博碩士論文 106622607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.116.24.164
姓名 安蒂安(Dipika Anggun Ardianti)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣西南近海Formosa Ridge天然氣水合物和游離氣岩石物理參數估算
(Rock Physics Parameters Estimations of Gas-hydrate and Free Gas in Formosa Ridge, Offshore SW Taiwan)
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣地區參考莫荷面傾角變化的探討
★ 台灣西南部地殼變形與地震活動相關性研究★ 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究
★ 透地雷達特性分析應用於油品污染物探測★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用
★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析★ 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推
★ 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料★ 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析
★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data★ 以部分波場逆推及模擬對沿TAIGER T6測線的台灣北部地區進行深部構造成像
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 岩石物理參數通常可以通過基於測井的分析方法使用各種建議的模型和經驗方程來估計。沒有測井數據,我們能否從地震數據中估計岩石物理參數?我們提出了一種策略,將地震數據視為偽測井,然後結合疊後和疊前建模以及岩石物理研究的反演工作。該方法有助於在台灣西南部的 Formosa Ridge Offshore 確定存在流體的天然氣水合物和游離氣及其宿主岩性。我們開發了四步工作流程。首先,我們通過外觀分析改進了傳統 NMO 堆棧建議的速度模型。這項工作估計了真實速度的一維低分辨率特徵,作為時間和堆棧數據偏移的函數。其次,在疊後和疊前過程中分別使用卷積模型方法和反射率方法導出的初始阻抗模型。第三,依次實施疊後和疊前反演以提取最佳可解析模型。疊後和疊前正向模擬產生疊後和疊前數據集,用於通過相應的數據集進行質量檢查。合成炮點和 CMP 道集分別通過反射率方法和卷積模型方法創建。反射率理論利用偏移和角度相關信息來生成合成道集。如果合成和真實道集在偏移域和角度域中都適合,則確認估計參數。反演涵蓋了疊後和疊前方法,目的是估計 P 和 S 阻抗模型,並從 偏移依賴數據集。同時疊前反演基於三個假設 (a) 反射率的線性近似,(b) 角度相關的 Fatti 方程(簡化的 Aki-Richard 方程),具有 30 度限制和 P-、S-阻抗和密度之間的線性關係(Hampson, Russell, & Bankhead, 2005) 被用來約束數據擬合程序。將反演工作與前向模擬的約束相結合,以分配良好的初始猜測模型並尋求最佳估計反演解。推斷的基本參數包括 Vp、Vs 和密度是所涉及的關鍵工作,用於進一步的岩石物理參數估計。通過測井分析技術建立的經驗方程和模型,可以獲得用於了解岩性條件的速度、密度、孔隙度、體積模量、剪切模量、電阻率和含水飽和度等參數。結果可以幫助我們通過交會圖評估導出參數之間的相互關係,並劃定潛在的天然氣水合物和游離氣富集區。所提出的方法使我們能夠獲得岩石物理特性,並希望將來能夠從鑽孔數據中獲得更多的可行性評估和確認。
摘要(英) Rock physics parameters usually can be estimated through well log-based analysis approaches with various proposed models and empirical equations. Without well-log data, can we estimate petro-physical parameters from seismic data along? We propose a strategy which treat seismic data as a pseudo-log then combine post-stack and pre-stack modeling and inversion efforts for rock physics study. The approach helps to identify the gas hydrate and free gas and its host lithology with fluids existence in Formosa Ridge Offshore, Southwestern Taiwan. We developed four steps workflow. First, we refined the velocity model suggested from conventional NMO stack with semblance analysis. The effort estimates the 1D low resolution feature of the true velocities as function of time and offset from stack data. Second, initial impedance model derived from convolutional model approach and reflectivity method are used separately in post- and pre-stack procedure. Third, post- and pre-stack inversion were implemented sequentially to extract the best resolvable models. Both post- and pre-stack forward simulations produce post- and pre-stack dataset are used for quality check with the corresponding data gathers. The synthetic shot and CMP gathers are created by reflectivity method and convolutional model approach respectively. The reflectivity theory utilizes offset- and angle-dependent information for generating the synthetic gathers. If the synthetic and the real gather are fit in both offset and angle domains, then confirms the estimated parameters. Inversion covers both post- and pre-stack approaches with the purpose to estimate P- and S-impedance models and also extract the best estimated source wavelet from offset-dependent dataset. Simultaneous pre-stack inversion which based on three assumptions (a) linearized approximation for reflectivity, (b) Angle-dependent Fatti’s equation (a simplified Aki-Richard equation) with 30 degree limitation and linear relationship among P-, S-impedance and density (Hampson, Russell, & Bankhead, 2005) were used to constrain data fitting procedure. Combine inversion efforts with constraints from forward simulation for allocating good initial guessed model and seeking best-estimate inverted solution. The inferred basic parameters including Vp, Vs and density are the key efforts involved which were used for further rock physic parameters estimations. The parameters including velocity, density, porosity, bulk modulus, shear modulus, resistivity, and water saturation for understanding the lithology conditions can be obtained through empirical equations and models established by well-log analysis technique. The results can assist us to evaluate the interrelationships among the derived parameters through cross-plots and delineate the potential gas hydrate and free gas concentration zones. The proposed approach enables us to obtain petro-physical properties with the hope that additional feasibility evaluation and confirmation from borehole data will be available soon in the future.
關鍵字(中) ★ 地震反演
★ 疊後
★ 疊前
★ 岩石物理學
★ 天然氣水合物
★ 游離氣
★ 偽測井
關鍵字(英) ★ Seismic Inversion
★ Post-stack
★ Pre-stack
★ Rock Physics
★ Gas-hydrate
★ Free gas
★ Pseudo-logs
論文目次 Chapter1 ……………………………………………………………………………….…..…..1
1.1 Introduction……………………………………………………………………………..….1
1.1.1 Bottom-Simulating Reflectors (BSRs)…………………………………………………...1
1.1.2 Gas Hydrate Prospect……………………………………………………………….........2
1.1.3 Geological Setting and Tectonic Evolution of Study Area…………… ……………........6
1.1.4 Gas Hydrate Investigation in Formosa Ridge, Offshore SW Taiwan………………........7
1.2 Objectives of study and outline of this thesis…………………………………………......10
References……………………………………………………………………………...……..13
Chapter 2……………………………………………………………………………………...19
Seismic Attributes……………………………………………………………………….........19
2.1 The Complex Trace and Hilbert Transform………………………………………………19
2.2 Attributes Analysis for Resrvoir Characterization in the Study Area……………….........21
2.2.1 Instantaneous Amplitude (IA, Envelopre)………………………………………………22
2.2.2 Instantaneous Phase………………………………………………………………..........23
2.2.3 Instantaneous Frequency (IF)……………………………………………………….......24
2.2.4 Relative Acoustic Impedance (RAI)……………………………………………...…….25
2.2.5 Sweetness……………………………………………………………………………….26
2.2.6 Variance ………… ………………………………………………………………….......27
2.2.7 Chaos……………………………………………………………………………………28
References…………………………………………………………………………………….41
Chapter 3…………………………….………………………………………………………..43
Synthetic Data, Post-Stack Modeling and Post-Stack Acoustic Inversion……………………43
3.1 Data Description…………………………………………………………………………..43
3.1.1 Post-Stack and Pre-Stack Seismic Data…………………………………………………44
3.2 Research Instruments………………………………………………………………….......45
3.3 Post-stack Synthetic Seismogram Simulation……………………………………………..45
3.3.1 Convolutional Model, Wavelet and Polarity…………………………………………….45
3.3.2 Forward Modeling for Flat Hydrate Layers Velocity Model………………………..…...48
3.3.3 Forward Modeling of Reservoir Anticline Velocity Model… ……………………….….49
3.3.4 Tuning Effects for Pinch-out (Wedge) Model…………………………………………...50vi
3.3.5 Pseudo-log and Synthetic Seismogram Generation ……………………………………..60
3.4 Post-Stack Modeling Approaches…………………………………………………….…...61
3.5 Post-Stack Seismic Inversion…………………………………………………………..….65
3.5.1 Model-Based Inversion (MBI) Procedure – Advantages and Disadvantages………..…..65
3.5.2 Theory of Model-Based Inversion…………………………………………………..…..66
3.6 The Application of Acoustic Impedance Post-Stack Constrained Inversion………………68
3.7 Stratigraphic, Structural and Lithological Properties Interpretation……………………....72
References…………………………………………………………………………………….80
Chapter 4…………………………………………………………………………………….134
Offset and Angle Domain Pre-Stack Elastic Modeling and Inversion……………………….134
4.1 Workflow of Pre-stack Modeling, Velocity Model Refinement and NMO Correction…134
4.2 Pre-stack Seismic Interpretation…………………………………………………………136
4.3 Forward AVO Modeling of Synthetic Gather via Aki-Richards Approximation………...136
4.3.1 S-Wave Velocity Estimation from Greenberg-Castgana Vp-Vs relations……………..138
4.3.2. Forward AVO Synthetic Gather Analysis……………………………………………..140
4.4 Assumptions and Workflow of Pre-stack Simultaneous Inversion and Theory………….142
4.5 Data Pre-Conditioning by Converting Offset CMP Gather to Super and Angle Gather….145
4.6 Simultaneous Pre-stack Matrix Inversion Theory………………………………………..149
4.7 Inversion Results with and without Constraints………………………………………….156
4.8 Concluding Remarks………………………………………………………………….....161
References……………………………………………………………………………..…….163
Chapter 5 ……………………………………………………………………………….……201
Rock-Physics Estimations, Quantified Geological Processes and Geophysical
Observations…………………………………………………………………………………201
Quantitative Seismic Interpretation …………………………………………………………201
Rock Physics Models, Sand/Shale Compaction and Microstructure Interpretation …… ..…..202
Rock Physics Templates (RPTs) ………………………………………………………….…203
Inferred Rock Physics Properties from Pre-stack Inversion Data …………………………....204
Faust’s Relation ……………………………………………………………………………..206
Derive Porosity from Density ……………………………………………………………… .210
Pseudo-logs at Five Controls CMPs …………………………………………………………212
Fluid, Gas and Lithology Discrimination ……………………………………………………212vii
Potential Extension Approaches: Machine Learning and Multidiciplinary Studies …………214
Machine Learning with Supervised Clustering Analysis …………………………………....215
Potential Linkage with Micro-gravity Survey, Modeling and Inversion of Gravity Data … …215
References……………………………………………………………………………..…….216
Chapter 6
Discussions and Conclusions …………………………………………….………………….234
AVO Results and Classification …………………………………………..…………………234
Vp, Density and Vs Model Estimation ……………………………………..………………..236
Cross-Plot …………………………………………………………………………………...240
References……………………………………………………………………………..…….241
參考文獻 Bünz, Stefan, Jürgen Mienert, and Christian Berndt. 2003. “Geological Controls on the Storegga Gas-Hydrate System of the Mid-Norwegian Continental Margin.” Earth and Planetary Science Letters 209(3–4): 291–307.
Chen, Liwen et al. 2014. “Two Dimensional Fluid Flow Models at Two Gas Hydrate Sites Offshore Southwestern Taiwan.” Journal of Asian Earth Sciences 92: 245–53. http://dx.doi.org/10.1016/j.jseaes.2014.01.004.
Chiu, J. K., and Char Shine Liu. 2008. “Comparison of Sedimentary Processes on Adjacent Passive and Active Continental Margins Offshore of SW Taiwan Based on Echo Character Studies.” Basin Research 20(4): 503–18.
Chopra, Satinder, and Kurt J. Marfurt. 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. https://library.seg.org/doi/book/10.1190/1.9781560801900.
Feng, Dong et al. 2015. “Using Bathymodiolus Tissue Stable Carbon, Nitrogen and Sulfur Isotopes to Infer Biogeochemical Process at a Cold Seep in the South China Sea.” Deep-Sea Research Part I: Oceanographic Research Papers 104: 52–59. http://dx.doi.org/10.1016/j.dsr.2015.06.011.
Floodgate, G. D., and A. G. Judd. 1992. “The Origins of Shallow Gas.” Continental Shelf Research 12(10): 1145–56.
Johnson, Joel E. et al. 2014. “Influence of Total Organic Carbon Deposition on the Inventory of Gas Hydrate in the Indian Continental Margins.” Marine and Petroleum Geology 58(PA): 406–24.
Lee,M. W. and Collett, T. S. 2009. “Seismic Attribute Analysis for Gas-Hydrate and Free Gas Prospects on the North Slope of Alaska.” : 541–54.
Lin, Che Chuan et al. 2009. “Geological Controls on BSR Occurrences in the Incipient Arc-Continent Collision Zone off Southwest Taiwan.” Marine and Petroleum Geology 26(7): 1118–31. http://dx.doi.org/10.1016/j.marpetgeo.2008.11.002.
Liu, Char Shine et al. 2006. “Distribution and Characters of Gas Hydrate Offshore of Southwestern Taiwan.” Terrestrial, Atmospheric and Oceanic Sciences 17(4): 615–44.
Malinverno, Alberto. 2010. “Marine Gas Hydrates in Thin Sand Layers That Soak up Microbial Methane.” Earth and Planetary Science Letters 292(3–4): 399–408. http://dx.doi.org/10.1016/j.epsl.2010.02.008.
Pohlman, J. W. et al. 2009. “Methane Sources and Production in the Northern Cascadia Margin Gas Hydrate System.” Earth and Planetary Science Letters 287(3–4): 504–12.
Riedel, Michael, Ele Willoughby, and Satinder Chopra. 2007. “Gas Hydrates — Geophysical Exploration.” : 1–22.
Rogers, Rudy. 2015. “Biogenic Hydrate Provinces.” Offshore Gas Hydrates (1): 221–48.
Schoell, Martin, P. D. Jenden, M. A. Beeunas, and D. D. Coleman. 1993. “Isotope Analyses of Gases in Gas Field and Gas Storage Operations.” Proceedings of the Gas Technology Symposium: 337–44.
Slatt, M. Roger. 2006. Stratigraphic Reservoir Characterization for Petroleum Geologist, Geophysicists and Engineers.
Spence, G. D., R. R. Haacke, and R. D. Hyndman. 2010. “4. Seismic Indicators of Natural Gas Hydrate and Underlying Free Gas.” Geophysical Characterization of Gas Hydrates: 39–71.
Thakur, Kumar Naresh; Rajput, Sanjeev. 2011. Exploration of Gas Hydrates.
Thena, T, B Nirmal, and K Mohan. 2016. “ESTIMATION OF THE POTENTIAL AMOUNT OF GAS HYDRATES FROM TOTAL ORGANIC CARBON CONTENT IN MARINE SEDIMENTS OF CASCADIA MARGIN.” (April).
Torres, Marta E. et al. 2009. “Methane Sources Feeding Cold Seeps on the Shelf and Upper Continental Slope off Central Oregon, USA.” Geochemistry, Geophysics, Geosystems 10(11): 1–21.
Veeken, Paul C H. 2007. Analysis Seismic Stratigraphy, Basin Analysis, and Reservoir Characterization.
Waseda, Amane. 1998. “Organic Carbon Content, Bacterial Methanogenesis, and Accumulation Process of Gas Hydrate in Marine Sediments.” 32: 143–57.
Barnes, A. E. (2016). Handbook of Poststack Seismic Attributes. Chapter 8. Relative Acoustic Impedance and Q Introduction. Geophysical References Series No. 21, 234.
Chopra, S., & Marfurt, K. J. (2007). Seismic Attributes for Prospect Identification and Reservoir Characterization. https://doi.org/10.1190/1.9781560801900
Evans, R. J., Stewart, S. A., & Davies, R. J. (2007). Phase-reversed seabed reflections in seismic data: Examples related to mud volcanoes from the South Caspian Sea. Geo-Marine Letters, 27(2–4), 203–212. https://doi.org/10.1007/s00367-007-0073-3
Gogoi, M., Institiute, M., & Ghosh, G. K. (2017). Interpretation of Seismic data for thrust / fault identification using variance and Interpretation of Seismic data for thrust / fault identification using variance and inverse of variance attribute analysis, (November).
Hart, B. S. (2008). Channel detection in 3-D seismic data sing sweetness. American Association of Petroleum Geologists Bulletin, 92(6), 733–742. https://doi.org/10.1306/02050807127
Hsu, H. H., Liu, C. S., Morita, S., Tu, S. L., Lin, S., Machiyama, H., … Chen, S. C. (2018). Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan. Marine Geophysical Research, 39(4), 523–535. https://doi.org/10.1007/s11001-017-9339-y
Ismail, A., Ewida, H. F., Al-Ibiary, M. G., Gammaldi, S., & Zollo, A. (2020). Identification of gas zones and chimneys using seismic attributes analysis at the Scarab field, offshore, Nile Delta, Egypt. Petroleum Research, 5(1), 59–69. https://doi.org/10.1016/j.ptlrs.2019.09.002
Taner, M. T., Koehler, F., & Sheriff, R. E. (1979). Complex seismic trace analysis. Geophysics, 44(6), 1041–1063. https://doi.org/10.1190/1.1440994
Avseth, P., Mukerji, T., Mavko, G. (2010). Common Techniques for Quantitative Seismic Interpretation. https://doi.org/10.1017/CBO9780511600074.005
Chen, M.-A. P., Riedel, M., Hyndman, R. D., & Dosso, S. E. (2007). AVO inversion of BSRs in marine gas hydrate studies. Geophysics, 72(2), C31–C43. https://doi.org/10.1190/1.2435604
Chopra, S., & Castagna, J. P. (2014). AVO Investigation in Geophysics No. 16. Tulsa: Society of Exploration Geophysicists.
Chung, H.-M. (1994). Seismic Properties of Thin Beds (Unpublished doctoral thesis). University of Calgary. https://doi.org/http://dx.doi.org/10.11575/PRISM/15416
Cooke, D., & Cant, J. (2010). Model-based Seismic Inversion : Comparing deterministic and probabilistic approaches. CSEG Recorder, 35(4), 28–39.
Dvorkin, J., Helgerud, M. B., Waite, W. F., Kirby, S. H., & Nur, A. (2003). Introduction to Physical Properties and Elasticity Models, (1983), 245–260. https://doi.org/10.1007/978-94-011-4387-5_20
Ecker, C., Dvorkin, J., & Nur, A. M. (2000). Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics, 65(2), 565–573. https://doi.org/10.1190/1.1444752
Evans, R. J., Stewart, S. A., & Davies, R. J. (2007). Phase-reversed seabed reflections in seismic data: Examples related to mud volcanoes from the South Caspian Sea. Geo-Marine Letters, 27(2–4), 203–212. https://doi.org/10.1007/s00367-007-0073-3
Gochioco, L. M. (1991). Tuning effect and interference reflections from thin beds and coal seams. Geophysics, 56(8), 1288–1295. https://doi.org/10.1190/1.1443151
Helgerud, M. . (2001). Wave Speed in Gas Hydrate and Sediment Containing Gas Hydrate, (April).
Hilterman, F. . (2013a). Section 3 . Seismic Reflection Amplitude. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801993.
Hilterman, F. . (2013b). Seismic Reflection Amplitude Objective : Society of Exploration Geophysicists.
Hsu, H. H., Shine, C., Sumito, L., Shu, M., Tu, L., Lin, S., & Machiyama, H. (2018). Seismic imaging of the Formosa Ridge cold seep site offshore of southwestern Taiwan. Marine Geophysical Research, 39(4), 523–535. https://doi.org/10.1007/s11001-017-9339-y
Huang, Y. S., Hsu, S. K., Su, C. C., Lin, A. T. S., Yu, P. Sen, Babonneau, N., … Tsai, C. H. (2021). Shallow gas hydrates off southwest Taiwan and their mechanisms. Marine Geophysical Research, 42(1). https://doi.org/10.1007/s11001-021-09429-x
Kvenvolden, K. A., & McDonald, T. J. (1985). Gas Hydrates of the Middle America Trench—Deep Sea Drilling Project Leg 84. Initial Reports of the Deep Sea Drilling Project, 84, 667–682. https://doi.org/10.2973/dsdp.proc.84.123.1985
Lee,M. W. and Collett, T. S. (2009). Seismic Attribute Analysis for Gas-hydrate and free gas prospects on the North Slope of Alaska, 541–554. https://doi.org/10.1306/13201123M893359
Lee, M. W., & Collett, T. S. (2001). Elastic properties of gas hydrate – bearing sediments, 66(3), 763–771.
Maurya, S. P. (2015). Reservoir Characterization using Model Based, (August). https://doi.org/ISSN 2278
Maurya, S. P., Singh, N. P., & Singh, K. H. (2020). Seismic Inversion Methods: A Practical Approach.
Meissner, R and Meixner, E. (1969). Deformation of Seismic wavelets by Thin Layers and Layered Boundaries. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
Nouzé, H., Henry, P., Noble, M., Martin, V., & Pascal, G. (2004). Large gas hydrate accumulations on the eastern Nankai Trough inferred from new high-resolution 2-D seismic data. Geophysical Research Letters, 31(13), 2–5. https://doi.org/10.1029/2004GL019848
Okaya, D. A. (1995). Spectral properties of the Earth’s contribution to seismic resolution. Geophysics, 60(1), 241–251. https://doi.org/10.1190/1.1443752
Onajite, E. (2014). Seismic data analysis techniques in hydrocarbon exploration. Elsevier.
Qian, J., Wang, X. J., Dong, D. D., Wu, S. G., Kalachand, S., & Ye, Y. M. (2016). Quantitative assessment of free gas beneath gas hydrate stability zone from prestack seismic data and rock physics: a case of hole NGHP01-10A, Krishna-Godavari basin, India. Acta Geophysica Sinica, 59(7), 2553–2563. https://doi.org/10.6038/cjg20160720
Qian, J., & Wu, X. W. S. (2014). AVO analysis of BSR to assess free gas within fine-grained sediments in the Shenhu area , South China Sea, 125–140. https://doi.org/10.1007/s11001-014-9214-z
Russell, B. (1988). The Convolutional Model, Introduction to Seismic Inversion Methods. Society of Exploration Geophysicists. https://doi.org/https://doi.org/10.1190/1.9781560802303.ch2
Russell, B. H. (1988). Introduction to Seismic Inversion Methods. Introduction to Seismic Inversion Methods. https://doi.org/10.1190/1.9781560802303
Simm, Robb ; and Bacon, M. (2014). Seismic Amplitude Interpretation. Cambridge University Press (Vol. XXXIII). https://doi.org/10.1007/s13398-014-0173-7.2
Simm, R., & Bacon, M. (2014). Seismic Amplitude Interpretation. Cambridge University Press (Vol. XXXIII). https://doi.org/10.1007/s13398-014-0173-7.2
Veeken, P. C. H. (2007). Seismic Stratigraphy, Basin Analysis, and Reservoir Characterization. Analysis. https://doi.org/10.1016/S0950-1401(07)80025-5
Walker, R. G. (1978). Deep-Water Sandstone Facies and Ancient Submarine Fans: Models for Exploration for Stratigraphic Traps. AAPG Bulletin (American Association of Petroleum Geologists), 62(6), 932–966. https://doi.org/10.1306/c1ea4f77-16c9-11d7-8645000102c1865d
Wei, J., Fang, Y., Lu, H., Lu, H., Lu, J., Liang, J., & Yang, S. (2018). Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea. Marine and Petroleum Geology, 98(August), 622–628. https://doi.org/10.1016/j.marpetgeo.2018.07.028
Widess, M. B. (1973). How Thin is a Thin Bed? (Vol. 38, pp. 1176–1180). Society of Exploration Geophysicists. https://doi.org/https://doi.org/10.1190/1.1440403
Xu, H., Dai, J., Snyder, F., & Dutta, N. (2006). Seismic Detection and Quantification of Gas Hydrates using Rock Physics and Inversion. Advances in the Study of Gas Hydrates, 117–139. https://doi.org/10.1007/0-306-48645-8_8
Ye, Y., Zhang, B., Niu, C., Qi, J., & Zhou, H. (2019). The thickness imaging of channels using multiple-frequency components analysis. Interpretation, 7(1), B1–B8. https://doi.org/10.1190/INT-2018-0064.1
Yilmaz, O. (2001). Seismic Data Processing. Society of Exploration Geophysicists.
Aki, K., and Richards, P.G., 2002, Quantitative Seismology, 2nd Edition: W.H. Freeman and Company.
Buland, A. and Omre, H, 2003, Bayesian linearized AVO inversion: Geophysics, 68, 185-198.
Castagna, J. P., M. L. Batzle, and R. L. Eastwood. 1985. “Relationships Between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks.” Geophysics 50(4): 571–81.
Chopra, Satinder, and John P Castagna. 2014. AVO Investigation in Geophysics No. 16. Tulsa: Society of Exploration Geophysicists.
Fatti, J., Smith, G., Vail, P., Strauss, P., and Levitt, P., 1994, Detection of gas in sandstone reservoirs using AVO analysis: a 3D Seismic Case History Using the Geostack Technique: Geophysics, 59, 1362-1376.
Gardner, G. H. F., Gardner, L. W. and Gregory, A. R., 1974, Formation velocity and density - The diagnostic basics for stratigraphic traps: Geophysics, 50, 2085-2095.
Hampson, Daniel P., Brian H. Russell, and Brad Bankhead. 2005. “Simultaneous Inversion of Pre-Stack Seismic Data.” Society of Exploration Geophysicists - 75th SEG International Exposition and Annual Meeting, SEG 2005 (7): 1633–37.
Kim, Han Joon et al. 2010. “Seismic Character of the BSR in the Ulleung Basin Plain, East Sea (Japan Sea).” Geosciences Journal 14(1): 49–55.
Margrave, G. F., Stewart, R. R. and Larsen, J. A., 2001, Joint PP and PS seismic inversion: The Leading Edge, 20,no. 9, 1048-1052.
Richards, P. G. and Frasier, C. W., 1976, Scattering of elastic waves from depth-dependent in-homogeneities: Geophysics, 41, 441-458.
Russell, B. and Hampson, D., 1991, A comparison of post-stack seismic inversion methods: Ann. Mtg. Abstracts, Society of Exploration Geophysicists, 876-878.
Simmons, J.L. and Backus, M.M., 1996, Waveform-based AVO inversion and AVO prediction-error, Geophysics, 61, 1575-1588.
Simm, Robb; Bacon, Mike. 2014. XXXIII Cambridge University Press Seismic Amplitude Interpretation. http://www.ncbi.nlm.nih.gov/pubmed/15003161%5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991%5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf%5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233&partnerID=tZOtx3y1.
Simm, Robb;, and Mike Bacon. 2014. XXXIII Cambridge University Press Seismic Amplitude Interpretation. http://www.ncbi.nlm.nih.gov/pubmed/15003161%5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991%5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf%5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233&partnerID=tZOtx3y1.
Verma, Sumit, Yoryenys Del Moro, and Kurt J. Marfurt. 2013. “Pitfalls in Prestack Inversion of Merged Seismic Surveys.” Interpretation 1(1): A1–9.
Xi, Shichuan et al. 2018. “Laser Raman Detection of Authigenic Carbonates from Cold Seeps at the Formosa Ridge and East of the Pear River Mouth Basin in the South China Sea.” Journal of Asian Earth Sciences 168(January): 207–24. https://doi.org/10.1016/j.jseaes.2018.01.023.
Avseth,Per; Mukerji, Tapan; Mavko,Gary. 2005. Quantitative Seismic Interpretation Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridgr University Press.
Faust, L.Y. 1953. A Velocity Function Including Lithologic Variation. Geophysics.18
Goodway, Bill, 1996. A tutorial on AVO and Lame constant for rock parameterization and fluid detection.
Hacikoylu, P., Dvorkin J and Mavko, G. 2006. Resistivity-velocity transform revisited. The Leading Edge, 25.
Simm, Robb ; and Bacon, Mike. 2014. XXXIII Cambridge University Press Seismic Amplitude Interpretation.http://www.ncbi.nlm.nih.gov/pubmed/15003161%5Cnhttp://cid.oxfordjournals.org/lookup/doi/10.1093/cid/cir991%5Cnhttp://www.scielo.cl/pdf/udecada/v15n26/art06.pdf%5Cnhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84861150233&partnerID=tZOtx3y1.
Smidt, Jesper M. 2009. “Table of Elastic Constant for Isotropic Media.” (January).
Dash, Ranjan, and George Spence. 2011. “P-Wave and S-Wave Velocity Structure of Northern Cascadia Margin Gas Hydrates.” Geophysical Journal International 187(3): 1363–77.
Kim, Taeyoun, Seho Hwang, and Seonghyung Jang. 2016. “Petrophysical Approach for Estimating Porosity, Clay Volume, and Water Saturation in Gas-Bearing Shale: A Case Study from the Horn River Basin, Canada.” Austrian Journal of Earth Sciences 109(2): 289–98.
Ogbamikhumi, Alexander, and Nosa Samuel Igbinigie. 2020. “Rock Physics Attribute Analysis for Hydrocarbon Prospectivity in the Eva Field Onshore Niger Delta Basin.” Journal of Petroleum Exploration and Production Technology 10(8): 3127–38. https://doi.org/10.1007/s13202-020-00975-5.
Rutherford, Steven R., and Robert H. Williams. 1989. “Amplitude-versus-Offset Variations in Gas Sands.” Geophysics 54(6): 680–88.
Sheriff, Robert E. 2002. Encyclopedic Dictionary of Applied Geophysics.
Suzuki, Kiyofumi et al. 2014. “Physical Properties and Sedimentological Features of Hydrate-Bearing Samples Recovered from the First Gas Hydrate Production Test Site on Daini-Atsumi Knoll around Eastern Nankai Trough.” Marine and Petroleum Geology 66: 346–57. http://dx.doi.org/10.1016/j.marpetgeo.2015.02.025.
Suzuki, Kiyofumi, Tokujiro Takayama, and Tetsuya Fujii. 2015. “Density Structure Report from Logging-While-Drilling Data and Core Data at the First Offshore Gas Production Test Site on Daini-Atsumi Knoll around Eastern Nankai Trough.” Marine and Petroleum Geology 66: 388–95. http://dx.doi.org/10.1016/j.marpetgeo.2015.02.026.
Young, Roger A., and Robert D. LoPiccolo. 2003. “A Comprehensive AVO Classification.” Leading Edge (Tulsa, OK) 22(10): 1030–37.
指導教授 陳浩維(How-Wei Chen) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明