博碩士論文 108329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:3.147.36.106
姓名 黃婉君(Wan-Chun Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 具核-殼結構之銅-氧化銦奈米觸媒應用於電催化二氧化碳還原之研究
(The Electrochemical CO2 Reduction Reaction of Cu-In2O3 Nanocatalysts with Core-Shell Structures)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二氧化碳的電化學還原反應(carbon dioxide electrochemical reduction reaction, CO2RR)是減少大氣中CO2最有效的方法之一,並可同時生產工業上所需的燃料或化學品。然而,CO2RR觸媒所面臨到的挑戰包含:與析氫反應(hydrogen evolution reaction, HER)的競爭,所需的過電位高,CO2RR活性低,產物選擇性差且成本高。為了解決上述問題,目前科學家們已經開發了許多二元觸媒。透過第二種材料的添加,改變反應中間體的結合能,從而提高CO2RR的活性和選擇性。
本研究選擇低成本的材料:銅(copper, Cu)和氧化銦(indium oxide, In2O3)。為了找到最佳的比例,製備不同的Cux(In2O3)y/C奈米顆粒,其Cu/In2O3比例分別為96/4、85/15、72/28和36/64。X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)的分析結果證實了Cu核-In2O3殼的結構形成。在-0.7 V (vs. RHE)下,Cu96(In2O3)4/C的一氧化碳(carbon monoxide, CO)法拉第效率為95%,遠遠超過Cu/C的18%和In2O3/C的13%。Cu96(In2O3)4/C也具有極好的CO質量活性,其為-642 A gIn-1,而In2O3/C僅有-8 A gIn-1。在CO2RR穩定性測試中,Cu96(In2O3)4/C可以保持優異的CO法拉第效率長達7小時。另外,根據CO剝離(CO stripping)的測試結果,發現表面添加In2O3可以降低CO的吸附能,使產物CO更容易脫附。在原位X光吸收光譜(in-situ X-ray absorption spectroscopy, in-situ XAS)結果中,推測In2O3殼層可防止Cu核氧化,並擋住HER的活性位點;而其在CO2RR的過程中In2O3殼明顯地被還原。以上結果皆表明具有核殼結構的二元觸媒可以達到CO2RR反應中的高選擇性和活性。另外,製備了Cu和In2O3的物理混合物,可達67%的CO法拉第效率。本研究經由Cu96(In2O3)4中兩種材料的結合,將產甲酸的In2O3和產氫氣的Cu結合後轉變為產CO,透過調整二元比例和核殼結構,達到最佳化的CO選擇性、活性和穩定性。
摘要(英) Electrochemical reduction reaction of carbon dioxide (CO2RR) is one of the most promising solutions to mitigate the global CO2 emission and produce useful fuels or chemicals simultaneously. However, the serious challenges for the catalysts of electrochemical CO2RR involve the competition with hydrogen evolution reaction (HER), high overpotentials required, low CO2RR activity, poor products selectivity, and high cost. In order to solve the above problems, many binary catalysts have been developed because the binding energy of reactive intermediate is changed due to the second metal addition, further promoting the CO2RR selectivity and activity.
In this study, the low-cost materials like copper (Cu) and indium oxide (In2O3) are selected. In order to find the best Cu/ In2O3 ratio, the carbon-supported Cux(In2O3)y nanoparticles with Cu/In2O3 ratios of 96/4, 85/15, 72/28, and 36/64 have been prepared. The results of X-ray photoelectron spectroscopy (XPS) confirms the formation of Cu core - In2O3 shell structure. Among the catalysts, Cu96(In2O3)4/C has exhibited the best CO faradaic efficiency of 95 %, far more than 18 % of Cu/C and 13 % of In2O3/C at - 0.7 V (vs. RHE), and the super excellent CO mass activity of -642 A gIn-1, compared with -8 A gIn-1 of In2O3/C. Moreover, the CO2RR stability test shows that Cu96(In2O3)4/C can remain high CO faradaic efficiency for 7 h. According to the CO stripping results, the binding energy of CO is diminished with the addition of In2O3 on the surface because Cu can form *CO easily, and In2O3 can promote CO desorption. Moreover, the in-situ X-ray absorption spectroscopy (XAS) results displays that In2O3 shell prevents Cu core from oxidation and obstructs their HER active sites while it reduces obviously during CO2RR. These results reveal that the binary catalysts with core-shell structure can achieve high selectivity and activity. In addition, physical mixture of Cu and In2O3 has been prepared, reaching CO faradaic efficiency of 67%. It is believed that the transformation of product selectivity from HCOOH for In2O3 and H2 for Cu to CO for Cu96(In2O3)4/C, and the optimization of the CO selectivity, activity, and stability stem from the binary effect and core-shell structure.
關鍵字(中) ★ 銅
★ 氧化銦
★ 二氧化碳還原反應
★ 法拉第效率
★ 核殼結構
★ 二元效應
關鍵字(英) ★ copper (Cu)
★ indium oxide (In2O3)
★ carbon dioxide reduction reaction
★ faradaic efficiency
★ core-shell structure
★ binary effect
論文目次 摘要 i
Abstract iii
Table of Contents v
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Mechanism and Catalysts of CO2RR 2
1.2 Cu Catalysts with Various Selectivities 6
1.3 Cu-based Binary Catalysts with Different Selectivities 8
1.4 In-based Binary Catalysts with CO Selectivity 12
1.5 Motivation and Approach 15
Chapter 2 Experimental Section 16
2.1 Preparation of Catalysts 16
2.1.1 Preparation of Cu/C catalysts 16
2.1.2 Preparation of In2O3/C catalysts 16
2.1.3 Preparation of Cux(In2O3)y/C catalysts 16
2.1.4 Preparation of the physical mixtures of Cu and In2O3 19
2.2 Characterization of Catalysts 21
2.2.1 Inductively coupled plasma–optical emission spectroscopy (ICP-OES) 21
2.2.2 X-ray diffraction (XRD) 21
2.2.3 High angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) 21
2.2.4 High-resolution transmission electron microscopy (HRTEM) 23
2.2.5 X-ray photoelectron spectroscopy (XPS) 23
2.2.6 X-ray absorption spectroscopy (XAS) 23
2.3 CO2RR Performance of Catalysts 27
2.3.1 CO2RR measurement 27
2.3.2 Gas chromatographic system 29
2.3.3 Liquid product quantification by NMR 29
2.3.4 CO stripping tests 30
Chapter 3 Results and Discussion 32
3.1 The Structural Characterizations of Cu/C, In2O3/C, and Cux(In2O3)y/C Catalysts 32
3.1.1 ICP-OES characterizations 32
3.1.2 HRTEM characterizations 32
3.1.3 XRD characterization 32
3.1.4 XPS characterization 37
3.2 The Electrochemical Characterizations of Cu/C, In2O3/C, and Cux(In2O3)y/C 41
3.2.1 CO2 RR performance 41
3.2.2 CO stripping characterization 43
3.2.3 Summary 48
3.3 The CO2RR Enhancement of Cu96(In2O3)4/C and the Comparison with PM-Cu (In2O3) /C 49
3.3.1 CO2 RR stability test of Cu96(In2O3)4 /C 49
3.3.2 In-situ XAS characterization 49
3.3.3 The CO2RR performance of PM-Cu (In2O3) /C 54
3.3.4 Summary 54
Chapter 4 Conclusions 63
References 64
參考文獻 1. Hofmann, D. J.; Butler, J. H.; Tans, P. P. Atmos. Environ. 2009, 43, 2084‒2086.
2. Zhou, J. H.; Zhang, Y. W. React. Chem. Eng. 2018, 3, 591‒625.
3. Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Chem 2017, 3, 560‒587.
4. Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019, 10, 1754‒1768.
5. Xiao, H.; Goddard, W. A.; Cheng, T.; Liu, Y. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6685‒6688.
6. Liu, A.; Gao, M.; Ren, X.; Meng, F.; Yang, Y.; Gao, L.; Ma, T. J. Mater. Chem. A 2020, 8, 3541‒3562.
7. Birdja, Y. Y.; Shen, J.; Koper, M. T. Catal. Today 2017, 288, 37‒47.
8. Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Jin, Z. Adv. Sci. 2018, 5, 1700275.
9. Won, D. H.; Choi, C. H.; Chung, J.; Chung, M. W.; Kim, E. H.; Woo, S. I. ChemSusChem 2015, 8, 3092‒3098.
10. Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423-3452.
11. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta. 1994, 39, 1833‒1839.
12. Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Angew. Chem. Int. Ed. 2020, 59, 14736‒14746.
13. Kim, C.; Dionigi, F.; Beermann, V.; Wang, X.; Möller, T.; Strasser, P. Adv. Mater. 2019. 31, 1805617.
14. Arán-Ais, R. M.; Gao, D.; Roldan Cuenya, B. Acc. Chem. Res. 2018, 51, 2906‒2917.
15. Kattel, S.; Yan, B.; Yang, Y.; Chen, J. G.; Liu, P. J. Am. Chem. Soc. 2016, 138, 12440‒12450.
16. Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Chorkendorff, I. Phys. Chem. Chem. Phys. 2012, 14, 76‒81.
17. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.;Nørskov, J. K. Energy Environ. Sci. 2010, 3, 1311‒1315.
18. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050‒7059.
19. Schouten, K. J. P.; Kwon, Y.; Van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. Chem. Sci. 2011, 2, 1902‒1909.
20. Cook, R. L.; MacDuff, R. C.; Sammells, A. F. J. Electrochem. Soc. 1988, 135, 1320.
21. Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136, 14107‒14113.
22. Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Chem 2018, 4, 1809‒1831.
23. Jovanov, Z. P.; Hansen, H. A.; Varela, A. S.; Malacrida, P.; Peterson, A. A.; Nørskov, J. K.; Chorkendorff, I. J. Catal. 2016, 343, 215‒231.
24. Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Hwang, Y. J. J. Am. Chem. Soc. 2015, 137, 13844‒13850.
25. Zhu, W.; Michalsky, R.; Metin, O.; Lv, H.; Guo, S.; Wright, C. J.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833‒16836.
26. Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. ACS Catal. 2015, 5, 4586‒4591.
27. Zhu, W.; Zhang, Y. J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Sun, S. J. Am. Chem. Soc. 2014, 136, 16132‒16135.
28. Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Mo, G. J. Am. Chem. Soc. 2020, 142,13606‒13613.
29. Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814‒2821.
30. Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; Sargent, E. H. J. Am. Chem. Soc. 2018, 140, 11378‒11386.
31. Tan, X.; Yu, C.; Zhao, C.; Huang, H.; Yao, X.; Han, X.; Qiu, J. ACS Appl. Mater. Interfaces 2019, 11, 9904‒9910.
32. Li, Y.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y.; Yang, P. Nano Lett. 2017, 17, 1312‒1317.
33. Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, H. Nat. Commun. 2018, 9, 1‒9.
34. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Chorkendorff, I. Chem. Rev. 2019, 119, 7610‒7672.
35. Zhu, W.; Zhang, L.; Yang, P.; Hu, C.; Dong, H.; Zhao, Z. J.; Gong, J. ACS Energy Lett. 2018, 3, 2144‒2149.
36. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P.; Nat. Commun. 2014, 5, 1‒8.
37. Jeon, H. S.; Timoshenko, J.; Scholten, F.; Sinev, I.; Herzog, A.; Haase, F. T.; Roldan Cuenya, B. J. Am. Chem. Soc. 2019, 141, 19879‒19887.
38. Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Sun, S. J. Am. Chem. Soc. 2017, 139, 4290‒4293.
39. Chang, Z.; Huo, S.; Zhang, W.; Fang, J.; Wang, H. J. Phys. Chem. C 2017, 121, 11368‒11379.
40. Zhu, M.; Tian, P.; Li, J.; Chen, J.; Xu, J.; Han, Y. F ChemSusChem 2019, 12, 3955‒3959.
41. White, J. L.; Bocarsly, A. B. J. Electrochem. Soc. 2016, 163, H410.
42. Li, J.; Zhu, M.; Han, Y. F. ChemCatChem 2021, 13, 514‒531.
43. Ding, C.; Li, A.; Lu, S. M.; Zhang, H.; Li, C. ACS Catal. 2016, 6, 6438‒6443.
44. Li, F.; Zhang, H.; Ji, S.; Liu, W.; Zhang, D.; Zhang, C.; Lei, L. Int. J. Electrochem. Sci 2019, 14, 4161‒4172.
45. Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. J. Catal. 2016, 343, 266‒277.
46. He, G.; Tang, H.; Wang, H.; Bian, Z.; Electroanalysis 2018, 30, 84‒93.
47. Dong, W. J.; Yoo, C. J.; Lee, J. L. ACS Appl. Mater. Interfaces 2017, 9, 43575‒43582.
48. Xie, H.; Chen, S.; Ma, F.; Liang, J.; Miao, Z.; Wang, T.; Li, Q. ACS Appl Mater. Interfaces 2018, 10, 36996‒37004.
49. Monzó, J.; Malewski, Y.; Kortlever, R.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Koper, M. T. M.; Rodriguez, P. J. Mater. Chem. A 2015, 3, 23690‒23698.
50. Kim, D.; Xie, C.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Yang, P. J. Am. Chem. Soc. 2017, 139, 8329‒8336.
51. Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504‒507.
52. Schouten, K. J. P.; Qin, Z.; Pérez Gallent, E.; Koper, M. T. J. Am. Chem. Soc. 2012, 134, 9864‒9867.
53. Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Sun, S. J. Am. Chem. Soc. 2017, 139, 4290‒4293.
54. Peng, X.; Karakalos, S. G.; Mustain, W. E. ACS Appl. Mater. Interfaces 2018, 10, 1734‒1742.
55. Zhang, J.; Qiao, M.; Li, Y.; Shao, Q.; Huang, X. ACS Appl. Mater. Interfaces 2019, 11, 39722‒39727.
56. Liu, K.; Ma, M.; Wu, L.; Valenti, M.; Cardenas-Morcoso, D.; Hofmann, J. P.; Smith, W. A. ACS Appl. Mater. Interfaces 2019, 11, 16546‒16555.
57. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain, Perkin-Elmer Crop., USA, 1992, 24.
58. Briggs, D. Surface analysis by Auger and X-ray photoelectron spectroscopy, edited by Grant, J. T., IMPublications, UK, 2003, 31‒56.
59. Sun, K.; Cheng, T.; Wu, L.; Hu, Y.; Zhou, J.; Maclennan, A.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15608‒15611.
60. Lai, Q.; Yang, N.; Yuan, G. Electrochem. Commun. 2017, 83, 24‒27.
61. Zhao, C.; Wang, J. Chem. Eng. J. 2016, 293,161‒170.
62. Anuenue Securities Limited, European and American precious metals and other metal prices, from: https://tinyurl.com/36xar8nt
63. Chen, Y. J.; Chen, Y. R.; Chiang, C. H.; Tung, K. L.; Yeh, T. K.; Tuan, H. Y. Nanoscale 2019, 11, 3336‒3343.
64. Weng, Z.; Wu, Y.; Wang, M.; Jiang, J.; Yang, K.; Huo, S.; Wang, H. Nat. Commun. 2018, 9, 1‒9.
65. Fernández-García, M. Catal. Rev. 2002. 44, 59‒121.
66. Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814‒2821.
67. Tamilmani, S.; Huang, W.; Raghavan, S.; Small, R., J Electrochem. Soc. 2002, 149, G638.
68. Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019, 10, 1754‒1768.
69. Arán-Ais, R. M.; Gao, D.; Roldan Cuenya, B. Acc. Chem. Res. 2018, 51, 2906‒2917.
70. Ren, D.; Fong, J.; Yeo, B. S. Nat. commun. 2018, 9, 1‒8.
71. Becknell, N.; Kang, Y.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J.; Yang, P. J. Am. Chem. Soc. 2015, 137, 15817‒15824.
72. De Groot, F. Chem. Rev. 2001, 101, 1779‒1808.
73. Piercy, R.; Hampson, N. A. J. Appl. Electrochem. 1975, 5, 1‒15.
74. Devi, P.; Malik, K.; Arora, E.; Bhattacharya, S.; Kalendra, V.; Lakshmi, K. V.; Singh, J. P. Catal. Sci. Technol. 2019, 9, 5339‒5349.
75. Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. Angew. Chem. Int. Ed 2015, 127, 2174‒2178.
76. Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. ACS Catal. 2016, 6. 6265‒6274.
77. Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Züttel, A. ACS Catal. 2018, 8,6571‒6581.
78. Jedidi, A.; Rasul, S.; Masih, D.; Cavallo, L.; Takanabe, K. J. Mater. Chem. A 2015, 3, 19085‒19092.
79. Guo, W.; Sun, X.; Chen, C.; Yang, D.; Lu, L.; Yang, Y.; Han, B. Green Chem. 2019, 21, 503‒508.
80. He, J.; Dettelbach, K. E.; Salvatore, D. A.; Li, T.; Berlinguette, C. P. Angew. Chem. Int. Ed. 2017, 56, 6068‒6072.
81. Aljabour, A.; Apaydin, D. H.; Coskun, H.; Ozel, F.; Ersoz, M.; Stadler, P.; Kus, M. ACS Appl. Mater. Interfaces 2016, 8, 31695‒31701.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2021-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明