection end may be deformed or damaged during the contact. Lead to inaccurate results. The latter does not touch the object to be measured, and the measurement efficiency is higher. The purpose of this research is to create a non-contact system that quantifies physiological indicators.
The use of triangulation to estimate distance in this study dates back to more than 600 BC. The Greek philosopher Thales used the principle of similarity (intersection theorem) to measure the length and height of the shadow between himself and the pyramid. If the Moiré moiré is used as a benchmark to amplify the vibration, the measurement can be made easier. In this research system, the projected grating and the Moiré moiré produced by the computer-made grating are used to detect small vibrations.
The projector projects the grating. Although it is easy to operate and can be changed in time according to the measured object, the flicker frequency of its projection will have an impact on the measured data (0.6hz and 10hz), so the amount obtained in the past The measurement result is a relative value rather than an absolute value, so the effect is eliminated by binarization, and the area multi-point averaging method is used to eliminate the shadow caused by the light angle. The measured value is an invalid point without any frequency change after fft, and finally used The empirical modal analysis obtains the instantaneous frequency of vibration to make up for the disadvantage that the Fourier transform cannot clearly understand the instantaneous frequency of the data, and has advantages in processing non-stationary and nonlinear data.
The experiment of this research is carried out with a somatosensory vibrator with adjustable vibration frequency, and artificial intelligence convolutional neural network (CNN) is introduced to distinguish different frequencies, the average accuracy of the method in this paper is as high as 98.07%. The average accuracy of the original method under the same training weight and the same number of training samples is only 53.76%. The accuracy of the method in this paper is increased by 44.31%.
關鍵字(中) ★ 疊紋
★ 經驗模態分析
★ 經驗模態分解
★ 人工智慧
★ 卷積神經網絡
★ 卷積神經網路
★ 二值化
關鍵字(英) ★ Moiré
★ Empirical Mode Decomposition
★ EMD
★ AI
★ ​Convolutional Neural Networks
★ CNN
★ Binarization
論文目次 目錄
摘要 ........................................................................................................................ i
Abstract ............................................................................................................... iiii
誌謝 ....................................................................................................................... v
目錄 ................................................................................................................... viiii
圖目錄 ................................................................................................................... x
表目錄 ................................................................................................................ xvi
第一章 序論 ......................................................................................................... 1
1-1研究貢獻 1
1-2 研究動機 ..................................................................................................... 5
1-3 研究目的 ..................................................................................................... 6
1-4 論文架構 ..................................................................................................... 6
第二章 研究原理 ................................................................................................. 7
2-1 Moiré疊紋之起源和概念 .......................................................................... 7
2-2 疊紋干涉近似表示法 ................................................................................. 8
2-3 陰影疊紋法 ............................................................................................... 10
viii
2-4 疊紋表面與位移量測原理 ....................................................................... 13
2-5 疊紋簡化法 ............................................................................................... 15
2-6 二值化 ....................................................................................................... 17
2-7 經驗模態分析經驗模態分析 ........................................................................................... 18
2-8 傅立葉轉換 ............................................................................................... 21
2-8 卷積神經網絡(CNN) ................................................................................ 23
第三章 研究設備 ............................................................................................... 27
3-1 系統架構 ................................................................................................... 27
3-2 軟/硬體設備介紹 ...................................................................................... 28
3-2-1 投影機 ................................................................................................ 29
3-2-2 網路攝影機 ........................................................................................ 30
3-2-3 Matlab ................................................................................................ 32
3-2-4 光柵 .................................................................................................... 33
3-2-5 體感振動器 ........................................................................................ 34
第四章 實驗與結果分析 ................................................................................... 35
4-1 實驗設計實驗設計 ................................................................................................... 35
4-2 實驗流程 ................................................................................................... 35
ix
4-2-1操作前置作業流程 .......................................................................................................................................................... 35
4-2-2後端影像處理流程 .......................................................................................................................................................... 36
4-2-3後端影像分析流程 .......................................................................................................................................................... 40
4-2-4後端模型訓練流程 .......................................................................................................................................................... 43
4-3 量測與分析結果 ....................................................................................... 44
第五章 結論與未來展望 ................................................................................... 79
5-1 研究結論 ................................................................................................... 79
5-2 未來展望 ................................................................................................... 79
參考文獻 ............................................................................................................. 81
附件:預投稿論文 ............................................................................................. 83
參考文獻 參考文獻
〔1〕 J. Guild, “The Interference System of Crossed Diffraction Gratings: Theory of Moirè Fringes”, Oxford at the Clarendon Press, 1956.
〔2〕 B. Han, D. Post, “Moiré interferometry for engineering mechanics: current practices and future developments” , The Journal of Strain Analysis for Engineering Design, Vol.36. p.101-117,(2001)
〔3〕 Lord Rayleigh, “On the manufacture and theory of diffraction grating”, Phil. Mag. Series4, pp. 81-93, 1874.
〔4〕 Daniel Post , Bongtae Han , Peter G. Ifju, “Moiré Methods for Engineering and Science - Moiré Interferometry and Shadow Moiré”, Topics in Applied Physics, Volume 77, p.151, 2000.
〔5〕 R. Weller and B.M. Shepard, “Displacement Measurements by Mechanical Interferometry”, Proc. SESA, 6(1), p35-38, 1948.
〔6〕 H. Takasaki, “Moiré Topography”, Applied Optics, Vol.9, No.6, pp.1467~1472, 1970.
〔7〕 R. P. Khetan, “Theory and Applications of Projection Moiré Method”, State University of New York at Stony Brook, Ph.D. Dissertation, 1975.
〔8〕 M. Ldesawa, T. Yatagai, T. Sorma, “Scanning Moiré Method and Automatic Measurement of 3-D Shapes”, Applied Optics, Vol.16, No.8, pp.2125 -2162, 1977.
〔9〕 J. E.A. Liao and A.S. Voloshin, “Enhancement of the Shadow-Moiré Method Through Digital Image Processing”, Experimental Mechanics , Volume33, p59-63, 1993.
〔10〕 Inokuchi Y, et al. “Evaluation of Facial Palsy by Moiré Topography”, Proc SPIE, 1429, p.258-265, 1995.
〔11〕 Ivnitsky A, Voloshin A. “Measurement of the Face’s Topography by Digitally Digitally Enhanced Shadow Moiré”, Proc SPIE, 1395 p.1043-1049, 1996.
〔12〕 F. P. Chiang, “Moiré Methods of Strain Analysis”, Experimental Mechanics, pp. 290~308, 1979.
〔13〕 Voloshin,A. S. ,Burger,C. P., Rowlands, R.E. , “Composites Analysis, by Fractional Moiré Fringe System”, J .Comp. Mat. 19, p513-524,1985.
〔14〕 Katherine Creath ,Phase-shifting speckle interferometry, Applied Optics, Vol.24, No.18, September 1985.
〔15〕 J. L. Sullivan , “Phase—Stepped Fractional Moiré”, Experimental Mechanics, Volume31, p373- 381, 1991.
82
〔16〕 Otsu, N. (1979). A Threshold Selection Method from Gray- Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.
〔17〕 J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, ‘‘A new method for gray-level picture thresholding using the entropy of the histogram,’’ Graph. Models Image Process. 29, 273–285 ~1985!
〔18〕 T. W. Ridler and S. Calvard, ‘‘Picture thresholding using an iterative selection method,’’ IEEE Trans. Syst. Man Cybern. SMC-8, 630–632 ~1978!.
〔19〕 N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, Math. Phys. Sci., vol. 454, pp. 903-995, 1998.
〔20〕 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet classification with deep convolutional neural networks”, in NIPS, 2012.
〔21〕 Y. LeCun, Y. Bengio,and G. Hinton. “Deep learning.“Nature 521, 436–444, 2015.
指導教授 張榮森(Rong-Seng Chang) 審核日期 2021-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明