博碩士論文 106389001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.144.151.106
姓名 邱揚淳(Yang-Chun Chiu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 錳、鋯與鈧對Al-5Mg合金再結晶、成型性及腐蝕性質之影響
(Effects of Mn, Zr and Sc on Recrystallization, Formability and Corrosion Behavior of Al–5Mg Alloy in Different Annealing Temperatures)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Al-5Mg鋁合金之型材(shapes)主要是利用高度冷加工來成型,因此合金型材在存放溫度為40至50℃時就會產生敏化現象(Sensitization),隨著鎂含量的提高及暴露時間之增長,β-Mg2Al3相會大量析出於晶界上,並導致嚴重之沿晶腐蝕(Intergranular Corrosion),使其存放條件大幅被限制,故如何提升其抗腐蝕性為Al-5Mg鋁合金之相當重要議題。目前以高溫製程退火(300至450℃)能將Al-5Mg鋁合金再結晶並消除內部儲存能,讓合金形成安定狀態,且減少β-Mg2Al3相析出,進而大幅度增加其抗腐蝕性,然而在再結晶過程中,晶粒非等向成長(Anisotropic grain growth)對後續成型性有不良之影響,故同時提升抗腐蝕性與成型性是Al-5Mg鋁合金相當重要之議題
本研究藉由合金設計及製程退火熱處理,來探討合金元素對Al-5Mg合金在不同製程退火溫度下對合金微結構、成型性與腐蝕性質之影響,以完整呈現此鋁鎂合金之特性。
由於錳、鋯與鈧為鋁合金中影響再結晶之重要合金元素,於本論文中,將不同元素含量(0.1 wt%Mn、0.1 wt%Zr與0.05 wt%Sc)之合金施以不同製程退火溫度等熱處理來探討微量Mn、Sc和Zr對Al-5Mg合金在不同製程退火溫度下對再結晶微結構、機械性質與成型性之影響。爾後,再藉由敏化處理(150℃下100小時)來探討在不同再結晶程度下,其腐蝕性質之變化。
本論文藉由金相、導電度(%IACS)、電子背向散射繞射(EBSD)、電子微探儀(EPMA)、電子顯微鏡(TEM與SEM)等微結構觀察與分析,並配合硬度(HV)、拉伸試驗與多方向拉伸試驗,而獲得以下結論:
再結晶過程中,含Zr、Sc合金之Al3Zr與Al3Sc顆粒在抑制(次)晶界移動的效力上優於含Mn合金之析出顆粒Al6Mn,從而得知含Zr、Sc合金較含Mn合金具有較佳之抑制再結晶能力;在高溫450℃之下,含Sc合金其抑制晶粒成長效果又優於含Zr之合金,結果顯示,Al3Sc顆粒之熱穩定優於Al3Zr;另外在晶粒成長階段,含Zr合金之再結晶晶粒為等向性成長(Isotropic grain growth)、含Mn合金為非等向成長(Anisotropic grain growth),而含Sc合金無明顯晶粒成長。
另外藉由多方向拉伸試驗(0°、45°、90°)與結晶方位分布函數(ODF)分析合金成型性之優劣,發現其原因與合金晶粒成長方式與成長方位有關,往Weak Cube(001)<120>等向性成長之含Zr合金的成形性最佳,而往Weak Cube(001)<120>非等向成長之含Mn合金次之、無明顯晶粒成長含Sc合金最差。
而從再結晶程度、微結構與NAMLT試驗中可以得到以下結論:合金於再結晶過程中的回復階段,β-Mg2Al3相將析出於次晶界上,其降低了合金沿晶腐蝕的發生,而在再結晶初期下,β-Mg2Al3相將連續析出在晶界上,將導致合金發生明顯沿晶腐蝕現象。而含Sc之合金,由於無明顯晶粒成長階段,造成β-Mg2Al3相連續析出在晶界上而產生沿晶腐蝕,使合金腐蝕性質大幅下降;相較之下,含Mn、Zr合金則有明顯晶粒成長現象,而在晶粒成長後鎂原子有聚集之現象,使β-Mg2Al3相(Mg2Al3)會在晶界上不連續析出,其腐蝕形貌為局部孔蝕而非沿晶腐蝕,進而提升合金之抗腐蝕性質。
摘要(英) Al-5Mg aluminum alloy shapes are mainly formed by a high ratio of cold working. Sensitization occurs when the alloy shapes are stored at the temperatures of 40 to 50℃. With the increase of magnesium content and exposure time, β-Mg2Al3 phase will precipitate on the grain boundary in a large amount and cause severe intergranular corrosion, which greatly limits its storage conditions. At present, high-temperature annealing (300 to 450℃) is adopted to recrystallize Al-5Mg aluminum alloy and eliminate its internal stored energy so that the alloy can form a stable state. It can also reduce the precipitation of β-Mg2Al3 phase to greatly increase its corrosion resistance. However, During the recrystallization process, anisotropic grain growth has an adverse effect on the subsequent formability. Therefore, how to enhance the corrosion resistance and formability of Al-5Mg aluminum alloy at the same time is a very important issue.
In this study, alloy design and heat treatment are adopted to explore the effects of alloying elements on the microstructure, formability and corrosion properties of Al-5Mg alloys at different annealing temperatures in order to fully present the characteristics of these aluminum-magnesium alloys.
Manganese, zirconium and scandium are important alloying elements that affect recrystallization in aluminum alloys, so in this research, alloys with different element contents (0.1 wt%Mn, 0.1 wt%Zr and 0.05 wt%Sc) are subjected to annealing processes and other heat treatments at different temperatures to explore the effects of trace amounts of Mn, Zr and Sc on the recrystallized microstructure, mechanical properties and formability of Al-5Mg alloys. After that, sensitization treatment (for 100 hours at 150℃) was used to investigate the changes in corrosion properties with different degrees of recrystallization.
In this research, by way of microstructure observations and analyses of the metallography, electrical conductivity (%IACS), electron backscatter diffraction (EBSD), electron microprobe (EPMA), electron microscope (TEM and SEM), hardness test (HV), tensile test and multi-directional tensile test, the following findings were obtained.
During the recrystallization process, the precipitated Al3Zr and Al3Sc particles in the Zr-containing and Sc-containing alloys were more effective in inhibiting (sub)grain boundary migration than the precipitated Al6Mn particles in the Mn-containing alloy. Therefore, it is known that the alloy containing Zr or Sc inhibited recrystallization better than the alloy containing Mn. At a high temperature of 450℃, the Sc-containing alloy was more effective in inhibiting grain growth than the Zr-containing alloy. The results showed that the thermal stability of Al3Sc particles was better than that of Al3Zr particles. In addition, during the recrystallized grain growth stage, the recrystallized grains of the Zr-containing alloy showed isotropic grain growth while the recrystallized grains of the Mn-containing alloy showed anisotropic grain growth. No obvious grain growth occurred in the recrystallized grains of the Sc-containing alloy.
In addition, the multi-directional tensile test (0°, 45°, 90°) and crystal orientation distribution function (ODF) were performed to analyze the formability. It was found that the formability was related to the growth mode and direction of the grains. The formability of the Zr-containing alloy with isotropic grain growth toward Weak Cube(001)<120> was the best. The formability of the Mn-containing alloy with anisotropic grain growth toward Weak Cube (001)<120> was the next best. The formability of the Sc-containing alloy with no obvious grain growth was the worst.
The following conclusions were drawn from the different degrees of recrystallization, microstructure and NAMLT test. During the recovery stage of the recrystallization process, the β-Mg2Al3 phase precipitated on the subgrain boundary, which reduced the occurrence of intergranular corrosion of the alloy. At the initial stage of recrystallization, β-Mg2Al3 phase continuously precipitated on the grain boundary, resulting in the obvious intergranular corrosion. For the Sc-containing alloy, because there was no obvious grain growth stage, the β-Mg2Al3 phase continuously precipitated on the grain boundary and intergranular corrosion occurred, which greatly reduced the corrosion properties of the alloy. In contrast, the alloys containing Mn or Zr had obvious grain growth phenomenon. After the grain growth, magnesium atoms aggregated and consequently the β-Mg2Al3 phase discontinuously precipitated on the grain boundary. Their corrosion morphology showed local pitting corrosion rather than intergranular corrosion. Thus, the corrosion resistance was enhanced.
關鍵字(中) ★ 鋁鎂合金
★ 製程退火
★ 沿晶腐蝕
★ 再結晶性
★ 成型性
關鍵字(英) ★ aluminum-magnesium alloy
★ process annealing
★ intergranular corrosion
★ recrystallization
★ formability
論文目次 摘要 II
Abstract VII
總目錄 X
圖目錄 XV
表目錄 XVII
第一章. 前言與文獻回顧: 1
1.1鋁合金簡介 1
1.2 Al-Mg鍛造型鋁鎂合金(5000系)簡介 4
1.3元素添加之影響 6
1.3.1鎂對鋁合金的影響 6
1.3.2錳對鋁合金的影響 8
1.3.3 鋯對鋁合金之影響 10
1.3.4 鈧對鋁合金之影響 12
1.3.5鐵對鋁合金之影響 14
1.3.6矽對鋁合金之影響 15
1.4鋁合金常見之熱處理與加工方法 16
1.4.1鋁合金熱處理簡介 16
1.4.2鋁合金加工方法簡介 18
1.5 再結晶行為 20
1.5.1退火處理對再結晶微結構之影響 20
1.5.2再結晶與晶粒成長 21
1.5.3 局部方位差角分布功能 (local misorientation map 或稱 kernel average misorientation map, KAM map) 26
1.5.4 晶體紋理(Textures) 28
1.6鋁鎂合金之腐蝕與影響鋁鎂合金腐蝕性質之因素簡介 29
1.6.1鋁鎂合金之腐蝕機制 29
1.6.2 敏化溫度與時間對腐蝕性質之影響 29
1.6.3 鎂含量對腐蝕性質之影響 32
1.6.4介金屬化合物對腐蝕性質之影響 33
1.7拉伸試驗(Tenslie test) 35
1.7.1工程應力-應變曲線(Engineering stress-strain curve,σ-μ) 35
1.7.1 (a)彈性行為(elastic behavior) 35
1.7.1 (b)降伏(Yield) 36
1.7.1 (c)塑性變形(Plastic deformation) 36
1.7.1 (d) 頸縮(Necking) 36
1.7.2真實應力-應變曲線(True stress-strain curve,σT-εT) 37
1.7.3流動應力與應變硬化速率(Flow stress and strain hardening rate) 38
1.7.3 (a) 非熱影響應力(Athermal stress) 38
1.7.3 (b) 晶格摩擦應力(frictional stress) 38
1.7.3 (c) 熱激發應力(thermally activated stress) 38
1.7.3 (d)應變硬化速率(strain-hardening rate) 39
1.8實驗動機與目的 40
第二章.實驗步驟與方法 41
2.1 Al-5Mg合金配置與鑄造 41
2.2熱軋、熱處理與H18冷加工 43
2.3 製程退火(再結晶退火) 45
2.4 敏化處理 45
2.5機械性質試驗 45
2.5.1硬度試驗 45
2.5.2拉伸試驗 45
2.6 微結構觀察 46
2.6.1 光學顯微鏡(Optical Microscopy, OM) 46
2.6.2掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 48
2.6.4導電度量測 48
2.7 硝酸腐蝕重量損失測試:沿晶腐蝕敏感性分析 (ASTM G67 Nitric Acid Mass LossTest(NAMLT)[ASTM2]) 50
第三章.結果與討論 52
3.1 微結構與再結晶性分析(Recrystallization) 52
3.1.1 光學顯微鏡 52
3.1.2 再結晶分析 54
3.1.2.1 再結晶分析-回復階段 54
3.1.2.2 再結晶分析-再結晶階段 57
3.1.2.3 再結晶分析-晶粒成長階段 61
3.1.3 穿透式電子顯微鏡觀察 66
3.1.4 結論 69
3.2成型性(formability) 71
3.2.1 機械性質 71
3.2.2多方位拉伸試驗(0∘、45∘、90∘)與結晶方位分布函數分析(Orientation Distribution Function, ODF) 73
3.2.2.1合金A(0.1Mn)之成型性分析 73
3.2.2.2合金B(0.1Zr)之成型性分析 77
3.2.2.3合金C(0.05Sc)之成型性分析 81
3.2.3 結論 84
3.3 腐蝕性質 85
3.3.1導電度分析(β相析出動力) 85
3.3.2 敏化處理後β相析出形貌 87
3.3.4 ASTM G67 NAMLT (nitric acid mass loss test) 91
3.3.5 表面腐蝕形貌觀察 93
3.3.5.1表面腐蝕形貌-回復階段 93
3.3.5.2表面腐蝕形貌-再結晶階段 94
3.3.5.2表面腐蝕形貌-晶粒成長階段 95
3.3.6 β相成長流程分析 97
3.3.7 結論 100
第四章.總結論 101
第五章.未來研究方向 103
第六章.參考資料 105
參考文獻 [1] J.E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, pp. 351-377(1984).
[2] J.E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International Metals Park, Ohio, p.333(1984).

[3] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, Ohio, p. 31(1994).

[4] M.A. Deyab, S.S. Abd El-Rehim, H.H. Hassan, “Impact of rare earth compounds on corrosion of aluminum alloy (AA6061) in the marine water environment”, Journal of Alloys and Compounds, Vol. 820, 153428 (2020).

[5] J.L. Searles, P.I. Gouma, R.G. Buchheit, “Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn)”, Metallurgical and Materials Transactions A, Vol. 32, pp.2859-2867(2001).

[6] A. De Luca, D.N. Seidman, D.C. Dunand, “Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys”, Acta Materialia, Vol.165, pp.1-14 (2019).

[7] W. Yuna, Z. Jian feng, L. Heng cheng, “Effect of Homogenization Temperature on Microstructure and Conductivity of Al-Mg-Si-Ce Alloy”, Journal of Materials Engineering and Performance, Vol.25, pp.2720–2726(2016).

[8] S. L. Lee, S. T. Wu, “Identification of Dispersoids in Al-Mg Alloys Containing Mn”, Metallurgical Transactions A, Vol.18A pp.1353-1357(1987).

[9] M.L.C. Lim, J.R. Scully, and R.G. Kelly, “Intergranular Corrosion Penetration in an Al-Mg Alloy as a Function of Electrochemical and Metallurgical Conditions”, Corrosion Science, Vol.69, pp.35-47(2013).
[10] S. Vuelvas, S. Valdez, J. G. “Effect of Mg and Sn Addition on the Corrosion Behavior of an Al-Mn Alloy in 0.5 M H2SO4 ”, International Journal of electrochemical science ,Vol. 7, pp.4171-4181(2012).

[11] M.C. Carroll, P.I. Gouma, M.J. Mills, G.S. Daehn, B.R. Dunbar, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al 5083”, Scripta Materialia,Vol. 42, pp.335-340(2002).

[12] K.A. Unocic, P. Kobe, M.J. Mills, “Grain Boundary Precipitate Modification for Improved Intergranular Corrosion Resistance”, Materials Science Forum, Vol.519, pp.327-332(2006).

[13] M. Liang, R. Melchers, I. Chaves, “Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones”, Corrosion Science, Vol. 140, pp. 286-296(2018).

[14] Z. Li, D. Yi, C. Tan, “Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types”, Journal of Alloys and Compounds, Vol. 817, 152690 (2020).

[15] S. L. Lee, S. T. Wu, “Influence of Soaking Treatments on Hot Ductility of AI-4.85 Pct Mg Alloys Containing Mn”, Metallurgical Transactions A, Vol.17A, pp.833-841(1986).

[16] O. Engler, Z.S. Liu, K. Kuhnke, “Impact of homogenization on particles in the Al–Mg–Mn alloy AA 5454 Experiment and simulation”, Journal of Alloys and Compounds, Vol.560, pp.111-122(2013).

[17] T. Radetica, M. Popovica, E. Romhanjia, “Microstructure evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment”, Materials Characterization, Vol.65, pp.16-27(2012).

[18]: K. E. Knipling, D. C. Dunand, D. N. Seidman, ”Criteria for developing castable, creep-resistant aluminum-based alloys- A review”, zeitschrift fur metallkunde, Vol. 97, pp. 246-265(2006).



[19]: C. B. Fuller, D. N. Seidman, D. C. Dunand, ”Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures”, Acta Materialia , Vol.51, p.p.4803–4814 (2003).

[20]: S. Griffiths, J.R. Croteau, M.D. Rossell, R. Erni,” Coarsening- and creep resistance of precipitation-strengthened Al–Mg–Zr alloys processed by selective laser melting”, Acta Materialia, Vol. 188, pp. 192-202 (2020).

[21] J.E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International Metals Park, Ohio, p.231(1984).

[22] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, Ohio, p.43(1994).

[23] A.K. Vasudevan and R.D. doherty, “Aluminum alloys- contemporary research and applications”, Academic Press, Boston, p.84(1989).

[24] M. Vlach, I. Stulíkova, B. Smola, N. Zaludova, “Characterization of phase development in non-isothermally annealed mould-cast and heat-treated Al–Mn–Sc–Zr alloys”, Materials Characterization, Vol. 61, pp.1400-1405(2010).

[25] M.A. Garcia-Bernala, R.S. Mishrab, R. Vermac, D. Hernandez-Silvad, “Hot deformation behavior of friction-stir processed strip-cast 5083 aluminum alloys with different Mn contents”, Materials Science and Engineering A, Vol.534, pp.186-192(2012).

[26] E.L. Huskins, B. Cao, K.T. Ramesh “Strengthening mechanisms in an Al–Mg alloy”, Materials Science and Engineering A, Vol.527, pp.1292-1298(2010).

[27] O. Pracha, O. Trudonoshyn “Effect of Zr, Cr and Sc on the Al–Mg–Si–Mn high-pressure die casting alloys”, Materials Science and Engineering A, Vol.759, pp.603-612(2019).



[28] K. T. Kashyap, T. Chandrashekar, “Effects and mechanisms of grain refinement in aluminium alloys”, Bulletin of Materials Science, Vol.24 pp.345-353(2001).

[29] M. Easton and D. StJohn: “Grain refinement of aluminum alloys: part II. Confirmation of, and a mechanism for, the solute paradigm”, Metallurgical and Materials Transactions A, Vol.30, pp. 1625-1633 (1999).

[30] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, Ohio, p. 31(1994).

[31] J. K. Park, A. J. Ardell, “Microstructures of the Commercial 7075 Al Alloys in the T651 and T7 Tempers”, Metallurgical Transaction A, Vol.14A, pp.1957-1965(1983).

[32]: H. Okamoto,” Al-Zr (Aluminum-Zirconium)” Journal of Phase Equilibria, Vol. 23, pp.455-456(2002).


[33]: C. B. Fuller, D. N. Seidman, D. C. Dunand, “Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures”, Acta Materialia , Vol.51, pp.4803–4814(2003).

[34]: K. E. Knipling, D. C. Dunand, D. N. Seidman, ”Criteria for developing castable, creep-resistant aluminum-based alloys- A review”, zeitschrift fur metallkunde, Vol. 97, pp. 246-265(2006).

[35]: J. Røyset and N. Ryum,” Scandium in aluminium alloys”,
International materials review, Vol. 50, No.1(2005).

[36]: N.N. Dovzhenko, S.V. Rushchits, “Deformation behavior during hot processing of the alloy of the Al-Mg system economically doped with scandium”, The International Journal of Advanced Manufacturing Technology, Vol.280, 45(2021).



[37]: V. Ocenasek, M. Slamova, “Resistance to recrystallization due to
Sc and Zr addition to Al–Mg alloys”, Materials Characterization, Vol. 47
pp. 157– 162(2001).

[38]: J. G. Kaufman and E. L. Rooy, “Aluminum alloy casting properties, processes, and applications”, AFS&ASM (2004) p. 15.

[39]: J. Arbeiter, M. Vončina, D. Volšak, “Evolution of Fe-based intermetallic phases during homogenization of Al–Fe hypoeutectic alloy”, Journal of Thermal Analysis and Calorimetry, Vol. 142, pp.1693-1699 (2020).

[40]: R. Arrabal, B. Mingo, A. Pardo, “Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt.% NaCl solution”, Corrosion Science, Vol. 73, pp. 342-355(2013).

[41]: J. G. Kaufman and E. L. Rooy, “Aluminum alloy casting properties, processes, and applications,” AFS&ASM, p. 16(2004).

[42] E. Sjölander, S. Seifeddine, “The heat treatment of Al–Si–Cu–Mg casting alloys”, Journal of Materials Processing Technology, Vol.210(10), pp.1249-1259(2010).

[43]: W. F. Smith and J. Hashemi, “Foundation of materials science and engineering”, McGraw Hill, Fourth edition, p. 415(2006).

[44]: P.S Wang, S-L. Lee, C.Y. Yang and J.-C. Lin,” Effect ofberyllium an d non-equilibrium heat treatment on the mechanicalproperties of B319.0 alloy with 1.0% Fe“, Materials Science and Technology, Vol. 20, pp. 195-202(2004).

[45]: W. F. Smith and J. Hashemi, “Foundation of materials science and engineering, McGraw Hill, Fourth edition, p. 426(2006).

[46] P. Gordon “Microcalorimetric Investigation of Recrystallization of Copper” Journal of Metals, pp.1043-1052(1955).


[47] L. M. Clarebrough, M. E. Hargreaves, G. W. WestSource, “The Release of Energy during Annealing of Deformed Metals” Mathematical and Physical Sciences, Vol. 232, pp. 252-270(1955).

[48] S.Q. Bao, “Recrystallization behavior of a Nb-microalloyed steel during hot compression” Applied Mathematical Modelling, Vol. 35, pp. 3268-3267(2011).

[49] B.F. Decker, D. Harker, ”Recrystallization in rolled copper”, Advances in Mechanical Engineering: SAGE Journals, Vol 188 pp.887-890 (1950).

[50] F.S. Bovard, “Corrosion in marine and saltwater environments II, in D.A. Shifler, T. Tsuru, P.M. Natishan, S. Ito (Eds.)”, Electrochemical Society Proceedings, Vol. 2004-14, pp. 232-243(2005).

[51] J.L. Searles, P.I. Gouma, R.G. Buchheit, “Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn)”, Metallurgical and Materials Transactions A, Vol. 32, pp.2859-2867(2001).

[52] R.H. Jones, D.R. Baer, M.J. Danielson, and J.S. Vetrano, “Role of Mg in the Stress Corrosion Cracking of an Al-Mg Alloy”, Metallurgical and Materials Transactions A, Vol. 32A, pp.1699-1711(2001).

[53] I. N. A. Oguocha, O. J. Adigun , S. Yannacopoulos,“Effect of sensitization heat treatment on properties of Al–Mg alloyAA5083-H116” , J Mater Sci ,Vol.43, pp.4208-4214(2008).

[54] S. Jain, M.L.C. Lim, J.L. Hudson , J.R. Scully, “Spreading of intergranular corrosion on the surface of sensitized Al-4.4Mg alloys: A general finding”, Corrosion Science, Vol. 59, pp.136-147(2012).

[55] M. E. McMahon, R. L. Haines, P. J. Steiner, J. M. Schulte, S. E. Fakler, J. T. Burns, “Beta phase distribution in Al-Mg alloys of varying composition and temper”, Corrosion Science, Vol.169, 108618(2020).



[55] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, Ohio, p. 675(1994).

[56] W. Wen, Y. Zhao, J.G. Morris, “The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys”, Materials Science and Engineering A,Vol. 392, pp.136-144(2005).

[57] T. Enjyo, T. Kuroda, H. Shinonaga, “Effect of Relatively Insoluble Compounds on β Phase Precipitation in 5083 Aluminum Alloy”, Transaction of JWRI, Vol.7, pp.25-32(1978).

[58] T. Enjyo, T. Kuroda, H. Shinonaga, “Effect of Relatively Insoluble Compounds and β Phase on Stress Corrosion Cracking in 5083 Aluminum Alloy”, Transaction of JWRI, Vol.8, pp.67-75(1979).

[59] K. A. Yasakau, M. L. Zheludkevich, S. V. Lamakaa, M. G.S. Ferreira, “Role of intermetallic phases in localized corrosion of AA5083” , Electrochimica Acta ,Vol.52, pp.7651–7659(2007).

[60] L. Tan, T.R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083”, Corrosion Science, Vol.52, pp. 548-554(2010).

[61]: G. T. (Rusty) Gray III,” High-Strain-Rate Deformation: Mechanical Behavior and Deformation Substructures Induced”, Annual Review of Materials Research, Vol.42, pp285–303(2012).

[62] M.C. Carroll, P.I. Gouma, M.J. Mills, G.S. Daehn, B.R. Dunbar, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al 5083”, Scripta mater, Vol. 42, pp.335-340(2002).
[63] K. E. Knipling, D. C. Dunand, D. N. Seidman,” Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys”, Metallurgical and Materials Transactions A , Vol.38, pp.2552-2563(2007).

[64]: P.L. Sun, Y.H. Zhao, T.Y. Tseng, J.R. Suc, E.J. Lavernia,” The influence of cooling rate on the microstructures and mechanical properties in ultrafine-grained aluminum processed by hot rolling”, Materials Science and Engineering A, Vol.527, pp.5287–5294(2010).

[65] T. Radtica, M. Popovica, E.Romhanjia, “Microstucture evolution of a modified AA5083 aluminum alloy during a multistage homogenization treatment”, Material Characterization, Vol.65, pp.16-27(2012).

[66] C. Shi, G. Chen “Effect of Zr addition on hot deformation behavior and microstructural evolution of AA7150 aluminum alloy”, Materials Science and Engineering A, Vol.596, pp.183–193(2014).

[67] C.M. Allen, K.A.Q. O′Reilly, B. Cantor , P.V. Evans” Intermetallic phase selection in 1XXX Al alloys”, Progress in Materials Science, Vol. 43, pp. 89-170 (1998).

[68] J. Jiang, F. Jiang, M. Zhang, Z. Tang, M. Tong, “Recrystallization behavior of Al-Mg-Mn-Sc-Zr alloy based on two different deformation ways”, Materials Letter, Vol. 265, 127455 (2020).

[69] C.M. Allen, K.A.Q. O′Reilly, B. Cantor, P.V. Evans, ” Intermetallic phase selection in 1XXX Al alloys”, Progress in Materials Science, Vol. 43, pp. 89-170 (1998).

[70]: K. E. Knipling, D. C. Dunand, D. N. Seidman, ”Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425℃”,Acta Materiallia , Vol.56, pp. 114-127(2008).

[71] D. Scotto D’Antuono, J. Gaies, W. Golumbfskieb and M.L. Taheri, “Grain boundary misorientation dependence of β phase precipitation in an Al–Mg alloy”, Scripta Materialia, Vol. 76, pp. 81-84 (2017).

[72] A.V. Mikhaylovskaya⁎, A.G. Mochugovskiy, V.S. Levchenko, N.Yu. Tabachkova, W. Mufalo, V.K. Portnoy, “Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy”, Materials Characterization, Vol. 139, pp.30-37 (2018).




[73] J. F. Yan, A. M. Hodge, “Study of β precipitation and layer structure formation in Al 5083: The role of dispersoids and grain boundaries”, Journal of Alloys and Compounds, Vol. 703, pp.242-250 (2017).

[74] M. E. McMahon, R. L. Haines, P. J. Steiner, J. M. Schulte, S. E. Fakler, James T. Burns “Beta phase distribution in Al-Mg alloys of varying composition and temper”, Corrosion Science, Vol.169, 108618(2020).

[75] Z. Tang, F. Jiang, M. Long, J. Jiang, H. Liu, M. Tong, ” Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy ”, Applied Surface Science, Vol. 514, 146081(2020).

[76] Y. Miyake, Y. Sato, R. Teranishi, K. Kaneko, ” Effect of heat treatments on the microstructure and formability of Al–Mg–Mn–Sc–Zr alloy”, Micron, Vol. 101, pp. 151-155 (2017).

[77] J. Liu, P. Yao, N. Q. Zhao, C. S. Shi, H.J Li, X. Li, D. S. Xi, S. Yang, “Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys”, Journal of Alloys and Compounds, Vol. 657, pp.717-725 (2016).

[78] A. Hibino, T. Kurosaki, “Effects of Rolling and Heat Treatment on the Texture Formation of Al- Mg-Si alloy.”, UACJ Technical Reports, Vol. 6, pp.21-24 (2019).

[79] H. Tanaka, H. Ikeda, “Cooling Waterside Corrosion Behavior of Al Alloy Clad Sheets for Automotive Radiator.”, UACJ Technical Reports, Vol. 7, pp. 37-44 (2020).
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明