參考文獻 |
參考文獻
1. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 2010. 127(12): p. 2893-2917.
2. Taiwan’s Cancer Registry Annual Report (2018) Bureau of Health, E. Promotion Department of Health, Taiwan 2020, Editor.
3. Reade, C.A., A.K. Ganti, and therapy, EGFR targeted therapy in non-small cell lung cancer: potential role of cetuximab. Biologics: targets, 2009. 3: p. 215.
4. Musani, A.I., Pulmonary Disease, An Issue of Medical Clinics of North America, E-Book. Vol. 103. 2019: Elsevier Health Sciences.
5. de Groot, P. and R.F. Munden, Lung cancer epidemiology, risk factors, and prevention. Radiologic Clinics, 2012. 50(5): p. 863-876.
6. Pope Iii, C.A., et al., Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 2002. 287(9): p. 1132-1141.
7. Herbst, R.S., J.V. Heymach, and S.M. Lippman, Molecular origins of cancer. N Engl J Med, 2008. 359(13): p. 1367-80.
8. Matakidou, A., T. Eisen, and R. Houlston, Systematic review of the relationship between family history and lung cancer risk. British journal of cancer, 2005. 93(7): p. 825-833.
9. Wang, J.H.-C. and B.P. Thampatty, An introductory review of cell mechanobiology. Biomechanics modeling in mechanobiology, 2006. 5(1): p. 1-16.
10. Yang, G., R.C. Crawford, and J.H. Wang, Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. Journal of biomechanics, 2004. 37(10): p. 1543-1550.
11. Li, N., et al., MicroRNA‐129‐1‐3p regulates cyclic stretch–induced endothelial progenitor cell differentiation by targeting Runx2. Journal of cellular biochemistry, 2019. 120(4): p. 5256-5267.
12. Inoh, H., et al., Uni‐axial cyclic stretch induces the activation of transcription factor nuclear factor κB in human fibroblast cells. The FASEB Journal, 2002. 16(3): p. 405-407.
13. Spill, F., et al., Impact of the physical microenvironment on tumor progression and metastasis. Current opinion in biotechnology, 2016. 40: p. 41-48.
14. Del Prete, A., et al., Leukocyte trafficking in tumor microenvironment. Current opinion in pharmacology, 2017. 35: p. 40-47.
15. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674.
16. Mantovani, A., et al., Cancer-related inflammation. nature, 2008. 454(7203): p. 436-444.
17. Jarosz-Biej, M., et al., Tumor microenvironment as a “game changer” in cancer radiotherapy. International journal of molecular sciences, 2019. 20(13): p. 3212.
18. Mantovani, A., et al., Tumour-associated macrophages as treatment targets in oncology. Nature reviews Clinical oncology, 2017. 14(7): p. 399.
19. Lochter, A., et al., Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. The Journal of cell biology, 1997. 139(7): p. 1861-1872.
20. Levental, K.R., et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 2009. 139(5): p. 891-906.
21. Bruzzese, F., et al., Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer research, 2014. 74(13): p. 3408-3417.
22. Walker, C., E. Mojares, and A. del Río Hernández, Role of extracellular matrix in development and cancer progression. International journal of molecular sciences, 2018. 19(10): p. 3028.
23. Baal, N., et al., In vitro spheroid model of placental vasculogenesis: does it work? Laboratory investigation, 2009. 89(2): p. 152-163.
24. Ma, H.-l., et al., Multicellular tumor spheroids as an in vivo–like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Molecular imaging, 2012. 11(6): p. 7290.2012. 00012.
25. Kimlin, L.C., G. Casagrande, and V.M. Virador, In vitro three‐dimensional (3D) models in cancer research: an update. Molecular carcinogenesis, 2013. 52(3): p. 167-182.
26. Collins, A., et al., Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecologic oncology, 2020. 156(1): p. 251-259.
27. Wan, L., C. Neumann, and P. LeDuc, Tumor-on-a-chip for integrating a 3D tumor microenvironment: chemical and mechanical factors. Lab on a Chip, 2020. 20(5): p. 873-888.
28. Nath, S. and G.R. Devi, Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology therapeutics
2016. 163: p. 94-108.
29. Henderson, N.C., F. Rieder, and T.A. Wynn, Fibrosis: from mechanisms to medicines. Nature, 2020. 587(7835): p. 555-566.
30. Sundarakrishnan, A., et al., Engineered cell and tissue models of pulmonary fibrosis. Advanced drug delivery reviews, 2018. 129: p. 78-94.
31. Rittié, L., Type I collagen purification from rat tail tendons, in Fibrosis. 2017, Springer. p. 287-308.
32. Kisling, A., R.M. Lust, and L.C. Katwa, What is the role of peptide fragments of collagen I and IV in health and disease? Life sciences, 2019. 228: p. 30-34.
33. Doyle, A.D., et al., Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nature communications, 2015. 6(1): p. 1-15.
34. Sia, S.K. and G.M. Whitesides, Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis, 2003. 24(21): p. 3563-3576.
35. Luo, Z., et al., Effect of NR5A2 inhibition on pancreatic cancer stem cell (CSC) properties and epithelial‐mesenchymal transition (EMT) markers. Molecular carcinogenesis, 2017. 56(5): p. 1438-1448.
36. Tedesco, S., et al., Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Frontiers in pharmacology, 2018. 9: p. 71.
37. Morón-Calvente, V., et al., Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization. PloS one, 2018. 13(3): p. e0193643.
38. Roan, E. and C.M. Waters, What do we know about mechanical strain in lung alveoli? American Journal of Physiology-Lung Cellular
Molecular Physiology, 2011. 301(5): p. L625-L635.
39. Chang, C.-H., H.-H. Lee, and C.-H. Lee, Substrate properties modulate cell membrane roughness by way of actin filaments. Scientific reports, 2017. 7(1): p. 1-11.
40. Gordon, S., The macrophage: past, present and future. European journal of immunology, 2007. 37(S1): p. S9-S17.
41. Gordon, S., Alternative activation of macrophages. Nature reviews immunology, 2003. 3(1): p. 23-35.
42. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nature reviews immunology, 2008. 8(12): p. 958-969.
43. Xu, F., et al., Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. Journal of Experimental Clinical Cancer Research, 2018. 37(1): p. 1-16.
44. Peyser, R., et al., Defining the activated fibroblast population in lung fibrosis using single-cell sequencing. American journal of respiratory cell molecular biology, 2019. 61(1): p. 74-85.
45. Friedl, P., et al., Classifying collective cancer cell invasion. Nature cell biology, 2012. 14(8): p. 777-783.
46. Zhang, B., et al., Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem cell research, 2015. 14(2): p. 155-164.
47. Solinas, G., et al., Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. The Journal of Immunology, 2010. 185(1): p. 642-652. |