參考文獻 |
Balahur, A., Mohammad, S., Hoste, V., & Klinger, R. (2018, October). Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis.
Ben-Hur, A., Horn, D., Siegelmann, H. T., & Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2, 125-137.
Bifet, A., & Frank, E. (2010, October). Sentiment knowledge discovery in twitter streaming data. International conference on discovery science (pp. 1-15). Springer. https://doi.org/10.1007/978-3-642-16184-1_1
Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. O′Reilly Media, Inc.
Breslow, J. F. (2017). Salary Inequality in the NBA: Changing Returns to Skill or Wider Skill Distributions? CMC Senior Theses. 1645.
Cao, C. (2012). Sports data mining technology used in basketball outcome prediction. Unpublished masters dissertation, Technological University Dublin.
Cavnar, W. B., & Trenkle, J. M. (1994, April). N-gram-based text categorization. Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval, 161175.
Cheng, G., Zhang, Z., Kyebambe, M. N., & Kimbugwe, N. (2016). Predicting the outcome of NBA playoffs based on the maximum entropy principle. Entropy, 18(12), 450. https://doi.org/10.3390/e18120450
Chowdhury, G. G. (2003). Natural language processing. Annual review of information science and technology, 37(1), 51-89. https://doi.org/10.1002/aris.1440370103
Cramer, J. S. (2002). The origins of logistic regression. Tinbergen Institute Working Paper No. 2002-119/4. http://dx.doi.org/10.2139/ssrn.360300
Csataljay, G., O’Donoghue, P., Hughes, M., & Dancs, H. (2009). Performance indicators that distinguish winning and losing teams in basketball. International Journal of Performance Analysis in Sport, 9(1), 60-66. https://doi.org/10.1080/24748668.2009.11868464
Dunning, T. (1994). Statistical identification of language (pp. 94-273). New Mexico State University.
Ertug, G., & Castellucci, F. (2013). Getting what you need: How reputation and status affect team performance, hiring, and salaries in the NBA. Academy of Management Journal, 56(2), 407-431. https://doi.org/10.5465/amj.2010.1084
Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89. https://doi.org/10.1145/2436256.2436274
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N project report. Stanford University.
Groothuis, P. A., & Hill, J. R. (2004). Exit discrimination in the NBA: A duration analysis of career length. Economic Inquiry, 42(2), 341-349. https://doi.org/10.1093/ei/cbh065
Haghighat, M., Rastegari, H., Nourafza, N., Branch, N., & Esfahan, I. (2013). A review of data mining techniques for result prediction in sports. Advances in Computer Science: An International Journal, 2(5), 7-12.
Hill, J. R., & Jolly, N. A. (2012). Salary distribution and collective bargaining agreements: A case study of the NBA. Industrial Relations: A Journal of Economy and Society, 51(2), 342-363. https://doi.org/10.1111/j.1468-232X.2012.00680.x
Ho, T. K. (1995, August). Random decision forests. Proceedings of 3rd international conference on document analysis and recognition, 278-282. IEEE. https://doi.org/10.1109/ICDAR.1995.598994
Hoffer, A. J., & Freidel, R. (2014). Does salary discrimination persist for foreign athletes in the NBA? Applied Economics Letters, 21(1), 1-5. https://doi.org/10.1080/13504851.2013.829183
Horowitz, I. (2018). Competitive balance in the NBA playoffs. The American Economist, 63(2), 215-227. https://doi.org/10.1177/0569434517747250
Hsu, Y.-C. (2020). Using machine learning and candlestick patterns to predict the outcomes of American football games. Applied Sciences, 10(13), 4484. https://doi.org/10.3390/app10134484
Hutto, C., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the International AAAI Conference on Web and Social Media, 8, 216-225.
Kamiński, B., Jakubczyk, M., & Szufel, P. (2018). A framework for sensitivity analysis of decision trees. Central European Journal of Operations Research, 26(1), 135-159. https://doi.org/10.1007/s10100-017-0479-6
Kelly, T. (2017). Effects of TV Contracts on NBA Salaries. Colgate Economics.
Loeffelholz, B., Bednar, E., & Bauer, K. W. (2009). Predicting NBA games using neural networks. Journal of Quantitative Analysis in Sports, 5(1). https://doi.org/10.2202/1559-0410.1156
McCabe, A., & Trevathan, J. (2008, April). Artificial intelligence in sports prediction. Fifth International Conference on Information Technology: New Generations, 1194-1197. IEEE. https://doi.org/10.1109/ITNG.2008.203
Mikołajec, K., Maszczyk, A., & Zając, T. (2013). Game indicators determining sports performance in the NBA. Journal of Human Kinetics, 37, 145. https://doi.org/10.2478/hukin-2013-0035
Miljković, D., Gajić, L., Kovačević, A., & Konjović, Z. (2010, September). The use of data mining for basketball matches outcomes prediction. IEEE 8th international symposium on intelligent systems and informatics, 309-312. IEEE. https://doi.org/10.1109/SISY.2010.5647440
Min, B., Kim, J., Choe, C., Eom, H., & McKay, R. (2008). A compound framework for sports prediction: The case study of football. Knowledge-Based Systems, 21(7), 551-562. https://doi.org/10.1016/j.knosys.2008.03.016
Oliver, D. (2004). Basketball on paper: Rules and tools for performance analysis. Potomac Books, Inc.
Powers, D. M. (2020). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 16061. http://doi.org/10.9735/2229-3981
Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies, 27(3), 221-234. https://doi.org/10.1016/S0020-7373(87)80053-6
Radovanović, S., Radojičić, M., Jeremić, V., & Savić, G. (2013). A novel approach in evaluating efficiency of basketball players. Management, 67, 37-45. https://doi.org/10.7595/management.fon.2013.0012
Ramaswamy, S., Rastogi, R., & Shim, K. (2000, May). Efficient algorithms for mining outliers from large data sets. Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 427-438. https://doi.org/10.1145/342009.335437
Raschka, S., & Mirjalili, V. (2017). Python machine learning: Machine learning and deep learning with Python, scikit-learn, and tensorflow.(2nd ed.), Packt.
Sinha, S., Dyer, C., Gimpel, K., & Smith, N. A. (2013). Predicting the NFL using Twitter. In A. Zimmermann & J. Davis (eds), MLSA13–Proceedings of Machine Learning and Data Mining for Sports Analytics.
Smith, L., Lipscomb, B., & Simkins, A. (2007). Data mining in sports: Predicting cy young award winners. Journal of Computing Sciences in Colleges, 22(4), 115-121. https://dl.acm.org/doi/10.5555/1229637.1229658
Somberg, A. K., & Sommers, P. M. (2012). Payrolls and playoff probabilities in major league baseball. Atlantic Economic Journal, 40(3), 347-348. https://doi.org/10.1007/s11293-012-9317-3
Stanek, T. (2016). Player performance and team revenues: NBA player salary analysis. CMC Senior Theses. Paper 1257, Claremont McKenna College. http://scholarship.claremont.edu/cmc_theses/1257
Stiroh, K. J. (2007). Playing for Keeps: Pay and Performance in the NBA. Economic Inquiry, 45(1), 145-161. https://doi.org/10.1111/j.1465-7295.2006.00004.x
Strobl, C., Boulesteix, A.-L., & Augustin, T. (2007). Unbiased split selection for classification trees based on the Gini index. Computational Statistics & Data Analysis, 52(1), 483-501. https://doi.org/10.1016/j.csda.2006.12.030
Trawiński, K. (2010, July). A fuzzy classification system for prediction of the results of the basketball games. International conference on fuzzy systems, 1-7. IEEE. https://doi.org/10.1109/FUZZY.2010.5584399
Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Centrum voor Wiskunde en Informatica.
Weissbock, J. (2014). Forecasting success in the National Hockey League using in-game statistics and textual data. Unpublished doctoral dissertation, University of Ottawa. http://dx.doi.org/10.20381/ruor-6351
Yang, Y. S. (2015). Predicting regular season results of NBA teams based on regression analysis of common basketball statistics. Unbublished honors thesis, University of California at Berkeley.
Yu, Y., Duan, W., & Cao, Q. (2013). The impact of social and conventional media on firm equity value: A sentiment analysis approach. Decision Support Systems, 55(4), 919-926. https://doi.org/10.1016/j.dss.2012.12.028
Zdravevski, E., & Kulakov, A. (2009, September). System for prediction of the winner in a sports game. International Conference on ICT Innovations, 55-63. Springer. https://doi.org/10.1007/978-3-642-10781-8_7 |