博碩士論文 108226009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.143.244.172
姓名 郗靖加(CHIH JING JIA)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 P-型GaN閘極高電子遷移率電晶體之磊晶層設計與成長
(Design and Growth of p-GaN Gate AlGaN/GaN High Electron Mobility Transistors)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今商用增強型(E-mode)高功率氮化鎵異質場效電晶體中,p 型氮化鎵
(p-GaN)閘極是常用的閘極結構之一,此閘極對元件開關時的動態特性影響
以及與可靠度的關聯性是必須要了解的重要研究課題。本論文主要提出利
用 P-型 GaN 閘極的方式來製作出增強型(Enhancement-mode)操作之氮化鋁鎵/氮化鎵場效功率電晶體,以用於電源供應器內的功率電晶體,將目標設在實現具有高閾值電壓、高導通電流、低導通電阻、低閘極漏電流的元件,以上述四主要特性做延伸,著重在磊晶結構的設計與磊晶條件參數的探討。此研究係利用有機金屬化學蒸汽沉積系統(Metal-Organic Chemical
Vapor Deposition, MOCVD)沉積 GaN 磊晶層在矽基板上,使用不同鋁含量的 AlGaN 位障層,與不同濃度的鎂摻雜 p-GaN 閘極,探討背後物理意義並且組合出四種不同結構。為了更了解不同 p-GaN 長晶條件的影響,也設計了高溫和低溫,濃度高與濃度低四種 P-型 GaN 閘極的長晶條件,研究其變化對元件電性帶來的影響。
此研究顯示,用計算能帶的方式可以看出元件的閾值電壓走向,有助於設計磊晶結構。在磊晶的層面,p-GaN的磊晶條件中,溫度990°C比起1020°C有更低的表面粗糙度,且可以降低 Mg 的擴散深度。在這四種結構中,以鋁成分 18%的 AlGaN 位障層搭配濃度 8E18 ??−3鎂摻雜的 p-GaN 磊晶層的結構可得最高之閾值電壓,低鋁含量的位障層使極化效應降低,但不影響遷移率的表現,讓 HEMT 的閘極更容易達到常關型狀態。搭配上低濃度的 Mg 摻雜 p-GaN,使表面更加平坦,也讓 Mg 的向外擴散較低,使電子遷移率不被其影響,這是本研究根據元件結果推理出來的最佳結構。
摘要(英) In recent years, commercial enhancement-mode (E-mode) high-power gallium nitride heterogeneous field-effect transistors with the p-type gallium nitride (p-GaN) gate have become the most commonly used gate structures. The influence of dynamic characteristics and the correlation with reliability are important research topics that must be understood. The mainly propose of this work is the use of P-type GaN gates to achieve enhancement-mode operation AlGaN/GaN field-effect power transistors, which are used for transistors in power supply components. The objective of the design is high threshold voltage, high on-current, low on-resistance, and low gate leakage current. The above stated four conditions are extended, focusing on the design of the epitaxial structure and the conditional parameters of the epitaxial process.
The AlGaN/GaN HEMT epilayers were grown on a Si substrate using Metal-Organic Chemical Vapor Deposition (MOCVD). We design four types of AlGaN barrier layers with different aluminum content, and different concentrations of magnesium doped p-GaN gates, four types of P-type GaN gate growth processes at high temperature and low temperature, high concentration and low concentration are designed to study the impact of their changes on the electrical properties of the device in order to better understand the performance of different p-GaN growth conditions.
The results show that the threshold voltage trend of the device can be seen by calculating the energy band, which is helpful for the design of the device structure. The temperature of 990°C has better surface roughness than 1020°C at the epitaxial level in the epitaxial conditions of p-GaN, and can reduce the distance of Mg diffusion. The AlGaN barrier layer, with an Al content of 18% and a Mg-doped p-GaN epitaxial layer concentration of 8×〖10〗^18 〖cm〗^(-3), is the best of these four structures. The low-Al barrier layer minimizes polarization while having little influence on electron mobility, making the gate easier to reach normally off condition. Since the surface of Mg-doped p-GaN is smoother and Mg out-diffusion is reduced at low concentrations, electron mobility is not deteriorated. This structure has shown excellent device results in this research work.
關鍵字(中) ★ 有機金屬化學蒸汽沉積系統
★ 氮化鎵
關鍵字(英) ★ MOCVD
★ GaN
★ p-GaN
★ HEMT
論文目次 目錄
摘要......i
Abstract......ii
誌謝......iiv
目錄...... v
圖目錄......vii
表目錄..........viii
第一章 導論........ 1
1.1 前言..... 1
1.2 氮化鎵材料特性....... 3
1.2.1 氮化鎵極化效應...... 3
1.2.2 氮化鎵材料特性與應用.......... 6
1.3 增強型 P-型 GaN 閘極高電子遷移率電晶體 .......... 7
1.4 研究動機......... 8
1.5 論文架構.......... 8
第二章 實驗方法及原理........ 9
2.1 前言....... 9
2.2 磊晶片製備....... 10
2.2.1 有機金屬氣相磊晶成長法.......... 10
2.2.2 磊晶結構設計與成長........ 13
2.3 閾值電壓分析............ 15
2.3.1 前言............. 15
2.3.2 p-GaN 內建電位計算.................. 17
2.3.3 AlGaN 位障電位計算......... 19
2.3.4 p-GaN HEMT Vth計算......... 20
2.4 本章結論.............. 22
第三章 E-mode HEMT 之電性分析........... 23
3.1 元件結構......... 23
3.2 p-GaN 磊晶條件與結果分析........... 25
3.3 p-GaN HEMT 元件製作流程 ............. 28
3.4 p-GaN HEMT 元件電性分析 ............ 32
3.4.1 元件直流特性量測.......... 32
3.4.2 元件直流特性分析......... 34
第四章 結論.............. 36
參考文獻............... 37
參考文獻 [1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams,
A. Hanser, “High Breakdown Voltage Schottky Rectifier Fabricated on Bulk
n-GaN Substrate,” Solid-State Electronics, Vol. 50, pp. 1744-1747, 2006.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy,
W. J. Schaff and L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W.
Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by
spontaneous and piezoelectric polarization charges in N- and Ga-face
AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 85, No. 6,
pp. 3222-3233, 1999.
[3] J. R. Gong, C. W. Huang, S. F. Tseng, T. Y. Lin, K. M. Lin, W. T. Liao, Y. L.
Tsai, B. H. Shi, C. L. Wang, “Behaviors of AlxGa1−xN (0.5⩽x⩽1.0)/GaN
short period strained-layer superlattices on the threading dislocation density
reduction in GaN films,” Journal of Crystal Growth, Vol. 260, pp. 73-78,
2004.
[4] Fabrizio Roccaforte et. al., “An Overview of Normally-Off GaN-Based High
Electron Mobility Transistors,” MDPI, Vol. 12, 1599, 2019.
[5] Grigory Simin et. al., "Enhancement mode AlGaN/GaN HFET with
selectively grown pn junction gate,” IEEE, 2000.
[6] C. Baumer, R. Bassini, “Deuteron elastic and inelastic scattering from C-12,
Mg-24, and Ni-58 at 170-MeV,” Phys.Rev.C , vol. 36, issue 8, p. 753, 2001.
[7] 陳昱志,「矽基氮化鎵高電子遷移率電晶體通道層與緩衝層之成長與材
料特性分析」,國立中央大學,碩士論文,民國 108 年。
[8] Zhang Jian-Li, Liu Jun-Lin, Pu Yong, Fang Wen-Qing, Zhang Meng and
Jiang Feng-Yi, "Effects of Carrier Gas on Carbon Incorporation in GaN,”
38
CHIN. PHYS. LETT, vol. 36, p. 3, 2014.
[9] F. Lee, T. R. Gow, and R. I. Masel, "Trimethylgallium Decomposition on
Si(l00) ,” J. Electrochem. Soc., Vol. 136, No. 9, 1989.
[10] J. Su, E. A. Armour, B. Krishnan, S. M. Lee, and G. D. Papasouliotis, “Stress
engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm
silicon substrates using a single wafer rotating disk MOCVD reactor,”
Journal of Materials Research, Vol. 30, pp. 2846-2858, 2015.
[11] N.E. Posthuma, S. You, H. Liang, N. Ronchi, X. Kang, D. Wellekens, Y.N.
Saripalli, S. Decoutere, “Impact of Mg out-diffusion and activation on the pGaN gate HEMT device performance,” ISPSD, 2016.
[12] L. Cory. et. al., “Growth of high purity N-polar (In,Ga)N films,” Science ,
vol. 464, p127-131, 2016.
[13] Huaibing Wang, Jianping Liu, a , Nanhui Niua, Guangdi Shena, Shuming
Zhang, “Enhanced performance of p-GaN by Mg d doping,” Journal of
Applied Physics, Vol 82, Issue 18, 2017.
[14] Tian Li Wu, Hu Liang, Niels Posthuma, Shuzhen You, Nicolò Ronchi, Steve
Stoffels, Denis Marcon, and Stefaan Decoutere, “Analysis of the Gate
Capacitance–Voltage Characteristics in p-GaN/AlGaN/GaN
Heterostructures,” IEEE, Vol 38, Issue 12, 2017.
[15] K. A. Rickert and A. B. Ellis, “X-ray photoemission determination of the
Schottky barrier height of metal contacts to n–GaN and p–GaN,” J. Appl.
Phys, Vol 92, Issue 11, 2002.
[16] Hirokuni Tokuda, “Design considerations for normally-off operation in
Schottky gate p-GaN/AlGaN/GaN HEMTs,” J. Appl. Phys, Published 27,
2020.
39
[17] O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T.D. Moustakas, M.
Stutzman, “Electron transport characteristics of GaN for high temperature
device modeling,” Sol. State Commun. 97 , 1996.
[18] G.Greco, “Effects of Annealing Treatments on the Properties of Al/Ti/p-GaN
Interfaces for Normally OFF p-GaN HEMTs,” IEEE, Vol 83, Issue 9, 2016.
[19] Parvesh Gangwani, Sujata Pandey, Subhasis Haldar, Mridula Gupta, R.S.
Gupta, “Effects of Annealing Treatments on the Properties of Al/Ti/p-GaN
Interfaces for Normally OFF p-GaN HEMTs,” Solid-State Electronics, 2007.
[20] W.Colin and J. Debdeep “Polarization Effects in Semiconductors,”
fSpringer, Vol 63, Issue 7, 2008.
[21] Ambacher, O. et. al., “Two Dimensional Electron Gases Induced by
Spontaneous and Piezoelectric Polarization in Undoped and Doped
AlGaN/GaN Heterosturctures,” J. Appl. Phys, Vol 85, Issue 6, 2000.
指導教授 綦振瀛 賴昆佑(Jen-Inn Chyi Kun-Yu Lai) 審核日期 2021-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明