博碩士論文 101387001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.189.2.122
姓名 陳立悟(Li-Wu Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 創新恒定光子計數控制式暉光儀之開發及校正測試
(Development and calibration test of innovative constant photon count control airglow instrument)
相關論文
★ CIS數位影像處理平台之建構★ 微電鍍成長速度最佳化與影像監控
★ 橢圓辨識演算法之最佳化與誤差分析★ 頻率響應分析儀實作
★ 分散式驅動器開發★ 超音波定位平台原型開發
★ 地磁感測儀研發★ 雙頻式超音波測距系統之最佳化研究
★ 鋰電池殘電量測系統及校正★ 影像壓縮網路攝影平台
★ 智慧型網路攝影平台★ 無扭力計跑步機跑者步態量測
★ ESEMS太空氣象科學酬載叢集★ 影像辨識測試平台的開發
★ 智慧型網路攝影機開發平台★ 可補償高精度三軸地磁量測平台
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究提出一個可以擴增光強度動態量測範圍及具有強光保護效果的暉光儀設計。這個創新暉光儀使用光電倍增管(Photomultiplier Tube, PMT)檢測到的光子計數值做為回饋去控制光電倍增管的高壓電,以補償光強度的變化並維持光子計數值恆定。當光子計數值被控制到保持恆定時,因高壓電與光強度成反比,故可從高壓電數值推算出光強度。使用曲面擬合方法將數學模型擬合至實驗數據,藉由使用此模型,可從光子計數值與高壓電計算出光強度。透過光強度及預設光子計數值,可計算出前饋高壓電的補償數值,然後以之調整高壓電,前饋光電倍增管特性補償控制即完成。另一方面,回饋控制包含比例積分線性控制以消除數學模型誤差的影響,使量測光子計數值更接近預設光子計數值。我們以校正平台進行實驗測試以確認此創新儀器可以達到設計目標。新儀器除了擴增線性動態範圍(從450 pW到4500 pW)外,同時還維持了高靈敏度(最大誤差1.69 pW,標準偏差0.73 pW)。
  為了校正與測試前述的創新暉光儀設計,本論文研究亦開發建構了一個光電倍增管的校正平台,可幫助科學家量測並建立光子計數值與光強度的關係曲線。此校正平台使用一個創新的10倍光衰減器使光功率計能夠用來校正光電倍增管,以令校正平台的解析度遠大於光功率計的解析度。首先,透過模擬驗證了此校正系統的可行性,然後實現了系統設計,其中包括光學設計、電路設計和軟體演算法。以此平台實際進行量測取得光子計數值與光強度的數據,並以量測數據建立光子計數值與光強度的特性曲線。
摘要(英) This research proposed a design of the innovative airglow instrument, which can extend the measure range of the light intensity, and also have the influence of strong light protection. The innovative instrument uses the photomultiplier tube to detect the photon count, then by the photon count to feedback and control the high voltage of the photomultiplier tube to reimburse for the change in light intensity and remain the photon count fixed. While the photon count is controlled to maintain fixed, the light intensity is inversely proportional to the high voltage, and then the light intensity can be reckoned from the high voltage. The photon count is the function from the light intensity and the high voltage, representing the characteristic surface of the photomultiplier tube. The experimental data can be used system identification algorithm to establish its mathematical model of quadratic polynomial equation. On the characteristic surface of the photomultiplier tube, the feedforward control function is the high voltage calculated from the photon count and the light intensity, and the function of the light intensity calculated by the photon count and the high voltage. Substituting the measured photon count and measured hight voltage into the light intensity function can calculate the measured light intensity. Substituting the measured light intensity and the preset photon count into the feedforward control function can calculate the feedforward compensation high voltage and feed it into the high voltage power regulator. The loop completes the feedforward control compensation of the photomultiplier tube. In addition to the photomultiplier tube characteristic compensation feedforward control loop, the feedback control can also be parallel connected with a PI linear feedback control loop to remove the effect of system identification model errors to let the measured photon count more similar to the preset photon count.
  In order to calibrate and test the innovative airglow instrument design, this study also developed and constructed a photomultiplier tube calibration platform. The calibration platform can help the researcher to measure and establish the photon count corresponding to the light intensity characteristic curve. The calibration platform by an 10-fold optical attenuator to let the optical power meter can increase 10 time resolution to calibrate photomultiplier tube. This study proposed a preliminary validation of the simulation data, and then constructed the calibration platform, including optical, circuit, and software design. Finally, the calibration platform is verified by the experimental data, and the light intensity corresponding to the photomultiplier tube characteristic curve is established. By using the calibration platform, the photomultiplier tube characteristic compensation feedforward control algorithm with/without linear feedback control has been tested. The data shows that the new designed instrument can not only expand the linear dynamic range (Form 450 pW to 4500 pW) and but also increase the sensitivity (Maximum error is 1.69 pW, standard deviation is 0.73 pW).
關鍵字(中) ★ 光電倍增管
★ 暉光
★ 動態量測範圍
★ 強光保護
★ 光電倍增管校正
★ 光功率計
關鍵字(英) ★ Photomultiplier tube
★ Airglow
★ Dynamic range
★ Glare protection
★ Photomultiplier calibration
★ Optical attenuator
論文目次 摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目 VI
符號說明 VIII
一、緒論 1
1-1 研究目的 1
1-2 動機及文獻回顧 1
1-2-1 重要性 1
1-2-2 困難點 9
1-2-3 技術重點 11
1-3 論文章節 12
二、理論及技術基礎 13
2-1 系統鑑別-最小平方估計法 13
2-2 光電倍增管 19
三、暉光儀系統設計 20
四、校正平台系統設計 28
五、校正平台功能驗證 37
六、創新恆定光子計數控制設定值選擇及函數建構 43
6-1 預設光子計數值選擇及抗雜訊偏壓設定 43
6-2 建立前饋控制函數及光強度計算函數 51
七、暉光儀實驗數據分析與結果 57
八、結論與未來展望 65
參考文獻 67
參考文獻 [1] Barbier, D., “Recherches sur la raie 6300 de la luminescence atmospherique nocturne,” Annales Geophysicae, 15, 1959, 179-217.
[2] Porter, H. S., S. M. Silverman, and T. F. Tuan, “On the behavior of airglow under the influence of gravity waves,” Journal of Geophysical Research, 79(25), 1974, 3827-3833, https://doi.org/10.1029/JA079i025p03827.
[3] Leinert, Ch., S. Bowyer, L. K. Haikala, M. S. Hanner, M. G. Hauser, A. C. Levasseur-Regourd, I. Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. L. Weiland, J. L. Weinberg, and A. N. Witt, “The 1997 reference of diffuse night sky brightness,” Astronomy and Astrophysics Supplement Series, 127, 1998, 1-99, https://doi.org/10.1051/ aas:1998105.
[4] Noll, S., W. Kausch, M. Barden, A. M. Jones, C. Szyszka, S. Kimeswenger, and J. Vinther, “An atmospheric radiation model for Cerro Paranal I. The optical spectral range,” Astronomy & Astrophysics, 543, 2012, A92, https://doi.org/10.1051/0004-6361/201219040.
[5] Savigny, C.v., “Airglow in the Earth atmosphere: basic characteristics and excitation mechanisms,” ChemTexts, 3, 2017, 14, https://doi.org/10.1007/ s40828-017-0051-y.
[6] Rajesh, P. K., J. Y. Liu, C. Y. Chiang, A. B. Chen, W. S. Chen, H. T. Su, R. R. Hsu, C. H. Lin, M.-L. Hsu, J. H. Yee, and J. B. Nee, “First results of the limb imaging of 630.0 nm airglow using FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightnings,” Journal of Geophysical Research, 114, 2009, A10302, https://doi.org/10.1029/2009JA014087.
[7] Rajesh, P. K., C. H. Chen, C. H. Lin, J. Y. Liu, J. D. Huba, A. B. Chen, R. R. Hsu, and Y. T. Chen, “Low-latitude midnight brightness in 630.0 nm limb observations by FORMOSAT-2/ISUAL,” Journal of Geophysical Research: Space Physics, 119, 2014, 4894-4904, https://doi.org/10.1002/ 2014JA019927.
[8] Peterson, V. L., T. E. Van Zandt, and R. B. Norton, “F-region nightglow emissions of atomic oxygen, 1. Theory,” Journal of Geophysical Research, 71, 1966, 2255-2265, https://doi.org/10.1029/JZ071i009p02255.
[9] Nelson, G. J., and L. L. Cogger, “Dynamical behavior of the nighttime ionosphere at Arecibo,” Journal of Atmospheric and Solar-Terrestrial Physics, 33, 1971, 1711-1726.
[10] Bittencourt, J. A., and Y. Sahai, “Behavior of the [OI] 6300 Å emission at the magnetic equator and its reaction to the vertical ExB drift velocity,” Journal of Atmospheric and Solar-Terrestrial Physics, 41, 1979, 1233- 1239.
[11] Herrero, F. A., and J. W. Meriwether, “6300 Å airglow meridional intensity gradients,” Journal of Geophysical Research, 85, 1980, 4194-4204.
[12] Link, R., and L. L. Cogger, “A reexamination of the OI 6300 Å nightglow,” Journal of Geophysical Research, 93, 1988, 9883-9892, https://doi.org/ 10.1029/JA093iA09p09883.
[13] Schmidt, C., K. Höppner, and M. Bittner, “A ground-based spectrometer equipped with an InGaAs array for routine observations of OH (3-1) rotational temperatures in the mesopause region,” Journal of Atmospheric and Solar-Terrestrial Physics, 102, 2013, 125-139, https://doi.org/10.1016/ j.jastp.2013.05.001.
[14] French, W. J. R., F. J. Mulligan, and A. R. Klekociuk, “Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica–Part 1: long-term trends,” Atmospheric Chemistry and Physics, 20(11), 2020, 6379-6394, https://doi.org/10.5194/acp-20-6379- 2020.
[15] Taylor, M. J., M. B. Bishop, and V. Taylor, “All‐sky measurements of short period waves imaged in the OI(557.7 nm), Na(589.2 nm) and near infrared OH and O2(0,1) nightglow emissions during the ALOHA‐93 Campaign,” Geophysical Research Letters, 22, 20, 1995, 2833-2836, https://doi.org/10.1029/95GL02946.
[16] Mendillo, M., J. Baumgardner, D. Nottingham, J. Aarons, B. Reinisch, J. Scali, and M. Kelley, “Investigations of Thermospheric- Ionospheric Dynamics with 6300-Å Images from the Arecibo Observatory,” Journal of Geophysical Research, 102(A4), 1997, 7331-7343, https://doi.org/10.1029/ 96JA02786.
[17] Shiokawa, K., Y. Katoh, M. Satoh, M. K. Ejiri, T. Ogawa, T. Nakamura, T. Tsuda, and R. H. Wiens, “Development of Optical Mesosphere Thermosphere Imagers (OMTI),” Earth Planet and Space, 51, 1999, 887-896, https://doi.org/10.1186/BF03353247.
[18] Kubota, M., H. Fukunishi, and S. Okano, “Characteristics of medium- and large-scale TIDs over Japan derived from OI 630-nm nightglow observation,” Earth Planets Space, 53, 2001, 741-751, https://doi.org/ 10.1186/BF03352402.
[19] Rajesh, P. K., J. Y. Liu, H. S. S. Sinha, and S. B. Banerjee, “Appearance and extension of airglow depletions,” Journal of Geophysical Research, 115, 2010, A08318, https://doi.org/10.1029/2009JA014952.
[20] Liu, J. Y., P. K. Rajesh, I. T. Lee, and T. C. Chow, “Airglow observations over the equatorial ionization anomaly zone in Taiwan,” Annales Geophys- icae, 29, 2011, 749-757, https://doi.org/10.5194/angeo-29-749-2011.
[21] Vargas, F., G. Swenson, and A. Liu, “Evidence of high frequency gravity wave forcing on the meridional residual circulation at the mesopause region,” Advances in Space Research, 56(9), 2015, 1844-1853, https://doi.org/10.1016/j.asr.2015.07.040.
[22] Hannawald, P., C. Schmidt, S. Wüst, and M. Bittner, “A fast SWIR imager for observations of transient features in OH airglow,” Atmospheric Measurement Techniques, 9, 2016, 1461-1472, https://doi.org/10.5194/ amt-9-1461-2016.
[23] Burnside, R. G., F. A. Herrero, J. W. Meriwether Jr., and J. C. G. Walker, “Optical observations of thermospheric dynamics at Arecibo,” Journal of Geophysical Research: Space Physics, 86(A7), 1981, 5532-5540, https://doi.org/10.1029/JA086iA07p05532.
[24] Takahashi , H., Y. Sahai, B. R. Clemesha, D. M. Simonich, N. R. Teixeira, R. M. Lobo, and A. Eras, “Equatorial mesospheric and F-region airglow emissions observed from latitude 4° south,” Planetary and Space Science, 37(6), 1989, 649-655, https://doi.org/10.1016/0032-0633(89)90035-4.
[25] Sahai, Y., J. A. Bittencourt, H. Takahashi, and M. Mendillo, “Comparison of a low-latitude ionospheric model with observations of OI 630 nm emission and ionospheric parameters,” Planetary and space science, 38(10), 1990, 1243-1250, https://doi.org/10.1016/0032-0633(90)90129-E.
[26] Taori, A., R. Sridharan, D. Chakrabarty, R. Narayanan, and P. V. S. Ramarao, “Coordinated thermospheric day‐night airglow and ionospheric measurements from low latitudes—First results,” Geophysical research letters, 28(7), 2001, 1387-1390, https://doi.org/10.1029/2000GL012406.
[27] Bird, D., S. Corbató, H.Y. Dai, J.W. Elbert, M. Kidd, D. Kieda, E.C. Loh, P. Sokolsky, P. Sommers, J.K. Tang, S.B. Thomas, L. Wiencke, and Q. Zhu, “The calibration of the absolute sensitivity of photomultiplier tubes in the High Resolution Fly′s Eye Detector,” Nuclear Instruments and Methods in Physics Research, A 349, 1994, 592-599, https://doi.org/10.1016/0168- 9002(94) 91230-0.
[28] Abbasi, R., Y. Abdou, T. Abu-Zayyad, J. Adams, J.A. Aguilar, M. Ahlers, K. Andeen, J. Auffenberg, X. Bai, M. Baker, S.W. Barwick, R. Bay, J.L. Bazo Alba, K. Beattie, J.J. Beatty, S. Bechet, J.K. Becker, K.-H. Becker, M.L. Benabderrahmane, and J. Berdermann, “Calibration and characterization of the IceCube photomultiplier tube,” Nuclear Instruments and Methods in Physics Research, A 618, 2010, 139-152, https://doi.org/ 10.1016/j.nima.2010.03.102.
[29] Hsu, M. L., P. K. Rajesh, J. Y. Liu, L. C. Tsai, H. F. Tsai, C. H. Lin, K. F. Dymond, C. Coker, D. H. Chua, S. A. Budzien, and C. Z. Cheng, “Ionospheric electron density concurrently derived by TIP and GOX of FORMOSAT-3/ COSMIC,” Terrestrial, Atmospheric and Oceanic Sciences, 20(1), 2009, 207-214, https://doi.org/10.3319/TAO.2008.04.24.02(F3C).
[30] Liu, J. Y., Y. Y. Chen, and H. F. Tsai, “Developments of Ionospheric Climate Model and Space Weather Monitoring by Using FORMOSAT-3/ COSMIC Data): Remark 1 - OSSE of 2-D Photometer Tomography on F7/C2",” Workshop On Formosa 3 Results and Formosa 7 Future Projects and Collaborations - GPSARC retreat, Tao-Yuan, Taiwan, Dec 27, 2010.
[31] Yeh, T. L., A. V. Dmitriev, Y. H. Chu, S. B. Jiang, and L. W. Chen, “NCU-SWIP Space Weather Instrumentation Payload - Intelligent Sensors On Efficient Real-Time Distributed LUTOS,” 40th COSPAR Scientific Assembly. Held 2-10 August 2014, in Moscow, Russia, 2014, paper C0.2-10-14.
[32] Brown, G. W., P. Haskell, and B. Hollaway, “The Miranda Star Sensor Experiment,” ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND), No. RAE-TR-78112, 1978.
[33] Hartley, P. E., and S. Wagner, “A protection circuit for side window photomultiplier tubes,” Review of scientific instruments, 62(2), 1991, 321- 322, https://doi.org/10.1063/1.1142122.
[34] Kauffman, J. F., and C. S. Liu, “Simple shutter circuit for protecting microchannel plate photomultipliers from excess light exposure,” Review of scientific instruments, 65(1), 1994, 261-262, https://doi.org/10.1063/ 1.1144794.
[35] Bhagavathula, K., A. H. Titus, and C. S. Mullin, “An extremely low-power CMOS glare sensor,” IEEE Sensors Journal, 7(8), 2007, 1145-1151, https://doi.org/10.1109/JSEN.2007.897953.
[36] Juang, J. N., “Applied system identification,” Prentice-Hall, Inc., 1994.
[37] Jiang, S. B., T. L. Yeh, L. W. Chen, J. Y. Liu, M. H. Yu, Y. Q. Huang, C. K. Chiang, and C. J. Chou, “Development and verification of an innovative photomultiplier calibration system with a 10-fold increase in photometer resolution,” Advances in Space Research, 61(10), 2018, 2673-2679, https://doi.org/10.1016/j.asr.2018.02.039.
[38] Chen, L. W., S. B. Jiang, T. L. Yeh, J. Y. Liu, C. W. Huang, C. C. Liu, and C. K. Chiang, “Innovative airglow instrument based on constant photon count control,” Advances in Space Research, 68(1), 2021, 105-116, https://doi.org/10.1016/j.asr.2021.02.043.
[39] 江士標、葉則亮、黃鈺欽、陳立悟、江承剛、俞明軒:〈具光衰減裝置的光電元件之校正系統及其校正方法〉。中華民國發明專利證號I630420,中華民國107年07月21日。
[40] 陳立悟:〈太空氣象科學儀器酬載II〉。碩士論文,國立中央大學光機電工程研究所,民國100年6月。
[41] 張騰元:〈135.6及630奈米雙波長氣暉光剖面儀開發〉。碩士論文,國立中央大學光機電工程研究所,民國100年6月。
[42] 俞明軒:〈氧敏感光波光電倍增管敏感度校正平台開發 I〉。碩士論文,國立中央大學機械工程學系,民國101年6月。
[43] 黃鈺欽:〈氧敏感光波光電倍增管敏感度校正平台開發II〉。碩士論文,國立中央大學機械工程學系,民國102年6月。
[44] 黃朝偉:〈擴大光電倍增管量測強度範圍方法之研究〉。碩士論文,國立中央大學光機電工程研究所,民國105年6月。
[45] 蘇泰安:〈具有自適應多段增益調節和強光保護功能的創新單眼針孔準直暉光儀〉。碩士論文,國立中央大學光機電工程研究所,民國106年6月。
[46] 劉成震:〈基於光子計數恆定控制之創新暉光儀〉。碩士論文,國立中央大學光機電工程研究所,民國107年6月。
指導教授 江士標(Shyh-Biau Jiang) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明