博碩士論文 107226040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:227 、訪客IP:18.189.186.194
姓名 吳佳晉(Chia-Chin Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 單光子放射顯微鏡系統之幾何參數擬合與成像模型改良
(Geometric Parameter Fitting and Imaging Model Improvement of Single Photon Emission Microscope)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 核子醫學影像技術的臨床前小動物試驗必須使用比人類器官影像重建更高空間解析度的影像擷取設備,如此才能使體積小的動物器官重建影像具備與人類器官重建影像同等的精確度。本論文以單光子放射顯微鏡系統(Single Photon Emission Microscope, SPEM)作為投影影像的擷取設備,此系統為單光子放射電腦斷層掃描系統(SPECT)的高空間解析度特化分支,所用設備包括七針孔式準直儀、摻鉈碘化銫晶體CsI(Tl)、高質量光影像縮倍管以及電子增益電荷耦合元件(EMCCD)。
而在電腦斷層掃描技術的領域中,為了求得高品質的重建物體影像,需要有精確且高解析度的影像系統矩陣,即物空間與像空間的轉換關係矩陣。而本研究為了建立更加精確的SPEM系統之影像系統矩陣,改良了本實驗室舊有之影像系統矩陣的建立方法,內容包含系統幾何參數之擬合方法以及成像模型的建立方法。
過去本實驗室為了獲取SPEM的旋轉載物平台其旋轉軸與EMCCD之空間關係的幾何參數,而進行了幾何校正實驗,以及為了建立成像模型,而進行了格點掃描實驗。幾何校正實驗設計了三點源假體置於旋轉平台上,而旋轉平台是位於位移平台上,以每次旋轉一個固定角度來進行一次投影影像的擷取;格點掃描實驗則將單點源假體亦置於旋轉平台之上,以每次平移位移平台的一個固定格點寬度距離來進行一次投影影像的擷取。從這些點源圖形的投影影像之中,能夠獲得原物體空間之點響應函數,並擬合簡化為二維高斯函數。二維高斯參數分作光通量、投影點x及y座標位置、投影點橢圓的主軸方向以及投影點橢圓之長軸與短軸等六項參數。
本研究將過去所進行的前述兩項實驗之投影點的x座標及y座標位置一同用於擬合幾何參數,以取得假體與旋轉平台的空間轉換關係、假體與位移平台的空間轉換關係、旋轉軸的空間描述以及針孔的空間位置等幾何參數。之後透過分析前述所求得的系統之幾何參數,與格點掃描實驗投影影像之高斯參數間的關係,來構想出具有非圓對稱點響應函數之成像模型,並以非線性最小局部擬合的方式來求得成像模型係數,建立出通量模型、寬度模型以及主軸角度模型等成像模型。最終利用算出之幾何參數以及建立之成像模型,來建立各種格點間距的影像系統矩陣,並利用迭代式演算法中的序列子集之期望值最大化演算法來進行物體影像的重建,而影像重建的採樣方法考慮到取樣完整性,而分作圓軌重建以及螺旋軌重建兩種,透過分析重建物體圖像來判斷影像系統矩陣的精確度。最終圓軌以及螺旋軌取樣的三維物體圖像重建,與過去本實驗室所採用的舊方法之重建結果相比,新方法的重建結果皆得到了更加合理與清晰的物體圖像。
摘要(英) Nuclear medicine imaging of preclinical small animal studies needs to use imagers with higher spatial resolution so the reconstructed images of small animal organs can have the same accuracy as that of human organ reconstructions. In this thesis, the single-photon emission microscope (SPEM) is used as the imaging device. This system is a high-spatial-resolution specialized branch of the single-photon emission computed tomography (SPECT). The SPEM system consists of a 7-pinhole collimator, a thallium-doped cesium iodide crystal [CsI(Tl)], an electrostatic demagnifying tube (DM tube) and an electron-multiplying charge-coupling device (EMCCD).
In the field of computed tomography, in order to obtain high-quality reconstructed object images, an accurate and high-resolution imaging system matrix (H matrix) is required. So, in order to obtain a more accurate imaging system matrix of SPEM, this study has improved the old method of creating imaging system matrix comes from our laboratory. The content includes the fitting method of system geometric parameters, which describe the spatial relationship between the system rotation axis and the EMCCD, and the imaging models for generating the H matrix.
In the past, we conducted the geometric calibration experiment and grid-scan experiment in order to obtain the geometric parameters and to create the imaging model, respectively. In the geometric calibration experiment, a three-point source phantom is placed on a rotary stage, which is located on the three-dimensional translation stages, and each time after the phantom is rotated by a preset angle we capture a projection image. In the grid-scan experiment, a single-point source is placed on the rotary stage, and each time after the source is translated by a preset grid spacing we capture a projection image. From the projection images of these point sources, the point response functions (PRFs) of the original object space can be obtained and fitted by two-dimensional Gaussian functions. Each 2D Gaussian function has six parameters: the amplitude as the luminous flux, the x and y coordinates of the projection centroid on the detector plane, the principal angle of the elliptical contours of the 2D Gaussian and the variances along the major and minor axes of the elliptical contours.
In this study, the x and y coordinates of the projection points from the two previous experiments were used together to fit the geometric parameters. We can obtain the spatial relationship between the phantom and the rotary stage, the spatial relationship between the phantom and the translation stages, the spatial relationship between the rotation axis and the EMCCD, and the spatial positions of pinholes. After that, an imaging model with non-circularly-symmetric PRFs was conceived by analyzing the relationship between the geometric parameters of the system and the Gaussian parameters of the projection images from the grid-scan experiment. The imaging model coefficients were obtained by nonlinear least-squares fitting, including the flux model, width models along the major and minor axes, and principal angle model.
Finally, the calculated geometric parameters and the created imaging model were used to generate the image system matrices of various grid spacing. The iterative algorithm Ordered-Subset Expectation Maximization is used to reconstruct the object images. The sampling method of image acquisition takes the sampling completeness into account, and is divided into circular and helical trajectories. The accuracy of the imaging system matrix is judged by analyzing the reconstructed object images. In the final reconstruction of three-dimensional object images sampled by the circular and helical trajectories, compared with the reconstruction results of the old method used in our laboratory for creating H matrices, the improved method have obtained more reasonable and clearer reconstructed images.
關鍵字(中) ★ 單光子放射顯微鏡系統(SPEM)
★ 幾何校正
★ 成像模型
★ 螺旋掃描
關鍵字(英) ★ Single photon emission microscope (SPEM)
★ Geometric calibration
★ Imaging model
★ Helical
論文目次 中文摘要 vii
Abstract ix
誌謝 xii
目錄 xiii
圖目錄 xvii
表目錄 xxviii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 5
第二章 研究背景與基本理論 7
2.1 核子醫學影像 7
2.1.1 正子放射斷層掃描系統(Positron Emission Tomography, PET) 9
2.1.2 單光子放射電腦斷層掃描系統(Single-Photon Emission Computed Tomography, SPECT) 12
2.1.3 單光子放射顯微鏡系統(Single Photon Emission Microscope, SPEM) 16
2.2 準直儀(Collimator) 19
2.3 伽瑪射線偵測器(Gamma-Ray Detector) 23
2.3.1 半導體式偵測器(Semiconductor Detector) 23
2.3.2 閃爍晶體偵測器(Scintillation Detector) 25
第三章 單光子放射顯微鏡系統的系統校正與影像重建 32
3.1 線性數位成像系統的影像系統矩陣 32
3.1.1 格點掃描實驗(Grid-scan Experiment) 35
3.1.2 高斯內插結合幾何參數法(Gaussian Interpolation Method Combined with Geometric Parameter Estimations, GIMGPE) 37
3.2 系統校正(System Calibrations) 41
3.2.1 初步校正(Preliminary Calibration) 42
3.2.2 幾何校正(Geometric Calibration) 46
3.2.3 簡化格點掃描實驗(Simplified Grid-scan Experiment) 49
3.2.4 成像模型(Imaging Model) 49
3.3 影像重建演算法 56
3.3.1 最大可能性之期望值最大化演算法(Maximum-Likelihood Expectation Maximization, MLEM) 58
3.3.2 序列子集之期望值最大化演算法(Ordered-Subset Expectation Maximization, OSEM) 60
3.3.3 螺旋重建演算法(Helical Reconstruction Algorithm) 61
第四章 實驗過程與演算結果 66
4.1 單光子放射顯微鏡系統的系統組成 66
4.2 系統校正與計算結果 69
4.2.1 幾何校正實驗 70
4.2.2 格點掃描實驗 71
4.2.3 全域優化與系統校正參數計算 72
4.3 建立成像模型 82
4.4.1 針孔軸估算(Pinhole Axis Estimation) 82
4.4.2 通量模型 85
4.4.3 寬度模型 90
4.4.4 主軸角度模型 107
4.4.5 影像系統矩陣的建立 118
4.5 影像重建結果 121
4.5.1 三點假體影像重建 121
4.5.2 一點兩桿假體影像重建 133
4.5.3 解析度假體影像重建 144
4.5.4 螺旋軌道取樣影像重建 183
4.6 成像模型及影像重建結果的比較與討論 198
第五章 結論與未來展望 219
5.1 結論 219
5.2 未來展望 225
參考文獻 226
參考文獻 [1] S. R. Cherry, and S. S. Gambhir, “Use of positron emission tomography in animal research,”ILAR Journal, vol. 42, no. 3, pp. 219-232, 2001.
[2] M. V. Green, J. Seidel, J. J. Vaquero, E. Jagoda, I. Lee, and W.C. Eckelman, “High resolution PET, SPECT and projection imaging in small animals,” Computerized Medical Imaging and Graphics, vol. 25, no. 2, pp. 79-86, 2001.
[3] A. Hasse, G. Landwehr, and E. Umbach, “Röntgen centennial: X-rays in Natural and Life Sciences,” World Scientific, Singapore, pp. 7-8, 1997.
[4] M. N. Wernick, and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, London, 2004.
[5] G. L. Zeng, and J. R. Galt, “Analytic image reconstruction methods,” in Emission Tomography: The Fundamentals of PET and SPECT, M. N. Wernick and J. N. Aarsvold eds., pp. 127-152, Elsevier Academic Press, San Diego, CA, 2004.
[6] Available: https://zh.wikipedia.org/wiki/%E9%8E%9D-99m
[7] C. Y. Chen, Development of GPU-based Position Estimator and Image Reconstruction Algorithms for Micro-SPECT Systems, Master Thesis, National Central University, Taoyuan, Taiwan, 2014.
[8] R. Golestani, C. Wu, R. A. Tio, C. J. Zeebregts, A. D. Petrov, and F. J. Beekman, et al., “Small-animal SPECT and SPECT/CT: application in cardiovascular research,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, pp. 1766-1777, 2010.

[9] M. A. D. Reis, J. Mejia, I. R. Batista, M. R. F. F. D. Barboza, and S. A. Nogueira, et al., “SPEM: A state-of-the-art instrument for high resolution molecular imaging of small animal organs,”SciELO Einstein (São Paulo), vol. 10, no. 2, pp. 209-215, 2012.
[10] J. Mejia, M. A. Reis, A. C. C. Miranda, I. R. Batista, and M. R. F. Barboza, et al.,“Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs,”SciELOBrazilian Journal of Medical and Biological Research, vol. 46, no. 11, pp. 936-942, 2013.
[11] L. J. Meng, N. H. Clinthorne, S. Skinner, R. V. Hay, and M. Gross, “Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging,”IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1168-1178, 2006.
[12] B. Y. Huang, System Calibration and Imaging Model Construction of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2018.
[13] K. V. Audenhaege, R. van Holen, S. Vandenberghe, C. Vanhove, S. D. Metzler and S. C. Moore, “Review of SPECT collimator selection, optimization and fabrication for clinical and preclinical imaging,” Medical Physics, vol. 42, no. 8, pp. 4796-813, 2015.
[14] M. Miglierini, “Detectors of Radiation,” E. Wigner Publisher on Reactor Physics Experiments Journal, vol. 2, no. 4, pp. 1-67, 2004.

[15] A. P. Dhanasopon, C. S. Levin, A. M. K. Foudray, P. D. Olcott, J. A. Talcott, and F. Habte, “Scintillation crystal design features for a miniature gamma ray camera,”IEEE Nuclear Science Symposium Conference Record, vol. 5 pp. 1967-1971, 2003.
[16] M. A. Kupinski, and H. H. Barrett, Small-Animal SPECT Imaging, Springer, New York, 2005.
[17] C. Fiorini, A. Longoni, F. Perotti, C. Labanti, P. Lechner, and L. Strüder, “Gamma ray spectroscopy with CsI(Tl) scintillator coupled to silicon drift chamber,”IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2553-2560, 1997.
[18] Available: http://www.ysctech.com/digital-microscope-CCD-camera-info.html
[19] L. J. Meng, “An intensified EMCCD camera for low energy gamma ray imaging applications,” IEEE Transactions on Nuclear Science, vol. 53, no. 4, pp. 2376-2384, August 2006.
[20] Available: https://www.teo.com.tw/products?product_id=1429
[21] H. H. Barrett, and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.
[22] M. W. Lee, and Y. C. Chen, “Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations,” Elsevier Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 122-134, 2014.

[23] F. van der Have, B. Vastenhouw, M. Rentmeester, F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, July 2008.
[24] E. M. C. Revilla, System Calibration and Helical Reconstruction of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2018.
[25] Y. Wang, and B. M. W. Tsui, “Pinhole SPECT with different data acquisition geometries: usefulness of unified projection operators in homogeneous coordinates,” IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 298-308, 2007.
[26] L. A. Shepp, and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, 1982.
[27] H. M. Hudson, and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601-609, 1994.
[28] D. S. Lalush, and B. M. Tsui, “Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT,” Journal of Nuclear Medicine, vol. 41, no. 4, pp. 737-744, 2000.
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2021-10-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明