博碩士論文 106282004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:3.15.147.199
姓名 劉哲瑋(Jhe-Wei Liou)  查詢紙本館藏   畢業系所 物理學系
論文名稱 氫化與氧化探針微影技術在石墨烯上產生缺陷的探討
(Characterizations of defects in graphene through hydrogenation and oxidation scanning probe lithography)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用缺陷調控石磨烯的能帶結構在擴展石磨烯的電子元件應用上非常重要。其中氫化是石墨烯中有著最單純結構的缺陷,這使得氫化缺陷是可以被還原的。這有助於缺陷濃度與能帶結構的調控。製作電子元件的過程中,圖樣定義是必不可少的技術。其中偏壓式掃描探針微影技術(b-SPL)是一種無光阻的微影技術,可以直接局部改變石墨烯的特性。這減少了不必要的污染與並且能有更好的邊緣缺陷控制。除此之外,通過調整b-SPL的偏壓可以產生氧化或氫化石墨烯。在之前的研究中,b-SPL氧化石墨烯的缺陷與機制都被完整的探討。然而,利用b-SPL在石墨烯上產生的氫化缺陷卻沒有深入的研究與表徵。
在本篇研究中,我們使用熱還原過程比較正負偏壓b-SPL在石墨烯上產生的缺陷的性質。X射線光電子能譜(XPS)與拉曼光譜分別探測了缺陷的化學組成與結構破壞程度。我們發現負偏壓b-SPL產生低濃度氧化與高比例的結構缺陷。而正偏壓b-SPL則產生氫化與較少的結構缺陷。局部的電阻量測更進一步證實正偏壓b-SPL產生氫化缺陷的可逆電性。本篇研究發現b-SPL的局部缺陷控制與精密的缺陷空間分布控制,使得b-SPL成為一個有潛力直接製作石墨烯元件的可靠技術。
摘要(英) Hydrogenation was the simplest method to chemically modulate the band structure of graphene. It has been reported that hydrogenation on graphene was reversible in both lattice structure and electrical property. For further application, the nanofabrication technology for hydrogenation on graphene was needed. Bias-induced scanning probe lithography (b-SPL) is a resist-less tool that can locally modify graphene properties. In addition, it can locally oxidize or hydrogenate graphene by tuning the bias between graphene and the tip. In our previous work, the oxygen-related defects on graphene generated by b-SPL with negative tip bias have been well investigated. The b-SPL generated both structural defects and oxidation on graphene. However, the hydrogenation of graphene through the b-SPL is not fully explored.
In this study, we compare the properties of defects produced on graphene by b-SPL using a thermal reduction process. x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were performed to investigate the chemical composition and structural damage, respectively. We found that negative b-SPL produced a low concentration of oxidation with a high proportion of structural defects. Positive b-SPL, on the other hand, produces hydrogenation and a lower density of structural defects. Local resistivity measurements further confirm the reversible electrical properties of the positive b-SPL to produce hydrogenated defects. This study concludes that the local defect control and precise defect spatial distribution control of b-SPL make b-SPL a promising and robust technique for the direct fabrication of graphene components.
關鍵字(中) ★ 石墨烯
★ 缺陷
★ 掃描探針微影技術
★ 氫化
★ 氧化
關鍵字(英) ★ graphene
★ defect
★ scanning probe lithography
★ hydrogenation
★ oxidation
論文目次 Contents
摘要 II
Abstract III
Contents V
List of Figures VII
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 Graphene 5
2.2 Atomic force microscope 13
2.2.1 Contact mode 16
2.2.2 Non-contact mode and tapping mode 17
2.2.3 Kelvin probe force microscopy 19
2.3 Scanning probe lithography 20
2.4 Raman spectroscopy 28
2.5 X-ray photoelectron spectroscopy 35
Chapter 3 Experiment 40
3.1 Sample preparation 41
3.1.1 Chemical vapor deposition growth of graphene 41
3.1.2 Graphene transfer 42
3.2 Scanning probe lithography 45
3.3 KPFM 47
3.4 Raman spectroscopy 48
3.5 SPEM 50
Chapter 4 Result and Discussion 52
4.1 Characterizations of SPL patterns 53
4.2 Reduction of SPL patterns by thermal annealing 61
Chapter 5 Conclusion 69
Reference 70
參考文獻 1 Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 8, 902-907, doi:10.1021/nl0731872 (2008).
2 Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666, doi:10.1126/science.1102896 (2004).
3 Frank, I. W., Tanenbaum, D. M., van der Zande, A. M. & McEuen, P. L. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 25, 2558-2561, doi:10.1116/1.2789446 (2007).
4 Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351-355, doi:https://doi.org/10.1016/j.ssc.2008.02.024 (2008).
5 Haberer, D. et al. Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene. Nano Letters 10, 3360-3366, doi:10.1021/nl101066m (2010).
6 Gómez-Navarro, C. et al. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters 7, 3499-3503, doi:10.1021/nl072090c (2007).
7 Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. T. C. & Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Applied Physics Letters 94, 111909, doi:10.1063/1.3098358 (2009).
8 Gómez-Navarro, C. et al. Atomic Structure of Reduced Graphene Oxide. Nano Letters 10, 1144-1148, doi:10.1021/nl9031617 (2010).
9 Elias, D. C. et al. Control of Graphene′s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323, 610, doi:10.1126/science.1167130 (2009).
10 Gao, H., Wang, L., Zhao, J., Ding, F. & Lu, J. Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence. The Journal of Physical Chemistry C 115, 3236-3242, doi:10.1021/jp1094454 (2011).
11 Hong, J.-Y. & Jang, J. Micropatterning of graphene sheets: recent advances in techniques and applications. Journal of Materials Chemistry 22, 8179-8191, doi:10.1039/C2JM00102K (2012).
12 Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nature Nanotechnology 9, 577-587, doi:10.1038/nnano.2014.157 (2014).
13 Lin, Y.-C. et al. Graphene Annealing: How Clean Can It Be? Nano Letters 12, 414-419, doi:10.1021/nl203733r (2012).
14 Moriki, T. et al. Electron transport in thin graphite films: Influence of microfabrication processes. Physica E: Low-dimensional Systems and Nanostructures 40, 241-244, doi:https://doi.org/10.1016/j.physe.2007.06.005 (2007).
15 Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Applied Physics Letters 94, 082107, doi:10.1063/1.3089693 (2009).
16 Liu, H., Hoeppener, S. & Schubert, U. S. Nanoscale Materials Patterning by Local Electrochemical Lithography Advanced Engineering Materials 18, 890-902, doi:https://doi.org/10.1002/adem.201500486 (2016).
17 Byun, I.-S. et al. Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation. ACS Nano 5, 6417-6424, doi:10.1021/nn201601m (2011).
18 Arai, M., Masubuchi, S., Nose, K., Mitsuda, Y. & Machida, T. Fabrication of 10-nm-scale nanoconstrictions in graphene using atomic force microscopy-based local anodic oxidation lithography. Japanese Journal of Applied Physics 54, 04DJ06, doi:10.7567/jjap.54.04dj06 (2015).
19 Masubuchi, S., Arai, M. & Machida, T. Atomic Force Microscopy Based Tunable Local Anodic Oxidation of Graphene. Nano Letters 11, 4542-4546, doi:10.1021/nl201448q (2011).
20 Dago, A. I., Sangiao, S., Fernández-Pacheco, R., De Teresa, J. M. & Garcia, R. Chemical and structural analysis of sub-20 nm graphene patterns generated by scanning probe lithography. Carbon 129, 281-285, doi:https://doi.org/10.1016/j.carbon.2017.12.033 (2018).
21 Hong, Y.-Z. et al. Local oxidation and reduction of graphene. Nanotechnology 28, 395704, doi:10.1088/1361-6528/aa802d (2017).
22 Wang, Y.-H. et al. Roles of structural and chemical defects in graphene on quenching of nearby fluorophores. Carbon 165, 412-420, doi:https://doi.org/10.1016/j.carbon.2020.04.067 (2020).
23 Liou, J.-W. & Woon, W.-Y. Revisiting Oxidation Scanning Probe Lithography of Graphene: Balance of Water Condensation Energy and Electrostatic Energy. The Journal of Physical Chemistry C 123, 25422-25427, doi:10.1021/acs.jpcc.9b04175 (2019).
24 Whitener, K. E., Lee, W. K., Campbell, P. M., Robinson, J. T. & Sheehan, P. E. Chemical hydrogenation of single-layer graphene enables completely reversible removal of electrical conductivity. Carbon 72, 348-353, doi:https://doi.org/10.1016/j.carbon.2014.02.022 (2014).
25 Konschuh, S., Gmitra, M. & Fabian, J. Tight-binding theory of the spin-orbit coupling in graphene. Physical Review B 82, 245412, doi:10.1103/PhysRevB.82.245412 (2010).
26 Larciprete, R. et al. Dual Path Mechanism in the Thermal Reduction of Graphene Oxide. Journal of the American Chemical Society 133, 17315-17321, doi:10.1021/ja205168x (2011).
27 Larciprete, R., Lacovig, P., Gardonio, S., Baraldi, A. & Lizzit, S. Atomic Oxygen on Graphite: Chemical Characterization and Thermal Reduction. The Journal of Physical Chemistry C 116, 9900-9908, doi:10.1021/jp2098153 (2012).
28 Leenaerts, O., Peelaers, H., Hernández-Nieves, A. D., Partoens, B. & Peeters, F. M. First-principles investigation of graphene fluoride and graphane. Physical Review B 82, 195436, doi:10.1103/PhysRevB.82.195436 (2010).
29 Lin, C. et al. Direct Observation of Ordered Configurations of Hydrogen Adatoms on Graphene. Nano Letters 15, 903-908, doi:10.1021/nl503635x (2015).
30 Gómez-Moñivas, S., Sáenz, J. J., Calleja, M. & García, R. Field-Induced Formation of Nanometer-Sized Water Bridges. Physical Review Letters 91, 056101, doi:10.1103/PhysRevLett.91.056101 (2003).
31 Wei, Z. & Zhao, Y.-P. Growth of liquid bridge in AFM. Journal of Physics D: Applied Physics 40, 4368-4375, doi:10.1088/0022-3727/40/14/036 (2007).
32 Cramer, T., Zerbetto, F. & García, R. Molecular Mechanism of Water Bridge Buildup: Field-Induced Formation of Nanoscale Menisci. Langmuir 24, 6116-6120, doi:10.1021/la800220r (2008).
33 Li, H. et al. Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials. Nano Letters 18, 8011-8015, doi:10.1021/acs.nanolett.8b04166 (2018).
34 Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592-1597, doi:https://doi.org/10.1016/j.carbon.2009.12.057 (2010).
35 Eckmann, A., Felten, A., Verzhbitskiy, I., Davey, R. & Casiraghi, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Physical Review B 88, 035426, doi:10.1103/PhysRevB.88.035426 (2013).
36 Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Physics Reports 473, 51-87, doi:https://doi.org/10.1016/j.physrep.2009.02.003 (2009).
37 Reinert, F. & Hüfner, S. Photoemission spectroscopy—from early days to recent applications. New Journal of Physics 7, 97 (2005).
38 Hong, I. H. et al. Performance of the SRRC scanning photoelectron microscope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468, 905-908, doi:https://doi.org/10.1016/S0168-9002(01)00516-2 (2001).
39 Chusuei, C. C. & Goodman, D. W. in Encyclopedia of Physical Science and Technology (Third Edition) (ed Robert A. Meyers) 921-938 (Academic Press, 2003).
40 Johansson, A. et al. Chemical composition of two-photon oxidized graphene. Carbon 115, 77-82, doi:https://doi.org/10.1016/j.carbon.2016.12.091 (2017).
41 Kim, S. et al. Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics. Nature Communications 8, 15891, doi:10.1038/ncomms15891 (2017).
42 Claramunt, S. et al. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. The Journal of Physical Chemistry C 119, 10123-10129, doi:10.1021/acs.jpcc.5b01590 (2015).
指導教授 溫偉源 審核日期 2021-5-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明