博碩士論文 108622006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.216.224.72
姓名 陳尚謙(Shang-Chian Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以熱變質度解析台灣中部雪山-脊梁板岩帶邊界構造運動模式
(Structural evolution of central Taiwan slate belt in the view of thermal-metamorphic results)
相關論文
★ 青藏高原東緣區域之熱變質紀錄與構造演化探討★ 越南西北部變質沉積岩熱歷史初探,與對印支造山運動演化的隱示
★ 地貌分析揭示的越南中北部活動斷層★ 越南西北部變質沉積岩熱變質紀錄,及其大地構造意涵初探
★ 從太麻里地區窺視台灣造山帶於陸弧碰撞前之 熱變質與構造演化模式★ 台灣海岸山脈最南端利吉混同層構造演化
★ 台灣造山帶板岩區的熱變質演化─以紅香到武界為例★ 應用光達數值高程模型判釋與分析區域地質與構造:以海岸山脈北段為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在台灣造山帶中,板岩帶為被動大陸邊緣不同部位沉積物之深埋、隱沒、變質,最終掘升至地表之結果。由於板岩帶僅經由蓬萊造山運動變質而成,其相對單純的變質歷史相當適合作為重建此造山運動的研究對象。板岩帶可以依其地質年代、變形行為、變質度的落差,再劃分為西側的雪山板岩帶與東側的脊樑板岩帶。二者的邊界性質的釐清與探討不僅能為台灣造山架構提供更一步的剖析,板岩帶本身的熱變質溫度也能對物質在隱沒、變質並俯衝至增積楔下後,如何抬升並加入造山帶的變質歷程提供關鍵的資料。
本研究以拉曼碳質物光譜(Raman Spectroscopy of Carbonaceous Material, RSCM)進行板岩帶巔峰變質溫度(peak-T)的量測。RSCM為一高精度peak-T溫度計,其樣本間誤差值可低至10-15℃,對區域的peak-T變化能有更精準的結果。本研究區域以梨山為界,以北延伸至啞口一帶以較高空間解析度的採樣,界定出雪山-脊樑交界處peak-T有約60℃的陡降,此結果可歸因於梨山斷層的背衝作用,若以變質地溫梯度30℃/km進行計算,二者間的peak-T差異可換算為約2公里的垂直斷層落差,藉以判定此為雪山板岩帶與脊樑板岩帶二者間的斷層接觸,驗證了前人以梨山斷層作為二者接觸性質的理論。細部的peak-T變化及薄片資料也顯示出梨山斷層除了脆性的斷層錯移外,在深部也有韌性的剪切變形。此外,由於梨山斷層上盤屬於雪山板岩帶最頂部的地層,其資料不僅完整了內雪山山脈地層柱的peak-T序列,換算出來的深度也可幫助建立雪山板岩帶在巔峰變質度時的幾何樣貌,結果顯示出此區域由盆地沉積至巔峰變質時期有約30°的地層傾斜變形量。梨山以南至廬山,RSCM的採樣範圍及高程差較大以建立較為宏觀的脊樑山脈板岩帶的peak-T熱構造模型,進而解析出在巔峰變質後形成的向西伸向的變質等溫線構造。在與熱年代學的冷卻年代做比較後,將可重建出脊樑山脈板岩帶在經歷完巔峰變質度後,掘升至地表的過程中不同推覆體受到向西伸向變形的歷程。
除了RSCM所得出的peak-T結果外,本研究也結合了薄片微構造觀察及野外斷層擦痕資料,推論雪山山脈板岩帶及脊樑山脈板岩邊界的運動模式及變形歷史,最後提出台灣中部板岩帶的構造演化模型。
摘要(英) In the Taiwan orogenic belt, the slate belt is metamorphosed from pelitic sediment depositing on the different architecture of passive continental margin and the basement of the South China Sea. Because the slate belt only underwent one-period orogeny, the Penglai Orogeny, it is suitable for the study of reconstruction of the mountain building. Based on the discrepancy in age of strata, style of deformation, and grade of metamorphism, it can be further divided into 2 units: Husehshan Range (HR) in the west and Backbone Range slate belt (BRSB) in the east. The feature of the boundary between them not only plays an integral role in the evolution of Taiwan mountain building history but their own thermal-metamorphic information also can insight the light of the pattern of how the material fluxed into the accretionary wedge.
The Raman Spectroscopy of Carbonaceous Material (RSCM) was applied to the junction zone between HR and BRSB in the central Taiwan slate belt to reveal the trend of peak metamorphic temperature (peak-T). RSCM is a high-precision thermometer of peak-T, and the uncertainty between samples of this method is as low as 10-15 °C, which can provide an insight into the subtle variation of peak-T. The research area extends from Lushan in the south to Yakou in the north. To the north of Lishan Town, intensive sampling enhances the spatial resolution of peak-T. The result exhibits about 60 °C drops of peak-T from HR to BRSB, and the vertical offset is about 2 km according to the 30 °C/km thermal gradient of the passive continental margin. Therefore, it is a fault named Lishan Fault that divides the slate belt into HR and BRSB. The detailed variation of RSCM temperature also indicates the brittle and ductile behavior of the Lishan Fault. Moreover, the data in the hanging wall of the Lishan Fault, which is the latest portion of HR, complete the peak-T in the top of HR, and that constrains the depth of HR in peak metamorphism which can be used to construct the model of HR evolution. The result reflects that the sediment sequence in the eastern Hsuehshan Trough had been deformed and tilted at ~30° before reaching peak metamorphism. In the range from Lushan to Lishan Town, a wide range of sampling is applied to the establishment of BRSB structural evolution. The constrain of the peak-T isogrades and documented thermochronological data reveal the how the material fluxed into the wedge and formed the BRSB.
Besides the results of peak temperature, the microstructure observation from the thin sections and the measurement of slickenside on the fault outcrop also are analyzed to discuss the deformational features and history in the research area. Concluding the result from different methods, the model of the structural evolution of the central Taiwan slate belt is proposed.
關鍵字(中) ★ 雪山山脈
★ 脊樑山脈板岩帶
★ 梨山斷層
★ 拉曼碳質物光譜
關鍵字(英) ★ Husehshan Range
★ Backbone Range slate belt
★ Lishan Fault
★ Raman Spectroscopy of Carbonaceous Material
論文目次 摘要 i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Figures x
List of Tables xv
Chapter 1 Introduction 1
1.1 Motivation and Research Question 1
Chapter 2 Geological Background of Taiwanese slate belts 7
2.1 Tectonic Setting 7
2.2 Stratigraphy 10
2.2.1 Hsuehshan Range 10
2.2.2 Backbone Range Slate Belt 15
2.3 Metamorphism and Thermochronological constraints 16
2.3.1 Metamorphic Facies 16
2.3.2 Peak Metamorphic Temperature 18
2.3.3 Low-Temperature Thermochronology 24
2.4 Structural characteristics 27
2.5 The boundary between Hsuehshan and Backbone Range 29
Chapter 3 Methodology 34
3.1 Field mesoscale observations 34
3.1.1 Measurement of planar and linear structures 34
3.1.2 Paleostress analysis 35
3.2 Raman spectroscopy of carbonaceous material (RSCM) 38
3.2.1 Characteristics of carbonaceous material 38
3.2.2 Composition and feature of RSCM 39
3.2.3 The peak temperature application of RSCM 41
3.2.4 Sample collection and preparation 44
3.2.5 Spectra acquisition and treatment 47
3.3 Microstructure 50
3.3.1 Pressure shadow analysis 50
3.3.2 Tectonic fabrics 51
Chapter 4 Results 53
4.1 Analysis of paleo stress 58
4.2 RSCM temperature (RSCM-T) 75
4.2.1 North of Lishan Town 82
4.2.2 South of Lishan Town 86
4.3 Microstructure 89
4.3.1 The texture of slate 89
4.3.2 Shear microstructures 94
Chapter 5 Discussions 97
5.1 The boundary between Hsuehshan Range and Backbone Range Slate Belt 97
5.1.1 RSCM-T interpretation 97
5.1.2 Structure of the Lishan Fault 100
5.2 The Hsuehshan Range 108
5.2.1 The relationship between RSCM-T and deformation 108
5.2.2 The interpretation of paleostress analysis 112
5.2.3 Structural evolution 117
5.3 The Backbone Range Slate Belt 119
5.3.1 Thermal metamorphic structure 119
5.3.2 Structural evolution 121
5.4 Tectonic evolution of central Taiwan slate belt 126
Chapter 6 Conclusions 132
Reference 134
Appendix 143
參考文獻 Allmendinger, R. W., Cardozo, N., and Fisher, D. M. (2011). Structural geology algorithms. In Structural geology algorithms: Vectors and Tensors (Vol. 9781107012).
Barr, T.D., Dahlen, F.A. (1989). Brittle frictional mountain-building: 2. Thermal structure and heat budget. Journal of Geophysical Research 94, 3923–3947.
Barr, T.D., Dahlen, F.A., McPhail, D.C. (1991). Brittle frictional mountain building: 3. Low-grade metamorphism. Journal of Geophysical Research 96, 10319–10338.
Bertrand, E., Unsworth, M., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F., Türkoğlu E., Hsu, H. L., and Hill, G. (2009). Magnetotelluric evidence for thick-skinned tectonics in central Taiwan. Geology, 37(8), 711-714
Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology, 20, 859–871.
Beyssac, O., Goffé, B., Petitet, J. P., Froigneux, E., Moreau, M., and Rouzaud, J. N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2267-2276.
Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y. G., Chan, Y. C., and Goffé, B. (2007). Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26(6), TC6001.
Borradaile, G. J., Bayly, M. B., and Powell, C. M. (Eds.). (2012). Atlas of deformational and metamorphic rock fabrics. Springer Science & Business Media.
Brown, D., Alvarez‐Marron, J., Schimmel, M., Wu, Y. M., and Camanni, G. (2012). The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data. Tectonics, 31(5), TC5013.
Buseck, P.R.; Beyssac, O. (2014). From organic matter to graphite: Graphitization. Elements 2014,10, 421–426.
Cardozo, N., and Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers and Geoscie nces,51, 193–205.
Chang, L. S. (1973). A biostratigraphic study of the so-called Slate Formation in Taiwan based on smaller foraminifera: III. Sankuang-Hsiuluan area along the upper courses of the Tanshuho and the Yulochi. Proceedings of the Geological Society of China, 16, 69-84.
Chang, L. S. (1976). The Lushanian Stage in the Central Range of Taiwan and its fauna. Progress in Micropaleont, 27-35.
Chen, C. H. (1976). The stratigraphy of the Meichi Sandstone in central Taiwan. Proceedings of the Geological Society of China, 19, 71-77.
Chen, C. T., Chan, Y. C., Lu, C. Y., Simoes, M., and Beyssac, O. (2011). Nappe structure revealed by thermal constraints in the Taiwan metamorphic belt. Terra Nova, 23(2), 85-91.
Chen, C. T., Chan, Y. C., Lo, C. H., Malavieille, J., Lu, C. Y., Tang, J. T., and Lee, Y. H. (2018). Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history. Journal of Asian Earth Sciences, 152, 80-90.
Chen, C. T., Chan, Y. C., Beyssac, O., Lu, C. Y., Chen, Y. G., Malavieille, J., Steven B. Kidder and Sun, H. C. (2019). Thermal history of the Northern Taiwanese slate belt and implications for wedge growth during the Neogene arc continent collision. Tectonics, 38, 3335–3350.
Clark, M. B., Fisher, D. M., Lu, C. Y., and Chen, C. H. (1993). Kinematic analyses of the Hsüehshan Range, Taiwan: A large‐scale pop‐up structure. Tectonics, 12(1), 205-217.
Dahlen, F. A., Barr, T. D. (1989). Brittle frictional mountain building: 1. Deformation and mechanical energy budget. Journal of Geophysical Research 94, 3906–3922.
Davis, G. H., Reynolds, S. J. (1996). Structural geology of rocks and regions. New York: John Wiley & Sons, Inc., 170.
Durney, D. and Ramsay, J. G. (1973). Incremental strains measured by syntectonic crystal growths. Gravity and tectonics, 67-96.
Ellis, M. A. (1986). The determination of progressive deformation histories from antitaxial syntectonic crystal fibres. Journal of Structural Geology, 8(6), 701-709.
Ernst, W. G., and B. M. Jahn (1987). Crustal accretion and metamorphism in Taiwan, a post-Paleozoic mobile belt, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321, 129–161.
Fuller, C. W., Willett, S. D., Fisher, D., and Lu, C. Y. (2006). A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1-4), 1- 24.
Girault, J. B., Bellahsen, N., Boutoux, A., Rosenberg, C., Nanni, U., Verlaguet, A., et al. (2020). 3D thermal structure of the Helvetic nappes of the European Alps: Implications for collisional processes. Tectonics, 39(3).
Glodny, J., Lohrmann, J., Echtler, H., Gräfe, K., Seifert, W., Collao, S., and Figueroa, O. (2005). Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modelling of the South-Central Chilean forearc. Earth and Planetary Science Letters, 231(1-2), 23-39.
Gool, J. A. V., and Cawood, P. A. (1994). Frontal vs. basal accretion and contrasting particle paths in metamorphic thrust belts. Geology, 22(1), 51-54.
Huang C Y. (1986). Oligocene and Miocene stratigraphy of the Kuohsing area, central Taiwan. Acta Geol Taiwan, 24, 281–318
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1- 16.
Kanno, S., Hashimoto, W., Lin, C. C., Aoki, N., Lee, C. S., N. L. Caagusan, H. C. Liu, C. C. Wang, K. S. Shieh, H. C. Chang (1985). New Discovery of Colpospira (Acutospira), Gastropoda, from Taiwan and Philippine. Proceedings of the Japan Academy, Series B, 61(8), 348-351.
Kuo-Chen, H., Wu, F., Chang, W. L., Chang, C. Y., Cheng, C. Y., and Hirata, N. (2015). Is the Lishan fault of Taiwan active? Tectonophysics, 661, 210-214.
Lahfid A, Beyssac O, Deville E, Negro F, Chopin C, Goffé B (2010) Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova,22(5):354–360.
Lallemand, S. and C.-S. Liu (1998) Geodynamic implications of present-day kinematics in the southern Ryukyus. J. Geol. Soc. China, 41(4), 551-564.
Lee, J. C., Angelier, J., and Chu, H. T. (1997). Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: The Lishan Fault. Tectonophysics, 274(1-3), 97-115.
Lin, A. T., Watts, A. B., and Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
Liu, T. K., Hsieh, S., Chen, Y. G., and Chen, W. S. (2001). Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186(1), 45-56.
Lu, C. Y., and K. J. Hsu (1992). Tectonic evolution of the Taiwan mountain belt. Petrol. Geol. Taiwan, 29, 15-35
Malavieille, J. (2010). Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: Analog models and case studies. Gsa Today, 20(1), 4- 10.
Malavieille J, Dominguez S, Lu C-Y, Chen C-T, and Konstantinovskaya E (2021) Deformation partitioning in mountain belts: insights from analogue modelling experiments and the Taiwan collisional orogen. Geological Magazine, 158, 84–103.
Marrett, R., and Allmendinger, R. W. (1990). Kinematic analysis of fault‐slip data. Journal of Structural Geology,12(8), 973–986.
Passchier, C. W., and Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media.
Petit, J. P. (1987). Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of structural geology, 9(5-6), 597-608.
Powell, C. M. (1979). A morphological classification of rock cleavage. Tectonophysics, 58(1- 2), 21-34.
Ramsay, J. G., and Huber, M. I. (1983). The techniques of modern structural geology Vol. 1. Strain Analysis. Ch9, Ch14.
Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., and Chen, Y. G. (2007). Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research: Solid Earth, 112(B11).
Simoes, M., Beyssac, O. and Chen, Y.G. (2012) Late Cenozoic metamorphism and mountain building in Taiwan: A review. Journal of Asian Earth Sciences, 46, 92–119.
Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China 4, 443–474.
Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Memoir of the Geological Society of China 6, 21–33.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
Teng, L. S., Y. Wang, C.-H. Tang, C.-Y. Huang, T.-C. Huang, T.-C. Yu, M.-S. Yu, and A. Ke (1991), Tectonic aspects of the Paleogene depositional basin of northern Taiwan. Proceedings of Geology Society, China, 34, 313-336.
Teng, L. S. (1992). Geotectonic evolution of Tertiary continental margin basins of Taiwan. Petroleum Geology Taiwan, 27, 1–19.
Teng, L. S., and Lin, A. T. (2004). Cenozoic tectonics of the China continental margin: insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313-332.
Tillman, K.S., T. Byrne, C.-Y. Lu, and C.-H. Chen (1991). Strain partitioning in the foreland to hinterland transition: Hsuehshan Range, Taiwan, R.O.C., Geol. Soc. Am. Abstr. Programs, 23, 423.
Tillman, K. S., and Byrne, T. B. (1995). Kinematic analysis of the Taiwan slate belt. Tectonics, 14(2), 322-341.
Tsao, S.-J. (1996), The geological significance of illite crystallinity, zircon fissiontrack ages and K-Ar ages of metasedimentary rocks of the Central Range [Ph.D. thesis]: Taipei, Taiwan, National Taiwan University, p. 272
Warneke, L. A., and W. G. Ernst (1984), Progressive Cenozoic metamorphism of rocks cropping out along the southern east-west cross-island highway, Taiwan. Mem. Geol. Soc. China, 6, 105 – 132.
Willett, S. D., Fisher, D., Fuller, C., En-Chao, Y., and Chia-Yu, L. (2003). Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948.
Wiederkehr, M., Bousquet, R., Ziemann, M. A., Berger, A., and Schmid, S. M. (2011). 3‐D assessment of peak‐metamorphic conditions by Raman spectroscopy of carbonaceous material: an example from the margin of the Lepontine dome (Swiss central Alps). International journal of earth sciences, 100(5), 1029–1063.
Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59
Zhou, D., H.-S. Yu, H.-H. Xu, X.-B. Shi, and Y.-W. Chou (2003), Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan. Tectonophysics, 374, 115 – 134.

吳俁 (2018) 從台灣中部板岩帶之熱變質紀錄探討台灣活動造山帶構造演化。國立臺灣大學地質科學研究所碩士論文,共 103頁。
李彥良、李錦發、梁均合(2008)眉溪砂岩分布與特性探討。經濟部中央地質調查所 96 年度業務成果發表會手冊,第 39 頁。
李春生(1979)台灣中部南投縣水里─玉山地區之古第三紀地層。礦業技術,第十七卷, 第 7-12 期,第 107-119 頁。
孫浩誠 (2020)台灣造山帶板岩區的熱變質演化─以紅香到武界為例。國立中央大學地球科學系碩士論文,共 132頁。
陳肇夏(1977)台灣雪山山脈的一些地層問題。中國地質學會會刊,第二十號,第 61-70 頁。
陳肇夏(1979)台灣中部橫貫公路沿線地質。中國地質學會專刊,第三號,第 219-236頁。
陳肇夏(1992)台灣雪山山脈與中央山脈第三紀地層的對比問題。經濟部中央地質調查所特刊,第 6 號,第 39-68 頁。
陳肇夏、王京新(1995)台灣變質相圖說明書第二版。經濟部中央地質調查所特刊,第二號,共51頁。
黃鑑水、李錦發(1992)雪山山脈眉溪砂岩之地層沉積環境及其與四稜砂岩之關係。經 濟部中央地質調查所特刊,第 6 號,第 143-152 頁
劉桓吉、楊昭男(1992)臺灣雪山山脈濁水溪之地質。經濟部中央地質調查所彙刊,第八號,第 31-61 頁。
劉桓吉(1997)臺灣雪山山脈中部之地質構造與地層研究。國立臺灣大學地質科學研究所博士論文,共 113 頁。
劉桓吉、高銘健(2010)梨山地質圖幅及說明書,臺灣五萬分之一地質圖幅第十九號。 經濟部中央地質調查所出版,共 73 頁。
劉聰桂(1982)臺灣磷灰石、鋯石、榍石之核飛跡研究與其在大地構造上之意義。國立 臺灣大學地質研究所博士論文,共 95 頁。
謝凱旋、洪崇勝、陳勉銘、游能悌(2011)臺灣中部地區佳陽層、眉溪砂岩中段與廬山 層底部之化石研究:雪山山脈南段東翼地層的年代制約。經濟部中央地質調查所特刊,第 25 號,第 133-166 頁。
顏滄波(1973)臺灣北部雪山山脈區之始新世砂岩。中國地質學會會刊,第十六號,第97-110 頁。
羅偉、吳樂群、陳華玫(1999)國姓地質圖幅及說明書,臺灣五萬分之一地質圖幅第二十五號。經濟部中央地質調查所出版,共 71 頁。
指導教授 陳致同(Chih-Tung Chen) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明