博碩士論文 108327009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.133.157.231
姓名 莊文豪(Wen-Hao Chuang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 二十一點遊戲之正確期望值模型:以遞迴之方式實行隨機訊號處理
(An Exact Expectation Model for Blackjack Game: A Recursive Stochastic Signal Processing Approach)
相關論文
★ 擾動輔助經驗模態分解之邊界效應的理論與數值分析★ 基於加速度計的高精度步數演算法
★ 基於加速度計低功耗精確量測步數演算法在穿戴式裝置的實現★ 經驗模態分解局部性之近場性質的一些證明
★ 擾動輔助EMD演算法在穿戴式嵌入式裝置中MCU的即時運算★ 總體相位經驗模態分解
★ 利用多孔介質提升甲烷熱裂解產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 很多遊戲都可透過智慧運算計算出最佳的選擇以及結果。撲克牌的二十一點遊戲是其中一種簡單且最普遍的。二十一點遊戲在不同地區常會有不同規則。玩家如何執行最佳策略以及它對應的期望值在過去七十年有太多書籍與文章界研究它。若期望值大於零表示玩家玩的次數很大時,玩家會贏;反之亦然。玩家最在乎的是在執行最佳策略後之期望值是否會如書本與電影所說的會大於零呢?
有兩種方法可得到最佳策略與期望值。第一種是運用電腦模擬,第二種是建立數學模型。顯而易見的是遊戲的排列方式太多。採用電腦模擬的次數必須非常大,對每一種遊戲規則下,模擬時間很久。況且學術上我們希望最佳策略與期望值的正確解析值。很多文章以數學與統計為出發點,但它們都建立在某些估算值而得到近似解析值,且含有偏差,而非真正的正確解析值。
本論文以撲克牌序列當作輸入訊號。我們假設在遊戲前撲克牌洗得很乾淨,因此輸入訊號可當作隨機訊號。一般而言,遊戲使用非常多副牌組,為避免玩家猜出接下來未出現的牌的機率,在玩完幾次遊戲後就會重新洗牌,因此可假設撲克牌組數為無窮多。本論文將提出隨機訊號處理演算法求出玩家之最佳補牌策略與對應之期望值。首先運用樹狀結構演算法,窮舉出莊家所有可能排列方式,藉此計算莊家最終點數的機率分布,並進一步運用遞迴的演算法,在瞬間就能得出玩家在各種遊戲規則下無誤差或偏差情況之最佳策略與期望值。並回答在何種遊戲規則下期望值會大於零。
最後我將以電腦模擬驗證我得到的解析結果。當模擬次數趨於數億次時,這兩種法之期望值偏差漸漸趨近於零,說明了我們得到之解析值的正確性。
摘要(英) The best choices and results of many games can obtain through intelligent computation. The blackjack game is a simple and most common one. Blackjack games often have different rules in different regions. How the player can execute the best strategy and obtain its corresponding expectation value have been discussed by many books and articles it in the past seventy years. As the expectation value is greater than zero, the player will win the game in a long term, and vice versa. What a player really concerns is whether the expectation value is positive if he already executes the best strategy?
There are two approaches to obtain the best strategy and expectation values. The first approach is to perform computer simulations, and the second approach is to build mathematical models. It is obvious that there are too many permutations in the game. However, under each game rule, the number of simulations must be very large, and the simulation time is too long to be accepted. Moreover, academically we wish the best strategy and the exact analytical expectation value can be obtained. Many articles built mathematical and statistical models to obtain approximate analytical value based on some estimations that will introduce some bias in the result.
This thesis uses the sequence of the poker cards as the input signal. Assume that the cards are shuffled cleanly before the game so that the input signal can be treated as a random signal. Generally speaking, the game uses many decks and the cards will be shuffled after just playing few games to prevent that player can guess the probability of subsequent cards based on the previous appeared cards. Consequently, it can be assumed that the number of poker decks is infinite. This thesis will propose a random signal processing algorithm to determine the best strategy and its corresponding expectation value for the player. First, I apply a tree-based structure algorithm to exhaustive list all the permutations of the dealer’s card, calculate the probability distribution of dealer’s final points and use the recursive algorithm, the best strategy and expectation values without error or deviation under various game rules can be obtained within a second. Next, I will answer whether the expectation value is positive under each game rule.
Finally, the accuracy of the proposed analytical result is confirmed through computer simulations. I found that the expectation values based on these two approaches are asymptotically identical as the number of simulations approaches several billion that shows the correctness of the analytical values.
關鍵字(中) ★ 智慧運算
★ 訊號處理
★ 遞迴
★ 樹狀結構
★ 解析解
關鍵字(英) ★ intelligent calculation
★ signal processing
★ recursion
★ analytic solution
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 viii
符號說明 ix
一、 緒論 1
1-1 研究動機 1
1-2 研究目的 1
1-3 研究架構與流程 1
1-3-1 規則說明 1
1-3-2 模型假設 2
1-3-3 研究方法 2
1-3-4 研究流程 3
1-4 文獻回顧 3
二、 莊家之機率 4
2-1 莊家明牌與最終點數之出現機率 4
2-2 修正莊家為Blackjack的機率 6
三、 最佳策略與期望值 7
3-1 玩家停牌點數之期望值 7
3-2 補牌策略表與期望值 9
3-2-1 Hard hands點數大於10點之策略與期望值 10
3-2-2 Soft hands之策略與期望值 11
3-2-3 Hard hands點數小於11點之策略與期望值 13
3-2-4 Ace應該作為1點或11點? 14
3-3 特別規則之策略與期望值 15
3-3-1 投降(Surrender)策略與期望值 15
3-3-2 分牌(Splitting)策略與期望值 16
3-3-3 雙倍下注(Double Down)策略與期望值 18
3-4 最佳化策略下之遊戲期望值 22
四、 模擬結果與誤差 24
五、 結論與未來展望 26
5-1 討論 26
5-1-1 有限牌組數量的影響 26
5-1-2 近似期望值的影響 26
5-1-3 心理因素的影響 26
5-2 結論 27
5-3 未來展望 27
參考文獻 28
附錄一 29
附錄二 33
附錄三 35
附錄四 38
附錄五 39
附錄六 41
參考文獻 [1] R. R. Baldwin, W. E. Cantey, H. Maisel, and J. P. McDermott, "The optimum strategy in blackjack," Journal of the American Statistical Association, vol. 51, no. 275, pp. 429-439, 1956.
[2] E. Thorp, "A favorable strategy for twenty-one," Proceedings of the National Academy of Sciences of the United States of America, vol. 47, no. 1, p. 110, 1961.
[3] A. Manson, A. Barr, and J. Goodnight, "Optimum zero-memory strategy and exact probabilities for 4-deck blackjack," The American Statistician, vol. 29, no. 2, pp. 84-88, 1975.
[4] N. R. Werthamer, N. R. Werthamer, and Drougas, Risk and Reward. Springer, 2009.
[5] K. Jensen, "The Expected Value of an Advantage Blackjack player," Master of Science (MS), Utah State University, 2014.
[6] D. Rickwood, A. Blaszczynski, P. Delfabbro, N. Dowling, and K. Heading, "The psychology of gambling," InPsych, vol. 32, no. 6, pp. 11-21, 2010.
[7] A. W. Chau, J. G. Phillips, and K. L. Von Baggo, "Departures from sensible play in computer blackjack," The Journal of general psychology, vol. 127, no. 4, pp. 426-438, 2000.
指導教授 王淵弘(Yung-Hung Wang) 審核日期 2021-9-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明