參考文獻 |
Aagaard, B. T., Anderson, G., &Hudnut, K. W. (2004). Dynamic Rupture Modeling of the Transition from Thrust to Strike-Slip Motion in the 2002 Denali Fault Earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B), S190–S201. https://doi.org/10.1785/0120040614
Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131
Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387
Ando, R., &Kaneko, Y. (2018). Dynamic Rupture Simulation Reproduces Spontaneous Multifault Rupture and Arrest During the 2016 Mw 7.9 Kaikoura Earthquake. Geophysical Research Letters, 45(23), 12,875-12,883. https://doi.org/10.1029/2018GL080550
Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679–5687. https://doi.org/10.1029/JB081i032p05679
Aochi, H., Ulrich, T., Ducellier, A., Dupros, F., &Michea, D. (2013). Finite difference simulations of seismic wave propagation for understanding earthquake physics and predicting ground motions: Advances and challenges. Journal of Physics: Conference Series, 454(012010), 1–9. https://doi.org/10.1088/1742-6596/454/1/012010
Barall, M. (2009). A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault. Geophysical Journal International, 178(2), 845–859. https://doi.org/10.1111/j.1365-246X.2009.04190.x
Barton, N. (1976). The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(9), 255–279. https://doi.org/10.1016/0148-9062(76)90003-6
Barton, Nick. (2013). Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering, 5(4), 249–261. https://doi.org/10.1016/j.jrmge.2013.05.008
Biete, C., Brown, D., Lund, B., Alvarez-Marron, J., Wu, Y.-M., Kuo-Chen, H., &Ho, C.-W. (2019). The influence of inherited continental margin structures on the stress and strain fields of the south-central Taiwan fold-and-thrust belt. Geophysical Journal International, 219(1), 430–448. https://doi.org/10.1093/gji/ggz296
Bott, M. H. P. (1959). The Mechanics of Oblique Slip Faulting. Geological Magazine, 96(2), 109–117. https://doi.org/10.1017/S0016756800059987
Brown, D., Alvarez-Marron, J., Biete, C., Kuo-Chen, H., Camanni, G., &Ho, C.-W. (2017). How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt. Tectonics, 36(7), 1275–1294. https://doi.org/10.1002/2017TC004475
Brown, L., Wang, K., &Sun, T. (2015). Static stress drop in the Mw 9 Tohoku-oki earthquake: Heterogeneous distribution and low average value. Geophysical Research Letters, 42(24), 10595–10600. https://doi.org/10.1002/2015GL066361
Byerlee, J. (1978). Friction of Rocks. In Rock Friction and Earthquake Prediction (Vol. 6, pp. 615–626). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7182-2_4
Carpenter, B. M., Saffer, D. M., &Marone, C. (2015). Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior. Journal of Geophysical Research: Solid Earth, 120(7), 5273–5289. https://doi.org/10.1002/2015JB011963
Chen, S. K., Wu, Y.-M., Hsu, Y.-J., &Chan, Y.-C. (2017). Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion. Geophysical Journal International, 210(1), 228–239. https://doi.org/10.1093/gji/ggx165
Cheng, C.-T., Chiou, S.-J., Lee, C.-T., &Tsai, Y.-B. (2007). Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering, 2(1), 19–28. https://doi.org/10.6310/jog.2007.2(1).3
Cheng, S.-N., Cheng, Z.-S., Wu, C.-F., &Yeh, Y.-T. (1997). The Compilation and Analysis of Earthquake Data in Taiwan, 1898-1945. Central Weather Bureau Technical Report, 677–689.
Dalguer, L. A., Wu, H., Matsumoto, Y., Irikura, K., Takahama, T., &Tonagi, M. (2020). Development of Dynamic Asperity Models to Predict Surface Fault Displacement Caused by Earthquakes. Pure and Applied Geophysics, 177(5), 1983–2006. https://doi.org/10.1007/s00024-019-02255-8
Dreger, D. S., Oglesby, D. D., Harris, R., Ratchkovski, N., &Hansen, R. (2004). Kinematic and dynamic rupture models of the November 3, 2002 Mw7.9 Denali, Alaska, earthquake. Geophysical Research Letters, 31(4), L04605. https://doi.org/10.1029/2003GL018333
Fagereng, Å., &Beall, A. (2021). Is complex fault zone behaviour a reflection of rheological heterogeneity? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20190421. https://doi.org/10.1098/rsta.2019.0421
Griffith, A. A. (1921). VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221(582–593), 163–198. https://doi.org/10.1098/rsta.1921.0006
Guatteri, M., Mai, P. M., &Beroza, G. C. (2004). A Pseudo-Dynamic Approximation to Dynamic Rupture Models for Strong Ground Motion Prediction. Bulletin of the Seismological Society of America, 94(6), 2051–2063. https://doi.org/10.1785/0120040037
Hanks, T. C. (1977). Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions. Pure and Applied Geophysics PAGEOPH, 115(1–2), 441–458. https://doi.org/10.1007/BF01637120
Hanks, T. C., &Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348. https://doi.org/10.1029/JB084iB05p02348
Hardebeck, J. L., &Aron, A. (2009). Earthquake Stress Drops and Inferred Fault Strength on the Hayward Fault, East San Francisco Bay, California. Bulletin of the Seismological Society of America, 99(3), 1801–1814. https://doi.org/10.1785/0120080242
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., &WSM Team. (2016). World Stress Map Database Release 2016. In GFZ Data Services. https://doi.org/10.5880/WSM.2016.001
Hirth, G., Teyssier, C., &Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90, 77–87. https://doi.org/10.1007/s005310000152
Hsieh, H.-H., Chen, C.-H., Lin, P.-Y., &Yen, H.-Y. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26–33. https://doi.org/10.1016/j.jseaes.2014.04.007
Hsu, M.-T. (1979). Seismology. Li Ming Cultural Enterprise Co.,Ltd. https://books.google.com.tw/books?id=y5%5C_LGwAACAAJ
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., &Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Hung, J.-H., Ma, K.-F., Wang, C.-Y., Ito, H., Lin, W., &Yeh, E.-C. (2009). Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics, 466(3–4), 307–321. https://doi.org/10.1016/j.tecto.2007.11.014
Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77(20), 3796–3805. https://doi.org/10.1029/JB077i020p03796
Ikari, M. J., Marone, C., &Saffer, D. M. (2011). On the relation between fault strength and frictional stability. Geology, 39(1), 83–86. https://doi.org/10.1130/G31416.1
Kanamori, H., &Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.
Kanamori, H., &Heaton, T. H. (2000). Microscopic and macroscopic physics of earthquakes. Geophysical Monograph Series, 120, 147–163. https://doi.org/10.1029/GM120p0147
Kanamori, H., Lee, W. H. K., &Ma, K.-F. (2012). The 1909 Taipei earthquake-implication for seismic hazard in Taipei. Geophysical Journal International, 191(1), 126–146. https://doi.org/10.1111/j.1365-246X.2012.05589.x
Kaneko, Y., Fukuyama, E., &Hamling, I. J. (2017). Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 Mw 7.8 Kaikōura earthquake. Geophysical Research Letters, 44(10), 4765–4773. https://doi.org/10.1002/2017GL073681
Kidder, S., Avouac, J., &Chan, Y. (2012). Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology. Journal of Geophysical Research: Solid Earth, 117(B09408), 1–13. https://doi.org/10.1029/2012JB009303
Lay, T., &Wallace, T. (1995). Modern Global Seismology. https://www.elsevier.com/books/modern-global-seismology/lay/978-0-12-732870-6
Lee, C. T. (1999). Neotectonics and active faults in Taiwan. Proceedings of the 1999 Workshop on Disaster Prevention/Management and Green Techonolgy, Foster City, California, 61–74.
Liao, Y., Ma, K., Hsieh, M., Cheng, S., Kuo‐Chen, H., &Chang, C. (2018). Resolving the 1906 Mw 7.1 Meishan, Taiwan, Earthquake from Historical Seismic Records. Seismological Research Letters, 89(4), 1385–1396. https://doi.org/10.1785/0220170285
Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., &Huang, C.-Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1–2), 28–42. https://doi.org/10.1016/j.tecto.2008.11.004
Lin, C.-W., Chang, H.-C., Lu, S.-T., &Shih, T.-S. (2000). An Introduction To The Active Faults Of Taiwan[With Explanatory Text Of The Active Fault Map Of Taiwan, Scale 1:500,000. Special Publication of the Central Geological Survey, 13, 122.
Lin, K.-C., Hu, J.-C., Ching, K.-E., Angelier, J., Rau, R.-J., Yu, S.-B., Tsai, C.-H., Shin, T.-C., &Huang, M.-H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi‐Chi earthquake in Taiwan. Journal of Geophysical Research, 115(B07404), 1–22. https://doi.org/10.1029/2009JB006417
Lisle, R. J. (2013). A critical look at the Wallace-Bott hypothesis in fault-slip analysis. Bulletin de La Société Géologique de France, 184(4–5), 299–306. https://doi.org/10.2113/gssgfbull.184.4-5.299
Liu, C.-M., Song, S.-R., &Kuo, C.-H. (2015). Silica Geothermometry Applications in the Taiwan Orogenic Belt. Terrestrial, Atmospheric and Oceanic Sciences, 26(4), 387. https://doi.org/10.3319/TAO.2015.02.09.01(TT)
Ma, K.-F., Brodsky, E. E., Mori, J., Ji, C., Song, T.-R. A., &Kanamori, H. (2003). Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw7.6). Geophysical Research Letters, 30(5), 1–4. https://doi.org/10.1029/2002GL015380
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., &Wu, H.-Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473–476. https://doi.org/10.1038/nature05253
Ma, S., Custódio, S., Archuleta, R. J., &Liu, P. (2008). Dynamic modeling of the 2004 M w 6.0 Parkfield, California, earthquake. Journal of Geophysical Research, 113(B2), B02301. https://doi.org/10.1029/2007JB005216
Mikumo, T., Olsen, K. B., Fukuyama, E., &Yagi, Y. (2003). Stress-Breakdown Time and Slip-Weakening Distance Inferred from Slip-Velocity Functions on Earthquake Faults. Bulletin of the Seismological Society of America, 93(1), 264–282. https://doi.org/10.1785/0120020082
Miyake, H., Iwata, T., &Irikura, K. (2003). Source Characterization for Broadband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area. Bulletin of the Seismological Society of America, 93(6), 2531–2545. https://doi.org/10.1785/0120020183
Newmark, N. M. (1959). A Method of Computation for Structural Dynamics. Journal of the Engineering Mechanics Division, 85(3), 67–94. https://doi.org/10.1061/JMCEA3.0000098
Niemeijer, A. R., &Spiers, C. J. (2007). A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges. Journal of Geophysical Research, 112(B10), B10405. https://doi.org/10.1029/2007JB005008
Oglesby, D. D., &Day, S. M. (2001a). The effect of fault geometry on the 1999 Chi-Chi (Taiwan) Earthquake. Geophysical Research Letters, 28(9), 1831–1834. https://doi.org/10.1029/2000GL012043
Oglesby, D. D., &Day, S. M. (2001b). Fault Geometry and the Dynamics of the 1999 Chi-Chi (Taiwan) Earthquake. Bulletin of the Seismological Society of America, 91(5), 1099–1111. https://doi.org/10.1785/0120000714
Omori, F. (1907). Preliminary Note on the Formosa Earthquake of March 17, 1906. Bulletin of the Imperial Earthquake Investigation Committee, 1(2), 53–69.
Paterson, M. S., &Luan, F. C. (1990). Quartzite rheology under geological conditions. Geological Society, London, Special Publications, 54, 299–307. https://doi.org/10.1144/GSL.SP.1990.054.01.26
Peyrat, S., &Olsen, K. B. (2004). Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake. Geophysical Research Letters, 31(5), L05604. https://doi.org/10.1029/2003GL019058
Peyrat, Sophie, Olsen, K., &Madariaga, R. (2001). Dynamic modeling of the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 106(B11), 26467–26482. https://doi.org/10.1029/2001JB000205
Satoh, T., &Okazaki, A. (2016). Relation Between Stress Drops and Depths of Strong Motion Generation Areas Based on Previous Broadband Source Models for Crustal Earthquakes in Japan. In Earthquakes, Tsunamis and Nuclear Risks (pp. 77–85). Springer Japan. https://doi.org/10.1007/978-4-431-55822-4_6
Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., &Cheng, C.-T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 311–323. https://doi.org/10.3319/TAO.2015.11.27.02(TEM)
Shyu, J. B. H., Sieh, K., Chen, Y.-G., &Liu, C.-S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110(B08402), 1–33. https://doi.org/10.1029/2004JB003251
Sibson, R. H. (1974). Frictional constraints on thrust, wrench and normal faults. Nature, 249, 542–544. https://doi.org/10.1038/249542a0
Sinotech Engineering Consultants Inc. (1985). Report on regional geological study of Peikang Basement High area and the Meishan Fault. Taisse Site Feasibility Study.
Stipp, M., &Tullis, J. (2003). The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30(21), 1–5. https://doi.org/10.1029/2003GL018444
Stüwe, K. (2007). Geodynamics of the lithosphere: an introduction. Springer Science & Business Media.
Suppe, J. (2007). Absolute fault and crustal strength from wedge tapers. Geology, 35(12), 1127–1130. https://doi.org/10.1130/G24053A.1
Suppe, J. (2014). Fluid overpressures and strength of the sedimentary upper crust. Journal of Structural Geology, 69(PB), 481–492. https://doi.org/10.1016/j.jsg.2014.07.009
Taihoku Meteorological Observatory (TMO). (1936). Report of the the Severe Hsinchu-Taichung Earthquake of April 21, 1935.
Taiwan Governor-General Office of Civil Affairs. (1907). Report of Earthquake Damages of Chiayi.
Trugman, D. T., &Shearer, P. M. (2017). Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 122(4), 2890–2910. https://doi.org/10.1002/2017JB013971
Tsai, Y.-B. (1986). Seismotectonics of Taiwan. Tectonophysics, 125(1–3), 17–37. https://doi.org/10.1016/0040-1951(86)90005-3
Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., &Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10, 1213. https://doi.org/10.1038/s41467-019-09125-w
Wallace, R. E. (1951). Geometry of Shearing Stress and Relation to Faulting. The Journal of Geology, 59(2), 118–130. https://doi.org/10.1086/625831
Wang, Y.-J., Chan, C.-H., Lee, Y.-T., Ma, K.-F., Shyu, J. B. H., Rau, R.-J., &Cheng, C.-T. (2016). Probabilistic Seismic Hazard Assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 325–340. https://doi.org/10.3319/TAO.2016.05.03.01(TEM)
Wollherr, S., Gabriel, A., &Mai, P. M. (2019). Landers 1992 “Reloaded”: Integrative Dynamic Earthquake Rupture Modeling. Journal of Geophysical Research: Solid Earth, 124(7), 6666–6702. https://doi.org/10.1029/2018JB016355
Wu, Y.-M., Teng, T., Shin, T.-C., &Hsiao, N.-C. (2003). Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386–396. https://doi.org/10.1785/0120020097
Yamashita, T. (1976). On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress. I. Rupture propagation. Journal of Physics of the Earth, 24(4), 417–444. https://doi.org/10.4294/jpe1952.24.417
Yang, K.-M., Rau, R.-J., Chang, H.-Y., Hsieh, C.-Y., Ting, H.-H., Huang, S.-T., Wu, J.-C., &Tang, Y.-J. (2016). The role of basement-involved normal faults in the recent tectonics of western Taiwan. Geological Magazine, 153(5–6), 1166–1191. https://doi.org/10.1017/S0016756816000637
Yeh, Y.-T., Hsu, M.-T., &Cheng, S.-N. (1998). Report of the Rearrangement and Analysis of Ten Disastrous Earthquakes Occurring inTaiwan from 1898 to 1997 (Chinese). Central Weather Bureau Technical Report, 201–212.
Yen, Y.-T., &Ma, K.-F. (2011). Source-Scaling Relationship for M 4.6-8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464–481. https://doi.org/10.1785/0120100046
Yue, L.-F. (2007). Active structural growth in central Taiwan in relationship to large earthquakes and pore-fluid pressures. Princeton University.
Yue, L.-F., &Suppe, J. (2014). Regional pore-fluid pressures in the active western Taiwan thrust belt: A test of the classic Hubbert-Rubey fault-weakening hypothesis. Journal of Structural Geology, 69(PB), 493–518. https://doi.org/10.1016/j.jsg.2014.08.002
Zang, A., &Stephansson, O. (2010). Stress Field of the Earth’s Crust. In Stress Field of the Earth’s Crust. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8444-7
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., &Wiprut, D. J. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7–8), 1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001 |