博碩士論文 108329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.117.184.62
姓名 趙冠評(Guan-Ping Jhao)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 碳支撐氧化鋅銀奈米觸媒於電催化二氧化碳還 原效能之研究
(The electrochemical CO2 Reduction Reaction Performance of Carbon-Supported (ZnO)xAg Nanocatalysts)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-31以後開放)
摘要(中) 由於大氣中二氧化碳濃度逐漸增加而導致全球暖化,在這種情況
下,電化學二氧化碳還原反應(carbon dioxide reduction reaction, CO2RR)
則是減少二氧化碳排放最有效的方法之一。應用於CO2RR 之觸媒必
須滿足優秀的電化學性能、低成本以及良好的穩定性等要求。因此在
本研究中,製備了碳支撐氧化鋅與銀((ZnO)xAg)觸媒並將其作為
CO2RR 觸媒。在銀中添加氧化鋅不僅可以減少貴重金屬的使用,也可
以藉由修飾其電子結構來提高一氧化碳法拉第效率和選擇性。
本研究分為三個部分。在第一部分,製備了ZnO/Ag 原子比為3/1
和2/1 的(ZnO)xAg 觸媒。(ZnO)3Ag 具有與Ag 相同的一氧化碳法拉第
效率,但由於適量的氧化鋅添加造成表面和電子的修飾,其質量活性
高於Ag。
在第二部分中,氫氣熱處理被用以改善觸媒的CO2RR 性能。根據
X 光電子能譜儀和X 光吸收光譜儀的結果,氫氣熱處理可以部份還原
氧化物並調整化學狀態,所以能提高電化學效率。在-1.1 V 下,
(ZnO)3Ag-H 展現較好的一氧化碳法拉第效率(84.6 %),在7 小時的穩
定性測試中效率衰退9.2 %,優於(ZnO)2Ag-H 的一氧化碳法拉第效率
(77.3 %, 衰減15.2 % /7 小時)。
第三部分研究了電解質對(ZnO)3Ag-H 的CO2RR 性能影響。在0.5
M 氯化鉀中,(ZnO)3Ag-H 表現出好的一氧化碳法拉第效率和穩定性
(89.0 %和衰退12.9 % /22 小時)相較於在0.1 M 碳酸氫鉀中(84.6 %和
衰退14.3 % /8 小時)和 0.1 M 氯化鉀中的表現(89.7 %和衰退14.0 %
/8 小時),因為氯離子可以修飾銀的表面以形成更多的活性位點,並且
抑制CO2RR 的競爭反應-析氫。在濃度效應下,較多的氯離子會更有
效阻擋活性位點上的析氫反應,減緩其反應速率,而得到較佳的穩定
度。綜合以上的結果,本研究強調,透過適當的電解液調控和氫氣熱
處理,在銀觸媒中添加氧化鋅可以降低貴重金屬的成本,並在CO2RR
反應中提高一氧化碳法拉第效率和穩定性。
摘要(英) The gradual increase in the concentration of carbon dioxide (CO2) in
the atmosphere leads to global warming. In this event, electrochemical
carbon dioxide reduction reaction (CO2RR) is one of most effective
strategies to eliminate CO2 emissions. The catalysts applied for CO2RR
must meet the requirements such as excellence electrochemical
performance, low cost, and good stability. In this study, the carbonsupported
(ZnO)xAg catalysts are prepared and applied as CO2RR catalysts.
The addition of ZnO into Ag not only reduces the use of noble metals, but
it also modifies the electronic structure to enhance CO faraday efficiency
(FE) and selectivity.
This research is divided into three parts. In the first part, the binary
(ZnO)xAg catalysts with ZnO/Ag atomic ratios of 3/1 and 2/1 have been
prepared. (ZnO)3Ag shows the same CO FE as Ag, but its mass activity
(MA) is higher than that of Ag owing to the proper amount of ZnO addition,
which induces surface and electronic modification.
In the second part, H2 heat treatment is applied to promote the CO2RR
performance of the catalysts. According to X-ray photoelectron
spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) results, the
H2 heat treatment is able to partially reduce oxides and tune the chemical
state so that the electrochemical efficiency can be enhanced. (ZnO)3Ag-H
displays the best performance where the CO FE is 84.6 % and decays 9.2 %
/7 hrs at -1.1 V (vs. RHE), superior to (ZnO)2Ag-H with CO FE of 77.3 %
and 15.2 % decay/ 7 hrs.
In the third part, the electrolyte effect on the CO2RR performance of
(ZnO)3Ag-H is studied. In 0.5 M KCl, (ZnO)3Ag-H shows a better CO FE
and stability (89.0 % and 12.9 % decay/ 22 hrs) than those in 0.1 M KHCO3
(84.6 % and 14.3 % decay/ 8 hrs) and 0.1 M KCl (89.7 % and 14.0 % decay/
8hrs) because Cl- can modify Ag surface to form more active sites and
suppress the competitive hydrogen evolution reaction. In terms of the
concentration effect, more Cl- anions can block some active sites to slow
down the hydrogen evolution reaction more, and results in a better stability.
Based on the above results, this research highlights that with proper
electrolyte and H2 heat treatment, the addition of ZnOx into Ag catalysts can
decrease the cost of catalysts and enhance CO FE and stability during
CO2RR.
關鍵字(中) ★ 氧化鋅
★ 銀
★ 奈米觸媒
★ 二氧化碳還原反應
★ 法拉第效率
★ 質量活性
★ 電解液
關鍵字(英) ★ ZnO
★ Ag
★ nanocatalysts
★ CO2 reduction reaction (CO2RR)
★ faradaic efficiency (FE)
★ mass activity (MA)
★ electrolyte
論文目次 摘要 ............................................................................................................. i
Abstract ..................................................................................................... iii
致謝 ............................................................................................................. v
Table of Contents ....................................................................................... x
List of Figures ........................................................................................ xiii
List of Tables .......................................................................................... xvii
Chapter 1 Introduction .............................................................................. 1
1.1 Mechanism of CO2RR ................................................................. 2
1.2 Catalysts for CO2RR .................................................................... 5
1.3 Electrocatalysts with High CO selectively .................................. 7
1.4 Electrolyte for CO2RR ............................................................... 10
1.5 Motivation and Approach .......................................................... 12
Chapter 2 Experimental Section ............................................................. 14
2.1 Preparation of Catalysts ................................................................... 14
2.1.1 Preparation of Ag catalysts ..................................................... 14
2.1.2 Preparation of ZnO catalysts ................................................... 14
2.1.3 Preparation of (ZnO)xAg catalysts .......................................... 17
2.2 Characterization of Catalysts ........................................................... 19
2.2.1 Inductively coupled plasma–optical emission spectroscopy
(ICP-OES) ........................................................................................ 19
2.2.2 X-ray diffraction (XRD) ......................................................... 19
2.2.3 High-resolution transmission electron microscopy (HRTEM)19
2.2.4 X-ray photoelectron spectroscopy (XPS) ............................... 21
xi
2.2.5 Ex & in situ X-ray absorption spectroscopy (XAS) ............... 21
2.3 CO2RR Performance of Catalysts.................................................... 23
2.3.1 CO2RR measurement .............................................................. 23
2.3.2 Gas chromatographic system .................................................. 25
2.3.3 Standards preparation and calibration ..................................... 26
Chapter 3 Results and Discussion ........................................................... 28
3.1 The Structural and Electrochemical Characterizations of Ag,
(ZnO)2Ag and (ZnO)3Ag Catalysts ....................................................... 28
3.1.1 ICP-OES and XRD characterizations ..................................... 28
3.1.2 HRTEM characterizations ....................................................... 28
3.1.3 CO2RR performance ............................................................... 32
3.1.4 Summary ................................................................................. 37
3.2 The Structural and Electrochemical Characterizations of As-prepared
and H2-treated ZnO, (ZnO)2Ag, and (ZnO)3Ag Catalysts ..................... 38
3.2.1 XRD characterizations ............................................................ 38
3.2.2 HRTEM characterizations ....................................................... 38
3.2.3 XPS characterization .............................................................. 42
3.2.4 Ex situ XAS characterization ................................................. 47
3.2.5 CO2RR performance ............................................................... 50
3.2.6 Summary ................................................................................. 56
3.3 The CO2RR Performance of (ZnO)3Ag-H in Different Electrolytes58
3.3.1 In situ XAS characterization ................................................... 58
3.3.2 CO2RR performance ............................................................... 58
Chapter 4 Conclusions ............................................................................. 66
References ................................................................................................ 68
參考文獻 1. K. Xiang, F. Zhu, Y. Liu, Y. Pan, X. Wang, X. Yan and X. Liu, Electrochem. Commun., 2019, 102, 72-77.
2. H. Xie, T. Wang, J. Liang, Q. Li and S. Sun, Nano Today, 2018, 21, 41-54.
3. J. Huang, M. Mensi, E. Oveisi, V. Mantella and R. Buonsanti, J. Am. Chem. Soc., 2019, 141, 2490-2499.
4. A. S. Varela, Curr. Opin. Green Sustain. Chem., 2020, 26, 100371.
5. D. T. Whipple and P. J. A. Kenis, J. Phys. Chem. Lett., 2010, 1, 3451-3458.
6. I. Ganesh, Renew. Sustain. Energy Rev., 2016, 59, 1269-1297.
7. N. Wanninayake, Q. Ai, R. Zhou, M. A. Hoque, S. Herrell, M. I. Guzman, C. Risko and D. Y. Kim, Carbon, 2020, 157, 408-419.
8. H. Ooka, M. C. Figueiredo and M. T. M. Koper, Langmuir, 2017, 33, 9307-933.
9. D. M. Fernandes, A. F. Peixoto and C. Freire, Dalton Trans., 2019, 36, 13508-13528.
10. A. D. Handoko, F. X. Wei, Jenndy, B. S. Yeo and Z. W. She, Nat Catal., 2018, 12, 922-934.
11. A. M. Liu, M. F. Gao, X. F. Ren, F. N. Meng, Y. N. Yang, L. G. Gao, Q. Y. Yang and T. L. Ma, J. Mater. Chem. A, 2020, 7, 3541-3562.
12. V. K. Abdelkader-Fernandez, D. M. Fernandes and C. Freire, J. CO2 Util., 2020, 42, 101350.
13. E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, Chem. Soc. Rev., 2009, 38, 89-99.
14. J. Schneider, H. Jia, J. T. Muckerman and E. Fujita, Chem. Soc. Rev., 2012, 41, 2036-2051.
15. Y. Hori, A. Murata, K. Kikuchi and S. Suzuki, J. Chem. Soc., Chem. Commun,. 1987, 10, 728-729.
16. Y. Hori, O. Koga, H. Yamazaki and T. Matsuo, Electrochim. Acta, 1995, 40, 2617-2622.
17. Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, J. Phys. Chem. B, 1997, 101, 7075-7081.
18. S. Hernandez, M. A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco and N. Russo, Green Chem., 2019, 19, 2326-2346.
19. J. P. Jones, G. K. S. Prakash and G. A. Olah, J. Chem., 2014, 54, 1451-1466.
20. T. Cheng, H. Xiao and W. A. Goddard, J. Phys. Chem. Lett., 2015, 6, 4767-4773.
21. K. J. P. Schouten, E. P. Gallent and M. T. M. Koper, J. Electroanal. Chem., 2014, 716, 53-57.
22. T. Cheng, H. Xiao and W. A. Goddard, Proc. Natl. Acad. Sci. USA, 2017, 114, 1795-1800.
23. L. Zhang, Z. - J. Zhao and J. Gong, Angew. Chem. Int. Ed., 2017, 56, 11326-11353.
24. W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson and S. Sun, J. Am. Chem. Soc., 2013, 135, 16833-16836.
25. C. Kim, H. S. Jeon, T. Eom, M. S. Jee, H. Kim, C. M. Friend, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2015, 137, 13844-13850.
26. N. Hoshi, M. Kato and Y. Hori, J. Electroanal. Chem., 1997, 440, 283-286.
27. G. O. Larrazábal, A. J. Martín, S. Mitchell, R. Hauert and J. Pérez- Ramírez, J. Catal., 2016, 343, 266-277.
28. F. Urbain, P. Tang, N. M. Carretero, T. Andreu, J. Arbiol and J. R. Morante, ACS Appl. Mater. Interfaces, 2018, 10, 43650-43660.
29. H. K. Lim, H. Shin, W. A. Goddard, Y. J. Hwang, B. K. Min and H. Kim, J. Am. Chem. Soc., 2017, 139, 1885-1893.
30. Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chem and F. Jiao, Nat. Commun., 2014, 5, 3242.
31. S. A. Mahyoub, F. A. Qaraah, C. Chen, F. Zhang, S. Yan and Z. Cheng, Sustain. Energy Fuels, 2020, 4, 50-67.
32. W. Guo, K. Shim, S. M. Jung, H. S. Kang and Y. T. Kim, ACS Appl. Energy Mater., 2020, 3, 9792-9798.
33. J. Zeng, T. Rino, K. Bejtka, M. Castellino, A. Sacco, M. A. Farkhondehfal, A. Chiodoni, F. Drago and C. F. Dirri, ChemSusChem, 2020, 13, 4128-4139.
34. S. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang and T. E. Rufford, J. Mater. Chem. A, 2020, 8, 1511-1544.
35. M. R. Thorson, K. I. Siil and P. J. A. Kenis, J. Electrochem. Soc., 2013, 160, F69-F74.
36. M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager and A. T. Bell, J. Am. Chem. Soc., 2016, 138, 13006-13012.
37. S. Verma, X. Lu, S. Ma, R. I. Masel and P. J. A. Kenis, Phys. Chem. Chem. Phys., 2016, 18, 7075-7084.
38. Y. Hori, A. Murata and R. Takahashi, J. Chem. Soc., Faraday Trans., 1989, 84, 2309-2326.
39. J. Resasco, Y. Lum, E. Clark, J. Z. Zeledon and A. T. Bell, ChemElectroChem, 2018, 5, 1064.
40. H. Mistry, F. Behafarid, R. Reske, A. S. Varela, P. Strasser and B. Roldan Cuenya, ACS Catal., 2016, 6, 1075-1080.
41. H. Yano, T. Tanaka, M. Nakayanna and K. Ogura, J. Electroanal. Chem., 2004, 565, 287-293.
42. K. Ogura, J. R. Ferrell, A. V. Cugini, E. S. Smotkin and M. D. Salazar- Villalpando, Electrochim. Acta, 2010, 56, 381-386.
43. Q. Lu and F. Jiao, Nano Energy, 2016, 29, 439-456.
44. H. Schulz, Appl. Catal., A, 1999, 186, 3-12.
45. J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov and T. F. Jaramillo, ACS Catal., 2017, 7, 4822-4827.
46. P. Moreno-Garcí, N. Schlegel, A. Zanetti, A. C. López, M. d. J. Gálvez-Vázquez, A. Dutta, M. Rahaman and P. Broekmann, ACS Appl. Mater. Interfaces, 2018, 10, 31355-31365.
47. F. Quan, D. Zhong, H. Song, F. Jia and L. Zhang, J. Mater. Chem. A, 2015, 3, 16409-16413.
48. C. S. Chen, A. D. Handoko, J. H. Wan, L. Ma, D. Ren and B. S. Yeo, Catal. Sci. Technol., 2014, 5, 161-168.
49. K. Sun, T. Cheng, L. Wu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W. A. Goddard and Z. Wang, J. Am. Chem. Soc., 2017, 139, 15608-15611.
50. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard and T. F. Jaramillo, J. Am. Chem. Soc., 2014, 136, 14107-14113.
51. T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, Phys. Chem. Chem. Phys., 2014, 16, 13814-13819.
52. C. Shi, H. A. Hansen, A. C. Lausche, J. K. Norskov, Phys. Chem. Chem. Phys., 2014, 16, 4720-4727.
53. T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram, J. T. Feaster, A. L. Jongerius, C. Hahn and T. F. Jaramillo, Energy Technol., 2017, 5, 955-961.
54. M. J. Isaacson, F. R. McLarnon and E. J. Cairns, J. Electrochem. Soc., 1990, 137, 2014-2021.
55. M. Michaelis, C. Fisher, L. C. Ciacchi and A. Luttge, Environ. Sci. Technol., 2017, 51, 4297-4305.
56. W. Luo, Q. Zhang, J. Zhang, E. Moioli, K. Zhao and A. Zuttel, Appl. Catal. B, 2020, 273, 119060.
57. W. Luo, J. Zhang, M. Li and A. Zuttel, ACS Catal., 2019, 9, 3783-3791.
58. R. Yang, Q. Zhao and B. Liu, J. Mater. Sci. Mater. Electron., 2020, 31, 5054-5067.
59. D. Sun, P. Li, B. Yang, Y. Xu, J. Huang and Q. Li, RSC Adv., 2016, 6, 105940-105947.
60. Q. Shao, P. Wang, S. Liu, and X. Huang, J. Mater. Chem. A, 2019, 7, 20478-20493.
61. A. Patlolla, J. Zunino, A. I. Frenkel and Z. Iqbal, J. Mater. Chem., 2012, 22, 7028-7035.
62. I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T. J. Mason, M. Blanes, K. Mollá, A. Patlolla, A. I. Frenkel and A. Gedanken, J. Mater. Chem. B, 2013, 1, 1968-1976.
63. E. Frei, A. Gaur, H. Lichtenberg, L. Zwiener, M. Scherzer, F. Girgsdies, T. Lunkenbein and R. Schlögl, ChemCatChem, 2020, 12, 1-6.
64. E. Sayah, C. L. Fontaine, V. Briois, D. Brouri and P. Massiani, Catal. Today, 2012, 189, 55-59.
65. D. Kim, S. Lee, J. D. Ocon, B. Jeong, J. K. Lee and J. Lee, Phys. Chem. Chem. Phys., 2015, 17, 824-830.
66. L. Hou, J. Yan, L. Takele, Y. Wang, X. Yan and Y. Gao, Inorg. Chem. Front., 2019, 6, 3363-3380.
67. D. L. T. Nguyen, M. S. Jee, D. H. Won, H. Jung, H. oh, B. K. Min and Y. J. Hwang, ACS Sustain. Chem. Eng., 2017, 5, 11377-11386.
68. Y. Hunang, C. W. Ong and B. S. Yeo, ChemSusChem, 2018, 11, 3299-3306.
69. W. H. Lee, Y. J. Ko, Y. Choi, S. Y. Lee, C. H. Choi, Y. J. Heang, B. K. Min, P. Strasser and H. S. Oh, Nano Energy, 2020, 76, 105030.
70. K. Jiang, P. Kharel, Y. Peng, M. K. Gangishetty, H. -Y. G. Lin, E. Staritski, K. Attenkofer and H. Wang, ACS Sustain. Chem. Eng., 2017, 5, 8529-8534.
71. S. Verma, X. Lu, S. Ma, R. I. Masel and P. J. A. Kenis, Phys. Chem. Chem. Phys., 2016, 18, 7075-7084.
72. Y. Lu, B. Han, C. Tian, J. Wu, D. Geng and D. Wang, Electrochem Commun., 2018, 9, 87-90.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2021-5-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明