參考文獻 |
Aretusini, S., Meneghini, F., Spagnuolo, E., Harbord, C. W., & Di Toro, G. (2021). Fluid pressurisation and earthquake propagation in the Hikurangi subduction zone. Nature communicaton. https://doi.org/10.1038/s41467-021-22805-w
Behnsen, J., & Faulkner, D. R. (2012). The effect of mineralogy and effective normal stress on frictional strength of sheet silicates. Journal of Structural Geology, 42, 49-61.
Boullier, A.-M., Yeh, E.-C., Boutareaud, S., Song, S.-R., & Tsai, C.-H. (2009). Microscale anatomy of the 1999 Chi-Chi earthquake fault zone. Geochemistry, Geophysics, Geosystems, 10(3). https://doi.org/10.1029/2008gc002252
Boulton, C., Yao, L., Faulkner, D. R., Townend, J., Toy, V. G., Sutherland, R., ... & Shimamoto, T. (2017). High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation. Journal of Structural Geology, 97, 71-92.
Brantut, N., & Mitchell, T. M. (2018). Assessing the Efficiency of Thermal Pressurization Using Natural Pseudotachylyte-Bearing Rocks. Geophysical Research Letters, 45(18), 9533-9541. https://doi.org/10.1029/2018gl078649
Brantut, N., Schubnel, A., Rouzaud, J. N., Brunet, F., & Shimamoto, T. (2008). High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research, 113(B10). https://doi.org/10.1029/2007jb005551
Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025-1028.
Chen, J., Niemeijer, A. R., & Fokker, P. A. (2017a). Vaporization of fault water during seismic slip. Journal of Geophysical Research: Solid Earth, 122(6), 4237-4276.
Chen, J., Niemeijer, A., Yao, L., & Ma, S. (2017b). Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, 44(5), 2177-2185.
Choi, J.-H., Edwards, P., Ko, K., & Kim, Y.-S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70-87.
Cornelio, C., Passelègue, F. X., Spagnuolo, E., Di Toro, G., & Violay, M. (2020). Effect of fluid viscosity on fault reactivation and coseismic weakening. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018883.
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., & Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494-498. https://doi.org/10.1038/nature09838
Goldsby, D. L., & Tullis, T. E. (2011). Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Science, 334(6053), 216-218.
Han, R., Hirose, T., Jeong, G. Y., Ando, J.-i., & Mukoyoshi, H. (2014). Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications. Geophysical Research Letters, 41(15), 5457-5466. https://doi.org/10.1002/2014gl061246
Han, R., Shimamoto, T., Ando, J.-i., & Ree, J.-H. (2007). Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge. Geology, 35(12), 1131-1134.
Hirono, T., Sakaguchi, M., Otsuki, K., Sone, H., Fujimoto, K., Mishima, T., ... & Song, S. R. (2008). Characterization of slip zone associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and microstructural observations of the Taiwan Chelungpu fault. Tectonophysics, 449(1-4), 63-84.
Hirose, T., & Shimamoto, T. (2005). Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research: Solid Earth, 110(B5).
Hunfeld, L. B., Chen, J., Niemeijer, A. R., Ma, S., & Spiers, C. J. (2021). Seismic slip‐pulse experiments simulate induced earthquake rupture in the Groningen gas field. Geophysical Research Letters, e2021GL092417.
Hung, C. C., Kuo, L. W., Spagnuolo, E., Wang, C. C., Di Toro, G., Wu, W. J., ... & Hsieh, P. S. (2019). Grain fragmentation and frictional melting during initial experimental deformation and implications for seismic slip at shallow depths. Journal of Geophysical Research: Solid Earth, 124(11), 11150-11169.
Kuo, L. W., Hsiao, H. C., Song, S. R., Sheu, H. S., & Suppe, J. (2014). Coseismic thickness of principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and correlated fracture energy. Tectonophysics, 619, 29-35.
Kuo, L.-W., Song, S.-R., Huang, L., Yeh, E.-C., & Chen, H.-F. (2011). Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Tectonophysics, 502(3-4), 315-327. https://doi.org/10.1016/j.tecto.2011.02.001
Kuo, L. W., Wu, W. J., Kuo, C. W., Smith, S. A., Lin, W. T., Wu, W. H., & Huang, Y. H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges at seismic slip velocities. Journal of Structural Geology, 104419.
Kuo, L. W., Song, S. R., Yeh, E. C., & Chen, H. F. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18).
Li, H., Xue, L., Brodsky, E. E., Mori, J. J., Fulton, P. M., Wang, H., ... & Xu, Z. (2015). Long-term temperature records following the Mw 7.9 Wenchuan (China) earthquake are consistent with low friction. Geology, 43(2), 163-166.
Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.-R., Kuo, L.-W., Sun, Z., Chevalier, M.-L., & Liu, D. (2013). Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584, 23-42. https://doi.org/10.1016/j.tecto.2012.08.021
Ma, K. F., Tanaka, H., Song, S. R., Wang, C. Y., Hung, J. H., Tsai, Y. B., Mori, J., Song, Y. F., Yeh, E. C., Soh, W., Sone, H., Kuo, L. W., & Wu, H. Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473-476. https://doi.org/10.1038/nature05253
Mizoguchi, K., Hirose, T., Shimamoto, T., & Fukuyama, E. (2007). Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34(1). https://doi.org/10.1029/2006gl027931
Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A. F., & Nielsen, S. (2012). Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2-36. https://doi.org/10.1016/j.jsg.2012.02.018
Niemeijer, A., Fagereng, Å., Ikari, M., Nielsen, S., & Willingshofer, E. (2020). Faulting in the laboratory. In Understanding Faults (pp. 167-220). https://doi.org/10.1016/b978-0-12-815985-9.00005-9
Pham, Q. V., (2019). Velocity-dependent frictional properties of kaolinite clay underdifferent drainage conditions with temperature measurement. Master dissertation, National Central University.
Rattez, H., & Veveakis, M. (2020). Weak phases production and heat generation control fault friction during seismic slip. Nature communications, 11(1), 1-8.
Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), n/a-n/a. https://doi.org/10.1029/2005jb004006
Sawai, M., Shimamoto, T., & Togo, T. (2012). Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes. Journal of Structural Geology, 38, 117-138.
Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37-42. https://doi.org/10.1038/34097
Seyler, C. E., Kirkpatrick, J. D., Savage, H. M., Hirose, T., & Faulkner, D. R. (2020). Rupture to the trench? Frictional properties and fracture energy of incoming sediments at the Cascadia subduction zone. Earth and Planetary Science Letters, 546. https://doi.org/10.1016/j.epsl.2020.116413
Sibson, R. H. (1986). Brecciation processes in fault zones: inferences from earthquake rupturing. Pure and Applied Geophysics, 124(1), 159-175.
Sone, H., & Shimamoto, T. (2009). Frictional resistance of faults during accelerating and decelerating earthquake slip. Nature Geoscience, 2(10), 705-708. https://doi.org/10.1038/ngeo637
Song, S.-R., Kuo, L.-W., Yeh, E.-C., Wang, C.-Y., Hung, J.-H., & Ma, K.-F. (2007). Characteristics of the Lithology, Fault-Related Rocks and Fault Zone Structures in TCDP Hole-A. Terrestrial, Atmospheric and Oceanic Sciences, 18(2). https://doi.org/10.3319/tao.2007.18.2.243(tcdp)
Sperinck, S., Raiteri, P., Marks, N., & Wright, K. (2011). Dehydroxylation of kaolinite to metakaolin—a molecular dynamics study. J. Mater. Chem., 21(7), 2118-2125. https://doi.org/10.1039/c0jm01748e
Tanikawa, W., Sakaguchi, M., Tadai, O., & Hirose, T. (2010). Influence of fault slip rate on shear-induced permeability. Journal of Geophysical Research, 115(B7). https://doi.org/10.1029/2009jb007013
Tanikawa, W., & Shimamoto, T. (2009). Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi‐Chi earthquake. Journal of Geophysical Research: Solid Earth, 114(B1).
Togo, T., Yao, L., Ma, S., & Shimamoto, T. (2016). High‐velocity frictional strength of Longmenshan fault gouge and its comparison with an estimate of friction from the temperature anomaly in WFSD‐1 drill hole. Journal of Geophysical Research: Solid Earth, 121(7), 5328-5348.
Tran, Q. T., (2021). The relationship of kaolinite friction characteristics and temperature changing in submerged conditions. Master dissertation, National Central University.
Varga, G. (2007). The structure of kaolinite and metakaolinite. Epitoanyag, 59(1), 6-9.
Xue, L., Li, H. B., Brodsky, E. E., Xu, Z. Q., Kano, Y., Wang, H., ... & Huang, Y. (2013). Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science, 340(6140), 1555-1559.
Yang, C. M., Yu, W. L., Dong, J. J., Kuo, C. Y., Shimamoto, T., Lee, C. T., ... & Miyamoto, Y. (2014). Initiation, movement, and run-out of the giant Tsaoling landslide—What can we learn from a simple rigid block model and a velocity–displacement dependent friction law?. Engineering Geology, 182, 158-181.
Yao, L., Ma, S., Shimamoto, T., & Togo, T. (2013). Structures and high-velocity frictional properties of the Pingxi fault zone in the Longmenshan fault system, Sichuan, China, activated during the 2008 Wenchuan earthquake. Tectonophysics, 599, 135-156.
Yeh, E. C., Sone, H., Nakaya, T., Ka-Hao, I., Sheng-Rong, S., Hung, J. H., ... & Kinoshita, M. (2007). Core description and characteristics of fault zones from Hole-A of the Taiwan Chelungpu-Fault Drilling Project. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 18(2), 327. |