博碩士論文 107226072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.222.121.231
姓名 李宥霆(Yu-Ting Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 白光干涉術之相位型生物感測器
(Phase-Type Biosensor with White Light Interferometry)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 本論文使用掃描式白光干涉儀作為光學轉換器並應用於生物感測器,利用白光干涉技術搭配快速傅立葉轉換法將時域的干涉光強訊號轉換為頻域的傅立葉相位頻譜。利用反射相位作為分析的依據,將生物辨識元件與分析物視為薄膜層,當不同濃度的分析物進行反應時,等效折射率會隨反應濃度的分析物數量而改變,根據相位與折射率的關係,探討分析物在不同濃度時的實驗結果。
針對在測量時可能產生的誤差進行調整,其中包含傾斜角度的影響及對反應前後相位差的基準點不同進行改善。在測量結果中,本實驗將最大波數代入擬合的線性方程式中,計算出反應前後相位差的變化量,將此變化量稱為截距差,並以此作為等效折射率變化的標準。採用生醫檢測上的非線性回歸模型,對8個不同濃度的實驗結果進行擬合,驗證實驗結果的合理性,其R平方值為0.9993,利用此模型計算本系統的檢測極限(Limit of Detection)可達到0.019 ng∙mL^(-1)。
摘要(英) This thesis aims to detect biosensor by using White Light Scanning Interferometer (WLSI) as the optical transducer. The technology which combines White Light Interferometry and Fast Fourier Transform changes the signal of interference light in time domain to the spectrum of Fourier phase in frequency domain. To discuss the result when analyte responses at different concentration, the analysis of experiment is based on the reflective phase and viewing biorecognition element and analyte as two thin films. When analyte is responding with biorecognition element, the effective refractive index of two thin films will change by the amount of analyte at different concentration, then getting result by the relationship between refractive index and phase.
Adjusting two possible errors when measuring in experiment, including the effect of tilt and the base point of phase difference before and after reaction are different. In the experimental result, substituting maximum wave number into equation of linear regression to calculate the variable quantities of phase difference before and after reaction. Viewing the variable quantity as the standard of effective refractive index changes, and called the variable quantity as the Intercept Difference.
To verify the reasonableness of experimental result uses the nonlinear regression model with bioanalysis to fit the result at eight different concentrations. The R squared is 0.9993, and the limit of detection (LOD) is 0.019 ng∙mL^(-1) by calculating from this model.
關鍵字(中) ★ 白光干涉儀
★ 生物感測器
★ 免疫球蛋白G
關鍵字(英)
論文目次 摘要...............i
Abstract..........ii
誌謝..............iv
目錄...............v
圖目錄...........vii
表目錄..........viii
第一章 緒論..................1
1.1. 前言..................1
1.1.1. 光學生物感測器.........1
1.1.2. 掃描式白光干涉儀.......5
1.1.3. 分析物簡介............6
1.2. 研究動機 .............8
1.3. 本文架構 .............9
第二章 理論.................10
2.1. 干涉儀簡介............10
2.2. 干涉理論..............13
第三章 實驗架構與研究方法.....20
3.1. 實驗架構..............20
3.2. 實驗流程..............23
3.3. 研究方法..............27
第四章 結果與討論............31
4.1. 相位分析..............31
4.2. 實驗結果與討論.........34
4.2.1. 測量樣品圖案的階高.....34
4.2.2. 測量分析物.............35
4.3. 系統靈敏度.............40
第五章 結論..................43
參考文獻 45
參考文獻 1. N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, "Introduction to biosensors," Essays Biochem. 60, 1–8 (2016).
2. W. R. Heineman and W. B. Jensen, "Leland C. Clark Jr. (1918–2005)," Biosensors and Bioelectronics 21, 1403–1404 (2006).
3. P. Damborský, J. Švitel, and J. Katrlík, "Optical biosensors," Essays Biochem. 60, 91–100 (2016).
4. T. Tabbakh, N. Alotaibi, Z. A. Almusaylim, S. Alabdulkarim, N. Z. Jhanjhi, and N. B. Darwish, Optoelectronics and Optical Bio-Sensors (IntechOpen, 2021).
5. M. Pirzada and Z. Altintas, "Recent Progress in Optical Sensors for Biomedical Diagnostics," Micromachines 11, 356 (2020).
6. T. D. Martins, A. C. C. Ribeiro, H. S. de Camargo, P. A. da C. Filho, H. P. M. Cavalcante, and D. L. Dias, New Insights on Optical Biosensors: Techniques, Construction and Application (IntechOpen, 2013).
7. D. Rho, C. Breaux, and S. Kim, "Label-Free Optical Resonator-Based Biosensors," Sensors 20, 5901 (2020).
8. E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, "Silicon Photonic Biosensors Using Label-Free Detection," Sensors 18, 3519 (2018).
9. K. Li, S. Wang, L. Wang, H. Yu, N. Jing, R. Xue, and Z. Wang, "Fast and Sensitive Ellipsometry-Based Biosensing," Sensors 18, 15 (2017).
10. P. Salvo, F. M. Vivaldi, A. Bonini, D. Biagini, F. G. Bellagambi, F. M. Miliani, F. Di Francesco, and T. Lomonaco, "Biosensors for Detecting Lymphocytes and Immunoglobulins," Biosensors 10, 155 (2020).
11. B.-T. Wang and Q. Wang, "An interferometric optical fiber biosensor with high sensitivity for IgG/anti-IgG immunosensing," Optics Communications 426, 388–394 (2018).
12. Z. Guo, Y. Qin, P. Chen, J. Hu, Y. Zhou, X. Zhao, Z. Liu, Y. Fei, X. Jiang, and X. Wu, "Hyperboloid-Drum Microdisk Laser Biosensors for Ultrasensitive Detection of Human IgG," Small 16, 2000239 (2020).
13. M.-C. Li, Y.-F. Chang, H.-Y. Wang, Y.-X. Lin, C.-C. Kuo, J. Annie Ho, C.-C. Lee, and L.-C. Su, "An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing," Sci. Rep. 7, 44555 (2017).
14. L. Zhu, Y. Dong, Z. Li, and X. Zhang, "A Novel Surface Recovery Algorithm for Dual Wavelength White LED in Vertical Scanning Interferometry (VSI)," Sensors 20, 5225 (2020).
15. Y. Fu, G. Pedrini, and X. Li, "Interferometric Dynamic Measurement: Techniques Based on High-Speed Imaging or a Single Photodetector," The Scientific World Journal 2014, 232906 (2014).
16. G. Vidarsson, G. Dekkers, and T. Rispens, "IgG Subclasses and Allotypes: From Structure to Effector Functions," Front. Immunol. 5, 520 (2014).
17. Wikipedia, "Immunoglobulin G," https://en.wikipedia.org/wiki/Immunoglobulin_G
18. H. W. Schroeder and L. Cavacini, "Structure and function of immunoglobulins," Journal of Allergy and Clinical Immunology 125, S41–S52 (2010).
19. J. S. Kanger, V. Subramaniam, P. H. J. Nederkoorn, and A. Ymeti, "A Fast and Sensitive Integrated Young Interferometer Biosensor," Advanced Photonic Structures for Biological and Chemical Detection 265–295 (2009).
20. A. Kussrow, C. S. Enders, and D. J. Bornhop, "Interferometric Methods for Label-Free Molecular Interaction Studies," Anal. Chem. 84, 779–792 (2012).
21. D. Malacara, ed., Optical Shop Testing, 3rd ed, Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2007).
22. G. Y. Di Veroli, C. Fornari, I. Goldlust, G. Mills, S. B. Koh, J. L. Bramhall, F. M. Richards, and D. I. Jodrell, "An automated fitting procedure and software for dose-response curves with multiphasic features," Sci. Rep. 5, 14701 (2015).
23. S. A. Nummer, A. J. Weeden, C. Shaw, B. K. Snyder, T. B. Bridgeman, and S. S. Qian, "Updating the ELISA standard curve fitting process to reduce uncertainty in estimated microcystin concentrations," MethodsX 5, 304–311 (2018).
24. M. Alhajj and A. Farhana, "Enzyme Linked Immunosorbent Assay," in StatPearls (StatPearls Publishing, 2021).
25. S. Sakamoto, W. Putalun, S. Vimolmangkang, W. Phoolcharoen, Y. Shoyama, H. Tanaka, and S. Morimoto, "Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites," J. Nat. Med. 72, 32–42 (2018).
26. G. Sapkal, A. Shete-Aich, R. Jain, P. D. Yadav, P. Sarkale, R. Lakra, S. Baradkar, G. R. Deshpande, D. Mali, B. N. Tilekar, T. Majumdar, H. Kaushal, Y. Gurav, N. Gupta, S. Mohandas, K. Deshpande, O. Kaduskar, M. Salve, S. Patil, S. Gaikwad, A. P. Sugunan, M. Ashok, S. Giri, J. Shastri, P. Abraham, and R. R. Gangakhedkar, "Development of indigenous IgG ELISA for the detection of anti-SARS-CoV-2 IgG," Indian J. Med. Res. 151, 444–449 (2020).
27. R. C. May, H. Chu, J. G. Ibrahim, M. G. Hudgens, A. C. Lees, and D. M. Margolis, "Change-Point Models to Estimate the Limit of Detection," Stat. Med. 32, 4995–5007 (2013).
28. D. A. Armbruster and T. Pry, "Limit of Blank, Limit of Detection and Limit of Quantitation," Clin. Biochem. Rev. 29, S49–S52 (2008).
29. Á. Lavín, J. de Vicente, M. Holgado, M. F. Laguna, R. Casquel, B. Santamaría, M. V. Maigler, A. L. Hernández, and Y. Ramírez, "On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors," Sensors 18, 2038 (2018).
30. D. Martens and P. Bienstman, "Study on the limit of detection in MZI-based biosensor systems," Sci. Rep. 9, 5767 (2019).
31. Wikipedia, "Normal distribution," https://en.wikipedia.org/wiki/Normal_distribution
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明