博碩士論文 89522038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.117.141.69
姓名 劉成祥(Cheng-Hsiang Liu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用視訊資料作人體走勢分析
(Human Gait Classification Using Video Information)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去數十年裡,大部分監控環境都使用閉路電視系統,其主要功能只是消極的錄影存證,並不能主動提供當時錄影的偵測資訊,喪失很多破案的最佳契機。然而隨著數位化影音技術的進步,及大量資料儲存之價格降低和光學攝影器材成本下降,使得視訊訊號數位化處理更為普及化,加上人工智慧技術日趨成熟,使智慧型視訊監控系統(intelligent video surveillance and monitoring, VASM)更為大眾所矚目,更重要的是智慧型監控系統相較於傳統監控系統更切合大眾的需求。因此,智慧型監控系統將逐漸在大樓和校園安全系統上扮演著重要角色。
在傳統的視訊監控系統中偏向於移動目標物偵測、追蹤與行為分析的研究,並未繼續深入探討追蹤物體身份識別的問題,因而我們希望能夠結合生物特徵識別等技術,增加傳統視訊監控系統中,分析和辨識視訊中人物的功能,而生物特徵識別的技術乃利用人類的獨特生理或行為特性,用以確認每個人身份。在本論文中,我們將發展一套智慧型監控與辨識系統,用以配合指紋、掌紋、臉部、手勢…等生物特徵。
在提出的視訊監控系統中,首先偵測動態影像中移動目標物的位置與追蹤軌跡之外,並分析目標物的行為模式和走路姿勢,所以將以人類走勢特徵作為研究的對象。原先我們希望設計一套系統可以用於室內、環境控制下且可以偵測追蹤動態影像中人們位置,並取得該使用者的生物特徵加以分析和辨識。進而將此系統擴大運用於戶外較複雜環境中,對移動目標物的監控與識別。實驗結果證實我們提出整合系統的可行性。
摘要(英) The closed circuit television(CCT) has been used instead of human eyes in the past few decades. The main function is only on the recording of events. A caretaker who has to watch ten or twenty monitors attentively and simultaneously day and night to prevent illegal entries. It is an intensive burden work for human being to carry on. Recently, computer-based cameras have been widely used because of the low cost and vast storage. More importantly, the technologies artificial intelligence, video processing, and pattern recognition have been successfully developed for digital video signals. Thus, an intelligent video surveillance and monitoring (VSAM)system gradually becomes the key role in the security systems of buildings, companies or campus.
Conventionally, motion detection, target tracking, and target classification are the main research topics in many constructed VSAM systems. However, the ultimate goal of surveillance systems is to identify the objects like the ID of individuals. In this thesis, we will develop an intelligent VSAM system to increase the identification power by using the biometrics features, such as fingerprint, palm-print, face, gesture, etc.
In the proposed system, the individuals are first identified in the video streams. Motion detection and target tracking are then accomplished. Last, the target classification of persons is achieved by using the biometric gait features. The system is first implemented in indoor and controlled environment. Then, this system is extended to the complex environments such as outdoor with the clutter background. Experimental results verify the validity of the proposed system.
關鍵字(中) ★ 生物特徵
★ 走勢
★ 視訊監控
★ 偵測
★ 追蹤
關鍵字(英) ★ video surveillance
★ detection
★ tracking
★ gait
★ biometric
論文目次 Abstract i
摘要 ii
目錄 3
附圖目錄 4
表格目錄 5
第一章 緒論 6
1.1 研究動機 6
1.2 相關研究 7
1.3 系統流程 10
1.4 論文架構 12
第二章 移動目標物偵測與追蹤 13
2.1 目標物偵測 14
2.2 目標物追蹤 17
2.3 陰影問題 19
第三章 光流偵測技術 25
3.1 光流偵測 26
3.2 子像素區塊比對 27
第四章 人體走勢分析與分類 32
4.1 走勢特徵抽取 33
4.2 隱藏馬可夫模型 37
第五章 實驗結果 46
5.1 視訊監控 48
5.2走勢分析 59
第六章 結論與未來工作 66
6.1結論 66
6.2未來工作 67
參考文獻 68
參考文獻 [1]Wren, Christopher R., Azarbayejani, Ali, Darrell, Trevor, Pentland, Alex, “Pfinder: Real-Time Tracking of the Human Body”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, July 1997.
[2]I. Haritaoglu, D. Harwood, L. S. Davis, ”W4:Who? When? Where? What? A Real-Time System for Detecting and Tracking People”, Proc. International Conference on Face and Gesture Recognition, April, 14-16, 1998.
[3]R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, ”A System for Video Surveillance and Monitoring”, Tech. Rep., The Robotics Institute, Carnegie Mellon University, 2000. CMU-RI-TR-00-12.
[4]J. Batista, P. Peixoto, P. Araujo, “Real-Time Vergence and Binocular Gaze Control”, IRSO907-IEEE/RS Int. Conf. On Intelligent Robots and Systems, Grenoble, France, September, 1997.
[5]Liang Zhao, Charles E. Thorpe, "Stereo- and Neural Network-Based Pedestrian Detection", IEEE Transactions ON Intelligent Transportation Systems, VOL. 1, NO. 3, SEPTEMBER 2000
[6]Michael Oren, Constantine Papageorgiou, Pawan Sinha, Edgar Osuna, Tomaso Poggio, “Pedestrian Detection Using Wavelet Templates”, Appears in CVPR 97, June 17-19, Puerto Rico.
[7]C. Anderson, P. Burt, G. V. D. Wal, “Change detection and tracking using pyramid transformation techniques”, In Proc. Of SPIE-Intelligent Robics and Computer Vision, Vol. 579, pp. 72-78, 1985.
[8]James Black, Dr Tim Ellis, “Multi Camera Image Tracking”, Proceedings 2nd IEEE Int. Workshop on PETS, Kauai, Hawaii, USA, December 9 2001.
[9]Quming Zhou, J. K. Aggarwal, "Tracking and Classifying Moving Objects from Video", Proceedings 2nd IEEE Int. Workshop on PETS, Kauai, Hawaii, USA, December 9 2001.
[10]C. Anderson, Peter Burt, G. van der Wal, “Change detection and tracking using pyramid transformation techniques”, In Proceedings of SPIE - Intelligent Robots and Computer Vision, volume 579, pages 72–78, 1985.
[11]J. Barron, D. Fleet, S. Beauchemin, “Performance of optical flow techniques”, International Journal of Computer Vision, vol. 12, no. 1, pp. 42-77, 1994.
[12]Stephen J. McKenna, Sumer Jabri, Zoran Duric and Harry Wechsler. “Tracking Interacting People”, Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on, 2000 Page(s): 348 -353.
[13]Greg Welch, Gary Bishop, “An Introduction to the Kalman Filter”, TR 95-041 Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3175 Updated: Thursday, February 8, 2001.
[14]Luis M. Fuentes, Sergio A. Velastin, “People tracking in surveillance applications”, Proceedings 2nd IEEE Int. Workshop on PETS, Kauai, Hawaii, USA, December 9 2001.
[15]T. Horprasert, D. Harwood, L. S. Davis, “A statistical approach for real-time robust background subtraction”, In IEEE ICCV’99 FrameRate Workshop, 1999.
[16]L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”, Proceedings of the IEEE, vol. 77, no. 2, pp.257-286, Feb. 1989.
[17]Jim Little, Jeffrey E. Boyd, “Recognizing People by Their Gait: the Shape of Motion”, Department of Computer Science, University of British Columbia Vancouver B.C., Canada V6T 1Z4, Department of Electrical and Computer Engineering University of California, La Jolla, CA 92093-0407
[18]Dorthe Meyer, Heinrich Niemann, ”Features for Optical Flow Based Gait Classification Using HMMs”, University of Erlangen-Nuremberg, Chair for Pattern Recognition (Informatik 5), Martenstr. 3, D-91058 Erlangen, Germany.
[19]Dorthe Meyer, “Human Gait Classification Based on Hidden Markov Models”, University Erlangen-Nuremberg, Lehrstuhl for Musterekennung (Informatik 5), Martenstr. 3, D-91058 Erlangen, Germany.
[20]王嘉銘, “利用可調式區塊比對並結合多圖像資訊之影像運動向量估測”, 中央大學資訊工程研究所碩士論文, 2000.
[21]Horn B.K.P and Schunck B.G. (1981), “Determining optical flow”, AI 17,pp. 185-204.
[22]Lucas B.D. (1984) “Generalized Image Matching by the Method of Differences”, PhD Dissertation, Dept. of Computer Science, Carnegie-Mellon University.
[23]Lucas, B. and Kanade, T. (1981)”An iterative image registration technique with an application to stereo vision”, Proc. DARPA IU Workshop, pp. 121-130.
[24]Nagel H.H. (1983) “Displacement vectors derived from second-order intensity variations in image sequences”, CGIP 21, pp. 85-117
[25]Nagel H.H. (1989) “On the estimation of optical flow: Relations between different approaches and some new results”, AI 33, pp. 299-324
[26]Nagel H.H. and Enkelmann W. (1986) “An investigation of smoothness constraints for the estimation if displacement vector fields from image sequence”, IEEE Trans. PAMI 9, pp. 168-176
[27]Uras S., Girosi F., Verri A. and Torre V. (1988) “A computational approach to motion perception”, Biol. Cybern 60, pp.79-97
[28]Anandan P. (1987) “Measuring Vision Motion from Image Sequence”, PhD dissertation, COINS TR 87-21, Univ. of Massachusetts, Amherest. MA
[29]Anandan P. (1989) “A computational framework and an algorithm for the measurement of vision motion”, Int. J. Comp. Vision 2, pp. 283-310
[30]Singh A. (1990) “An estimation-theoretic framework for image-flow computation”, Proc. IEEE ICCV, Osaka, pp. 168-177
[31]Singh A. (1992) “Optical Flow Computation: A Unified Perspective”, IEEE Computer Society Press.
[32]Heeger D.J. (1987) “Model for the extraction of image flow”, J, Comp. Vision 1, pp. 279-302
[33]Heeger D.J. (1988) “Optical Flow using spatiotemporal filters”, Int. J. Comp. Vision 1, pp. 279-302
[34]Waxman A.M., Wu, J. and Bergholm F. (1988) “Converected activation profiles and receptive fields for real time measurement of short range vision motion”, Proc. IEEE CVPR, Ann Arbor, pp. 717-723
[35]Fleet D.J and Jepson A.D. (1990) “Computation of component image velocity from local phase information”, Int. J. Comp. Vision 5, pp. 77-104
[36]Kentaro Toyama, John Krumm, Barry Brumitt, Brian Meyers, “Wallflower: Principles and Practice of Background Maintenance”, Microsoft Research Redmond, WA 98052
[37]Alan J. Lipton, “Virtual Postman – Real-Time, Interactive Virtual Video”, The Robotics Institute, Carnegie Mellon university, 5000 Forbes Ave, Pittsburgh, PA, 15213
[38]T. Koga, K. Iinuma, A.Hirano, Y.Iijima, and T. Ishiguro, “Motion-Compensated interframe coding for video conferencing”, Nippon Electric Co. Ltd., Kawaski, Japan, 1981.
[39]Y. Chen, Y. Hung and C. Fuh, “A Fast Block Matching Algorithm Based on the Winner-Update Strategy”, Proceedings of the Fourth Asian Conference on Computer Vision, vol. 2, pp. 977-928, 2000.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2002-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明