參考文獻 |
Bibliography
[1] Broom, D.P. and K.M. Thomas, "Gas adsorption by nanoporous materials: Future applications and experimental challenges". MRS Bull. 38(5), 2013: p. 412-421.
[2] Gadipelli, S. and Z.X. Guo, "Graphene-based materials: Synthesis and gas sorption, storage and separation". Prog. Mater. Sci. 69, 2015: p. 1-60.
[3] Schneemann, A., et al., "Nanostructured metal hydrides for hydrogen storage". Chem. Rev. 118(22), 2018: p. 10775-10839.
[4] Wang, H., W.P. Lustig, and J. Li, "Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks". Chem. Soc. Rev. 47(13), 2018: p. 4729-4756.
[5] Wang, X., et al., "Hydrogen and methane storage and release by MoS2 nanotubes for energy storage". J. Mater. Chem. A. 5(44), 2017: p. 23020-23027.
[6] Xue, Q., et al., "Co-mixing hydrogen and methane may double the energy storage capacity". J. Mater. Chem. A. 6(19), 2018: p. 8916-8922.
[7] Kim, H., et al., "Water harvesting from air with metal-organic frameworks powered by natural sunlight". Science. 356(6336), 2017: p. 430-434.
[8] Furukawa, H., et al., "Water adsorption in porous metal-organic frameworks and related materials". J. Am. Chem. Soc. 136(11), 2014: p. 4369-81.
[9] Burtch, N.C., H. Jasuja, and K.S. Walton, "Water stability and adsorption in metal-organic frameworks". Chem. Rev. 114(20), 2014: p. 10575-612.
[10] Canivet, J., et al., "Water adsorption in MOFs: fundamentals and applications". Chem. Soc. Rev. 43(16), 2014: p. 5594-617.
[11] Hasnip, P.J., et al., "Density functional theory in the solid state". Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372(2011), 2014: p. 20130270.
[12] Lee, K., et al., "Small-molecule adsorption in open-site metal–organic frameworks: A systematic density functional theory study for rational design". Chem. Mater. 27(3), 2015: p. 668-678.
[13] Lai, Q., et al., "Hydrogen storage materials for mobile and stationary applications: Current state of the art". ChemSusChem. 8(17), 2015: p. 2789-825.
[14] Jena, P., "Materials for hydrogen storage: Past, present, and future". J. Phys. Chem. Lett. 2(3), 2011: p. 206-211.
[15] Suh, M.P., et al., "Hydrogen storage in metal-organic frameworks". Chem. Rev. 112(2), 2012: p. 782-835.
[16] Hu, Q., et al., "MXene: a new family of promising hydrogen storage medium". J. Phys. Chem. A. 117(51), 2013: p. 14253-60.
[17] Orimo, S., et al., "Complex hydrides for hydrogen storage". Chem. Rev. 107(10), 2007: p. 4111-32.
[18] Sakintuna, B., F. Lamaridarkrim, and M. Hirscher, "Metal hydride materials for solid hydrogen storage: A review". Int. J. Hydrog. Energy. 32(9), 2007: p. 1121-1140.
[19] Yildirim, T. and S. Ciraci, "Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium". Phys. Rev. Lett. 94(17), 2005: p. 175501.
[20] Bhattacharya, A., et al., "Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet". J. Phys. Chem. C. 114(22), 2010: p. 10297-10301.
[21] Liu, Y., et al., "Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations". J. Phys. Condens. Matter. 22(44), 2010: p. 445301.
[22] Wu, M., et al., "Edge-decorated graphene nanoribbons by scandium as hydrogen storage media". Nanoscale. 4(3), 2012: p. 915-20.
[23] Panigrahi, P., et al., "Light metal decorated graphdiyne nanosheets for reversible hydrogen storage". Nanotechnology. 29(35), 2018: p. 355401.
[24] Chen, Y.D., et al., "A potential material for hydrogen storage: a Li decorated graphitic-CN monolayer". Phys. Chem. Chem. Phys. 20(19), 2018: p. 13473-13477.
[25] Novoselov, K.S., et al., "Electric field effect in atomically thin carbon films". Science. 306(5696), 2004: p. 666-9.
[26] Sun, Q., et al., "Clustering of Ti on a C60 surface and its effect on hydrogen storage". J. Am. Chem. Soc. 127(42), 2005: p. 14582-3.
[27] Naguib, M., et al., "25th anniversary article: MXenes: a new family of two-dimensional materials". Adv. Mater. 26(7), 2014: p. 992-1005.
[28] Wang, S., et al., "Hydrogen adsorption, dissociation and diffusion on two-dimensional Ti2C monolayer". Inter. J. Hydrog. Energy. 42(44), 2017: p. 27214-27219.
[29] Hu, Q., et al., "Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations". Inter. J. Hydrog. Energy. 39(20), 2014: p. 10606-10612.
[30] Chui, S.S., et al., "A chemically functionalizable nanoporous material". Science. 283(5405), 1999: p. 1148-50.
[31] Li, H., et al., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework". Nature. 402(6759), 1999: p. 276-279.
[32] Rosi, N.L., et al., "Hydrogen storage in microporous metal-organic frameworks". Science. 300(5622), 2003: p. 1127-9.
[33] Yuan, S., et al., "Stable metal-organic frameworks: Design, synthesis, and applications". Adv. Mater. 30(37), 2018: p. e1704303.
[34] Pascanu, V., et al., "Metal-organic frameworks as catalysts for organic synthesis: A critical perspective". J. Am. Chem. Soc. 141(18), 2019: p. 7223-7234.
[35] Valvekens, P., F. Vermoortele, and D. De Vos, "Metal–organic frameworks as catalysts: the role of metal active sites". Catal. Sci. Technol. 3(6), 2013: p. 1435-1445.
[36] Barnett, B.R., M.I. Gonzalez, and J.R. Long, "Recent progress towards light hydrocarbon separations using metal–organic frameworks". Trends Chem. 1(2), 2019: p. 159-171.
[37] Tan, K., et al., "Water interactions in metal organic frameworks". CrystEngComm. 17(2), 2015: p. 247-260.
[38] Tan, K., et al., "Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74". Chem. Mater. 26(23), 2014: p. 6886-6895.
[39] Ming, Y., N. Kumar, and D.J. Siegel, "Water adsorption and insertion in MOF-5". ACS Omega. 2(8), 2017: p. 4921-4928.
[40] Zuluaga, S., et al., "Cluster assisted water dissociation mechanism in MOF-74 and controlling it using helium". J. Mater. Chem. A. 4(29), 2016: p. 11524-11530.
[41] Fuentes-Fernandez, E., et al., "Controlling chemical reactions in confined environments: Water dissociation in MOF-74". Appl. Sci. 8(2), 2018: p. 270.
[42] Rogal, J. and K. Reuter. Ab initio atomistic thermodynamics for surfaces: A primer. In: Experiment, modeling and simulation of gas-surface interactions for reactive flows in hypersonic flights. Educational Notes RTO-EN-AVT-142, Neuilly-sur-Seine (2007), p. 2-1—2-18. ISBN 978-92-837-0057-9. 2007.
[43] Sutton, C. and S.V. Levchenko, "First-principles atomistic thermodynamics and configurational entropy". Front. Chem. 8, 2020: p. 757.
[44] Petrova, G.P., G.N. Vayssilov, and N. Rösch, "Hydrogen adsorption on zeolite-supported tetrairidium clusters. Thermodynamic modeling from density functional calculations". J. Phys. Chem. C. 112(47), 2008: p. 18572-18577.
[45] Reuter, K. and M. Scheffler, "First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions". Phys. Rev. Lett. 90(4), 2003: p. 046103.
[46] Łodziana, Z., J.K. Nørskov, and P. Stoltze, "The stability of the hydroxylated (0001) surface of α-Al2O3". J. Chem. Phys. 118(24), 2003: p. 11179-11188.
[47] Reuter, K. and M. Scheffler, "Composition and structure of the RuO2(110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2". Phys. Rev. B. 68(4), 2003: p. 045407.
[48] Maldonado, P., L.Z. Evins, and P.M. Oppeneer, "Ab initio atomistic thermodynamics of water reacting with uranium dioxide surfaces". J. Phys. Chem. C. 118(16), 2014: p. 8491-8500.
[49] Held, A. and M. Moseler, "Ab initio thermodynamics study of ambient gases reacting with amorphous carbon". Phys. Rev. B. 99(5), 2019: p. 504207.
[50] R.M. Martin, Theoretical background, in Electronic structure: Basic theory and practical methods, Editor. 2004, Cambridge University Press: Cambridge. p. 52-72.
[51] R.M. Martin, Adiabatic approximation, in Electronic structure: Basic theory and practical methods, Editor. 2004, Cambridge University Press: Cambridge. p. 482-484.
[52] Hartree, D.R., "The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion". Math. Proc. Camb. Philos. Soc. 24(1), 1928: p. 111-132.
[53] Fock, V., "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems". Zeitschrift für Physik. 61(1), 1930: p. 126-148.
[54] Hohenberg, P. and W. Kohn, "Inhomogeneous electron gas". Phys. Rev. 136(3B), 1964: p. B864-B871.
[55] Kohn, W. and L.J. Sham, "Self-consistent equations including exchange and correlation effects". Phys. Rev. 140(4A), 1965: p. A1133-A1138.
[56] Steckel, D.S.S.a.J.A., Nuts and bolts of DFT calculations, in Density functional theory. 2009. p. 49-81.
[57] R.M. Martin, Plane waves and grids: basics, in Electronic structure: Basic theory and practical methods, Editor. 2004, Cambridge University Press: Cambridge. p. 236-253.
[58] R.M. Martin, Pseudopotentials, in Electronic structure: Basic theory and practical methods, Editor. 2004, Cambridge University Press: Cambridge. p. 204-232.
[59] Blochl, P.E., "Projector augmented-wave method". Phys. Rev. B Condens. Matter. 50(24), 1994: p. 17953-17979.
[60] R.M. Martin, Functionals for exchange and correlation, in Electronic structure: Basic theory and practical methods, Editor. 2004, Cambridge University Press: Cambridge. p. 152-171.
[61] Hammer, B., L.B. Hansen, and J.K. Nørskov, "Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals". Phys. Rev. B. 59(11), 1999: p. 7413-7421.
[62] Fuchs, M., et al., "Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation". Phys. Rev. B. 65(24), 2002: p. 245212.
[63] Krukau, A.V., et al., "Influence of the exchange screening parameter on the performance of screened hybrid functionals". J. Chem. Phys. 125(22), 2006: p. 224106.
[64] Elliott, J.A.W. and C.A. Ward, "Chemical potential of adsorbed molecules from a quantum statistical formulation". Langmuir. 13(5), 1997: p. 951-960.
[65] K.A. Dill, S. Bromberg, and D. Stigter, The Boltzmann distribution law, in Molecular driving forces: Statistical thermodynamics in chemistry and biology, Editors. 2003, Garland Science. p. 169-192.
[66] K.A. Dill, S. Bromberg, and D. Stigter, The statistical mechanics of simple gases & solids, in Molecular driving forces: Statistical thermodynamics in chemistry and biology, Editors. 2003, Garland Science. p. 193-220.
[67] Le, T.N., C.C. Chiu, and J.L. Kuo, "From the perspectives of DFT calculations, thermodynamic modeling, and kinetic Monte Carlo simulations: the interaction between hydrogen and Sc2C monolayers". Phys. Chem. Chem. Phys. 22(8), 2020: p. 4387-4401.
[68] da Silva Veras, T., et al., "Hydrogen: Trends, production and characterization of the main process worldwide". Int. J. Hydrog. Energy. 42(4), 2017: p. 2018-2033.
[69] Dillon, A.C., et al., "Storage of hydrogen in single-walled carbon nanotubes". Nature. 386(6623), 1997: p. 377-379.
[70] Liu, C., "Hydrogen storage in single-walled carbon nanotubes at room temperature". Science. 286(5442), 1999: p. 1127-1129.
[71] Züttel, A., et al., "LiBH4 a new hydrogen storage material". J. Power Sources. 118(1-2), 2003: p. 1-7.
[72] Lee, H., et al., "Tuning clathrate hydrates for hydrogen storage". Nature. 434(7034), 2005: p. 743-6.
[73] Zhao, Y., et al., "Hydrogen storage in novel organometallic buckyballs". Phys. Rev. Lett. 94(15), 2005: p. 155504.
[74] Dinca, M. and J.R. Long, "Hydrogen storage in microporous metal-organic frameworks with exposed metal sites". Angew. Chem. Int. Ed. Engl. 47(36), 2008: p. 6766-79.
[75] Jain, I.P., C. Lal, and A. Jain, "Hydrogen storage in Mg: A most promising material". Int. J. Hydrog. Energy. 35(10), 2010: p. 5133-5144.
[76] Mellmann, D., et al., "Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release". Chem. Soc. Rev. 45(14), 2016: p. 3954-88.
[77] Lombardo, L., H. Yang, and A. Züttel, "Study of borohydride ionic liquids as hydrogen storage materials". J. Energy Chem. 33, 2019: p. 17-21.
[78] Schlapbach, L. and A. Zuttel, "Hydrogen-storage materials for mobile applications". Nature. 414(6861), 2001: p. 353-8.
[79] Yu, X., et al., "Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications". Prog. Mater. Sci. 88, 2017: p. 1-48.
[80] Mauron, P., et al., "Stability and reversibility of LiBH4". J. Phys. Chem. B. 112(3), 2008: p. 906-10.
[81] Martelli, P., et al., "Stability and decomposition of NaBH4". J. Phys. Chem. C. 114(15), 2010: p. 7173-7177.
[82] Züttel, A., "Materials for hydrogen storage". Mater. Today. 6(9), 2003: p. 24-33.
[83] Hua, T.Q., et al., "Technical assessment of compressed hydrogen storage tank systems for automotive applications". Int. J. Hydrog. Energy. 36(4), 2011: p. 3037-3049.
[84] Hua, T.Q., H.-S. Roh, and R.K. Ahluwalia, "Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles". Int. J. Hydrog. Energy. 42(40), 2017: p. 25121-25129.
[85] Bérubé, V., et al., "Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review". Int. J. Energy Res. 31(6-7), 2007: p. 637-663.
[86] Møller, K., et al., "Complex metal hydrides for hydrogen, thermal and electrochemical energy storage". Energies. 10(10), 2017: p. 1645.
[87] Germain, J., J.M. Frechet, and F. Svec, "Nanoporous polymers for hydrogen storage". Small. 5(10), 2009: p. 1098-111.
[88] Deshmukh, A., Y.-W. Chen, and J.-L. Kuo, "Tetrahedral silsesquioxane framework: A feasible candidate for hydrogen storage". J. Phys. Chem. C. 119(42), 2015: p. 23820-23829.
[89] Deshmukh, A., et al., "Tunable gravimetric and volumetric hydrogen storage capacities in polyhedral oligomeric silsesquioxane frameworks". ACS Appl. Mater. Interfaces. 8(38), 2016: p. 25219-28.
[90] Rungnim, C., et al., "Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics". Int. J. Hydrog. Energy. 43(52), 2018: p. 23336-23345.
[91] Yodsin, N., et al., "Influence of hydrogen spillover on Pt-decorated carbon nanocones for enhancing hydrogen storage capacity: A DFT mechanistic study". Phys. Chem. Chem. Phys. 20(32), 2018: p. 21194-21203.
[92] Naguib, M., et al., "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2". Adv. Mater. 23(37), 2011: p. 4248-53.
[93] Naguib, M., et al., "Two-dimensional transition metal carbides". ACS Nano. 6(2), 2012: p. 1322-31.
[94] Anasori, B., M.R. Lukatskaya, and Y. Gogotsi, "2D metal carbides and nitrides (MXenes) for energy storage". Nat. Rev. Mater. 2(2), 2017: p. 16098.
[95] Chaudhari, N.K., et al., "MXene: an emerging two-dimensional material for future energy conversion and storage applications". J. Mater. Chem. A. 5(47), 2017: p. 24564-24579.
[96] Ling, C., et al., "Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction". Adv. Sci. (Weinh). 3(11), 2016: p. 1600180.
[97] Guo, Z., et al., "MXene: a promising photocatalyst for water splitting". J. Mater. Chem. A. 4(29), 2016: p. 11446-11452.
[98] Ran, J., et al., "Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production". Nat. Commun. 8, 2017: p. 13907.
[99] Tang, Q., Z. Zhou, and P. Shen, "Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer". J. Am. Chem. Soc. 134(40), 2012: p. 16909-16.
[100] Naguib, M., et al., "New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries". J. Am. Chem. Soc. 135(43), 2013: p. 15966-9.
[101] Kajiyama, S., et al., "Enhanced Li-ion accessibility in MXene Titanium carbide by steric Chloride termination". Adv. Energy Mater. 7(9), 2017: p. 1601873.
[102] Yu, X.F., et al., "Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity". ACS Appl. Mater. Interfaces. 7(24), 2015: p. 13707-13.
[103] Kim, S.J., et al., "Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio". ACS Nano. 12(2), 2018: p. 986-993.
[104] Lee, E., et al., "Two-dimensional Vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases". ACS Sens. 4(6), 2019: p. 1603–1611.
[105] Junkaew, A. and R. Arroyave, "Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and -separation". Phys. Chem. Chem. Phys. 20(9), 2018: p. 6073-6082.
[106] Yadav, A., et al., "Study of 2D MXene Cr2C material for hydrogen storage using density functional theory". Appl. Surf. Sci. 389, 2016: p. 88-95.
[107] Osti, N.C., et al., "Evidence of molecular hydrogen trapped in two-dimensional layered titanium carbide-based MXene". Phys. Rev. Mater. 1(2), 2017: p. 024004.
[108] García-Holley, P., et al., "Benchmark study of hydrogen storage in metal–organic frameworks under temperature and pressure swing conditions". ACS Energy Lett. 3(3), 2018: p. 748-754.
[109] Li, H., et al., "Recent advances in gas storage and separation using metal–organic frameworks". Mater. Today. 21(2), 2018: p. 108-121.
[110] Dudarev, S.L., et al., "Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study". Phys. Rev. B. 57(3), 1998: p. 1505-1509.
[111] Eklund, P., et al., "The Mn+1AXn phases: Materials science and thin-film processing". Thin Solid Films. 518(8), 2010: p. 1851-1878.
[112] Xu, C., et al., "Large-area high-quality 2D ultrathin Mo2C superconducting crystals". Nat. Mater. 14(11), 2015: p. 1135-41.
[113] Yorulmaz, U., et al., "Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation". Nanotechnology. 27(33), 2016: p. 335702.
[114] Lv, X., et al., "Sc2C as a promising anode material with high mobility and capacity: A First-principles study". Chemphyschem. 18(12), 2017: p. 1627-1634.
[115] Zhang, X., et al., "Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes". J. Mater. Chem. A. 3(9), 2015: p. 4960-4966.
[116] Deshmukh, A., et al., "DFT study on the H2 storage properties of Sc-decorated covalent organic frameworks based on adamantane units". J. Phys. Chem. C. 122(29), 2018: p. 16853-16865.
[117] Jansen, A.P.J., An introduction to kinetic Monte Carlo simulations of surface reactions. Vol. 856. 2012.
[118] Buttner, W.J., et al., "An overview of hydrogen safety sensors and requirements". Int. J. Hydrog. Energy. 36(3), 2011: p. 2462-2470.
[119] Rivard, E., M. Trudeau, and K. Zaghib, "Hydrogen storage for mobility: A review". Materials (Basel). 12(12), 2019: p. 1973.
[120] Baselt, D.R., et al., "Design and performance of a microcantilever-based hydrogen sensor". Sens. Actuators B: Chem. 88(2), 2003: p. 120-131.
[121] Hu, Y., et al., "Rapid response hydrogen sensor based on nanoporous Pd thin films". Int. J. Hydrog. Energy. 41(25), 2016: p. 10986-10990.
[122] Pak, Y., et al., "Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons". ACS Appl. Mater. Interfaces. 6(15), 2014: p. 13293-8.
[123] Baek, D.-H. and J. Kim, "MoS2 gas sensor functionalized by Pd for the detection of hydrogen". Sens. Actuators B: Chem. 250, 2017: p. 686-691.
[124] Kuru, C., et al., "High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film". Nanotechnology. 27(19), 2016: p. 195501.
[125] Kresse, G. and J. Furthmüller, "Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set". Phys. Rev. B. 54(16), 1996: p. 11169-11186.
[126] Kresse, G. and J. Furthmüller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set". Comput. Mater. Sci. 6(1), 1996: p. 15- 50.
[127] Kresse, G. and J. Hafner, "Ab initio molecular dynamics for liquid metals". Phys. Rev. B. 47(1), 1993: p. 558-561.
[128] Kresse, G. and J. Hafner, "Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium". Phys. Rev. B. 49(20), 1994: p. 14251-14269.
[129] Perdew, J.P. and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems". Phys. Rev. B. 23(10), 1981: p. 5048-5079.
[130] Perdew, J.P., K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple". Phys. Rev. Lett. 77(18), 1996: p. 3865-3868.
[131] Perdew, J.P., K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]". Phys. Rev. Lett. 78(7), 1997: p. 1396-1396.
[132] Grimme, S., S. Ehrlich, and L. Goerigk, "Effect of the damping function in dispersion corrected density functional theory". J. Comput. Chem. 32(7), 2011: p. 1456-65.
[133] Marom, N., et al., "Dispersion interactions with density-functional theory: Benchmarking semiempirical and interatomic pairwise corrected density functionals". J. Chem. Theory Comput. 7(12), 2011: p. 3944-51.
[134] Blöchl, P.E., "Projector augmented-wave method". Phys. Rev. B. 50(24), 1994: p. 17953-17979.
[135] Kresse, G. and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method". Phys. Rev. B. 59(3), 1999: p. 1758-1775.
[136] Monkhorst, H.J. and J.D. Pack, "Special points for Brillouin-zone integrations". Phys. Rev. B. 13(12), 1976: p. 5188-5192.
[137] Atkins, P.W. and J.D. Paula, Atkins′ Physical chemistry. 8 ed. 2006: Oxford University Press: Oxford. ch. 17, p. 611–614.
[138] Hoffmann, M.J., S. Matera, and K. Reuter, "kmos: A lattice kinetic Monte Carlo framework". Comput. Phys. Commun. 185(7), 2014: p. 2138-2150.
[139] Siegel, D.J. and B. Hardy, HSECoE Team, Engineering an Adsorbent-Based Hydrogen Storage System: What Have We Learned? https://www.energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_summit_siegel.pdf, accessed September 2019.
[140] Khazaei, M., et al., "Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides". Adv. Funct. Mater. 23(17), 2013: p. 2185-2192.
[141] Cohen, A.J., P. Mori-Sanchez, and W. Yang, "Challenges for density functional theory". Chem. Rev. 112(1), 2012: p. 289-320.
[142] Howarth, A.J., et al., "Chemical, thermal and mechanical stabilities of metal–organic frameworks". Nat. Rev. Mater. 1(3), 2016: p. 5176-5183.
[143] Ming, Y., et al., "Kinetic Stability of MOF-5 in humid environments: Impact of powder densification, humidity level, and exposure time". Langmuir. 31(17), 2015: p. 4988-95.
[144] Zuluaga, S., et al., "Understanding and controlling water stability of MOF-74". J. Mater. Chem. A. 4(14), 2016: p. 5176-5183.
[145] Li, Y., et al., "H2O adsorption/desorption in MOF-74: Ab initio molecular dynamics and experiments". J. Phys. Chem. C. 119(23), 2015: p. 13021-13031.
[146] Scatena, R., Y.T. Guntern, and P. Macchi, "Electron density and dielectric properties of highly porous mofs: Binding and mobility of guest molecules in Cu3(BTC)2 and Zn3(BTC)2". J. Am. Chem. Soc. 141(23), 2019: p. 9382-9390.
[147] Liu, A., et al., "Adsorption and diffusion of benzene in Mg-MOF-74 with open metal sites". ACS Appl. Mater. Interfaces. 11(4), 2019: p. 4686-4700.
[148] Yuan, K., et al., "Bimetal-organic frameworks for functionality optimization: MnFe-MOF-74 as a stable and efficient catalyst for the epoxidation of alkenes with H2O2". Nanoscale. 10(4), 2018: p. 1591-1597.
[149] Sun, L., C.H. Hendon, and M. Dinca, "Coordination-induced reversible electrical conductivity variation in the MOF-74 analogue Fe2(DSBDC)". Dalton Trans. 47(34), 2018: p. 11739-11743.
[150] Kim, H., J. Park, and Y. Jung, "The binding nature of light hydrocarbons on Fe/MOF-74 for gas separation". Phys. Chem. Chem. Phys. 15(45), 2013: p. 19644-50.
[151] Sun, L., et al., "Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal-organic framework with infinite (-Mn-S-)infinity chains and high intrinsic charge mobility". J. Am. Chem. Soc. 135(22), 2013: p. 8185-8.
[152] Cozzolino, A.F., et al., "Ligand redox non-innocence in the stoichiometric oxidation of Mn2(2,5-dioxidoterephthalate) (Mn-MOF-74)". J. Am. Chem. Soc. 136(9), 2014: p. 3334- 7.
[153] Runcevski, T., et al., "Adsorption of two gas molecules at a single metal site in a metal-organic framework". Chem. Commun. (Camb). 52(53), 2016: p. 8251-4.
[154] Kresse, G. and J. Hafner, "Ab initio molecular dynamics for liquid metals". Phys. Rev. B Condens. Matter. 47(1), 1993: p. 558-561.
[155] Wang, L., T. Maxisch, and G. Ceder, "Oxidation energies of transition metal oxides within the GGA+U framework". Phys. Rev. B. 73(19), 2006.
[156] Mann, G.W., et al., "First-principles Hubbard U approach for small molecule binding in metal-organic frameworks". J. Chem. Phys. 144(17), 2016: p. 174104.
[157] H. Jónsson, G.M., K. W. Jacobsen, "Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, Ed. B. J. Berne, G. Ciccotti and D. F. Coker (World Scientific, 1998), page 385.".
[158] Henkelman, G. and H. Jónsson, "A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives". J. Chem. Phys. 111(15), 1999: p. 7010-7022.
[159] Momma, K. and F. Izumi, "VESTA: a three-dimensional visualization system for electronic and structural analysis". J. Appl. Crystallogr. 41(3), 2008: p. 653-658.
[160] Tang, W., E. Sanville, and G. Henkelman, "A grid-based Bader analysis algorithm without lattice bias". J. Phys. Condens. Matter. 21(8), 2009: p. 084204.
[161] Sanville, E., et al., "Improved grid-based algorithm for Bader charge allocation". J. Comput. Chem. 28(5), 2007: p. 899-908.
[162] Henkelman, G., A. Arnaldsson, and H. Jónsson, "A fast and robust algorithm for Bader decomposition of charge density". Comput. Mater. Sci. 36(3), 2006: p. 354-360.
[163] Kepp, K.P., "A quantitative scale of oxophilicity and thiophilicity". Inorg. Chem. 55(18), 2016: p. 9461-70.
[164] Liu, S., et al., "Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature". Nat. Nanotechnol. 16(3), 2021: p. 331-336.
[165] Pickard, C.J. and R.J. Needs, "Ab initio random structure searching". J. Phys. Condens. Matter. 23(5), 2011: p. 053201. |