博碩士論文 109222011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.14.133.162
姓名 洪偉晟(Wei-Cheng Hung)  查詢紙本館藏   畢業系所 物理學系
論文名稱 工程化超導電路上三維腔量子電動力學系統
(Engineering 3D Transmon and Cavity for Cavity Quantum Electrodynamics)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 單一超導量子位元控制與狀態讀取
★ 超導量子干涉元件製作★ Characterizing single-qubit gate fidelity on superconducting qubits
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 超導量子電路(Superconducting Quantum Circuit)為近20年熱門的研究領域與實驗
平台,透過電路中巨觀(macroscopy)的電荷與磁通量的量子化現象進而製造出在
量子物理中所需的能階結購。利用超導量子電路進行的實驗有幾個好處,首先是
量測方法為測量電壓與電流訊號,實驗方法較為簡易與普遍,市面上許多常規的
儀器便能用於此類實驗;其次由於電路元件如電容、電感是由人類所設計,因此
實驗條件也大多數能由人類控制,可以做一些用為原子分子平台中比較困難進
行的實驗。而在所有超導量子電路實驗中最熱門的工作為量子位元的製作與操
控,本工作便是重現了其中一種類別的量子位元: 三維共振腔內的量子位元。本
篇詳述了量子位元的背景、與三維共振腔內的量子位元的設計、製造與特徵值量
測。由於本工作為比較草創的階段的實驗,因此仍有許多面向能改進,以結果而
言,三維共振腔內的量子位元是一個快速建構的實驗平台,其同調時間(coherence
time)在沒有極大化優化實驗條件下便能有一微秒,雖不到國外團隊今日之平均
值,但是能對於一些初步的脈衝實驗、設備與線路進行檢測。
摘要(英) Superconducting Quantum Circuit(SQC) is a popular platform for the Quantum
Electrodynamics(QED) experiment in recent twenty years. With the charge and
the
ux quantization in macroscopy, we can construct the energy levels which are
the basis of quantum mechanics.There are several advantages of processing the quan-
tum experiment on the SQC. First is the quantum system can be measured only
with the voltage and the current. Some of the commercial instruments are enough
for the experiment. Second, atoms are made from the capacitor and the inductor.
Due to the atoms are made from the circuit elements, the feature parameters such as
eld coupling and the transitions can be designed by humans. One of the experiment
branches of the QED on SQC is the Cavity QED in 3-dimensional superconducting
cavity. In this work,we set up a cavity quantum electrodynamics experiment plat-
form on superconducting quantum circuit. In our experiment,we embed a Transmon
in 3D Aluminum cavity and measure the response of the device. It is our rst time
preparing 3D cavity QED system. The coherence in our devices reaches 1s with-
out much improvement. We believe if we process the Transmon or the Cavity with
the surface treatment, we can improve the coherence in more than one order. For
the 1 1s coherence qubit, it is sucient for us to correct the problem in the cable
wiring or the experiment setup. It is also enough for us to do some basic pulses
measurement.
關鍵字(中) ★ 超導量子電路
★ 量子位元
★ 腔量子電動力學
關鍵字(英) ★ Superconducting Quantum Circuit
★ Qubit
★ Cavity Quantum Electrodynamics
論文目次 Abstract i
Contents ii
List of Figures v
1 Introduction 2
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Review of Superconducting Qubits . . . . . . . . . . . . . . . . . . . 4
2 Theory 8
2.1 Superconducting Charge Qubits . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Josephson Junctions . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 The DC SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Circuit Quantization of Josephson Junction . . . . . . . . . . 13
2.1.4 Cooper Pair Box(CPB) . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Microwave Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Scattering Parameters . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Quadrature of Waves . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Transmission Line Theory . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Scattering Matrix and Impedance . . . . . . . . . . . . . . . . 28
2.2.5 Resonator Theory . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.6 Circuit Model of the Resonator in the Experiment . . . . . . 33
2.3 Cavity Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Jaynes-Cummings Model . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Dispersively Coupled Atom . . . . . . . . . . . . . . . . . . . 39
2.3.3 On Resonance Atom . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.4 Quantum Non-demolition Measurement . . . . . . . . . . . . . 43
2.3.5 Purcell E ect . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Atom Evolution in Time . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.1 TLS with Coherent Drive . . . . . . . . . . . . . . . . . . . . 47
2.4.2 Rabi Oscillation and Control Pulses . . . . . . . . . . . . . . . 49
2.4.3 Characteristic Timescales (T1; T2; T
2 ) . . . . . . . . . . . . . . 49
2.5 Cavity QED on Superconducting Circuit . . . . . . . . . . . . . . . . 52
3 Simulation of Cavity QED 54
3.1 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Dispersive Shift and Vacuum Rabi Splitting . . . . . . . . . . . . . . 57
3.3 Photon Number Splitting . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Coherent Drive and Coherent State . . . . . . . . . . . . . . . 58
3.3.2 Rotating Wave Transformation . . . . . . . . . . . . . . . . . 65
3.3.3 Simulation of Photon Number Splitting . . . . . . . . . . . . . 68
3.4 Rabi Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 Time Domain Response of the Atom and Probe Field . . . . . 71
3.4.2 Simulation of Rabi Oscillation . . . . . . . . . . . . . . . . . . 74
4 Experimental Setup 76
4.1 3D Cavity Design and Simulation . . . . . . . . . . . . . . . . . . . . 76
4.1.1 3D Aluminum Cavity Design . . . . . . . . . . . . . . . . . . . 78
4.1.2 Electromagnetic Wave Simulation of 3D Cavity . . . . . . . . 79
4.2 3D Transmon Design and Simulation . . . . . . . . . . . . . . . . . . 81
4.2.1 Design and Layout . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Electrical Property Simulation . . . . . . . . . . . . . . . . . . 83
4.2.3 Fabrication and Device Images . . . . . . . . . . . . . . . . . 84
4.3 Qubit Control :Pulse Modulation . . . . . . . . . . . . . . . . . . . . 87
4.3.1 Up-conversion and Down-conversion . . . . . . . . . . . . . . . 87
4.3.2 Instruments and Programming Flow . . . . . . . . . . . . . . 88
4.4 Cryogenic Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 Vacuum Can . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 Mixture Circulation . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Device Wiring and Measurement Setup . . . . . . . . . . . . . . . . . 93
5 Results 96
5.1 Cavity Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Continuous Wave Qubit Spectroscopy . . . . . . . . . . . . . . . . . . 99
5.2.1 Dispersive Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 Qubit Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.3 Photon Number Calibration . . . . . . . . . . . . . . . . . . . 103
5.3 Qubit Pulses Measurement . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Pulses Cavity Spectroscopy . . . . . . . . . . . . . . . . . . . 104
5.3.2 Rabi Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.3 T1 Relaxation Measurement . . . . . . . . . . . . . . . . . . . 109
5.3.4 T2 Dephasing Measurement . . . . . . . . . . . . . . . . . . . 110
5.4 Table List of the Results . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5 Qubit and Cavity near Resonance . . . . . . . . . . . . . . . . . . . . 113
6 Conclusion 116
Bibliography 118
參考文獻 [1] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Physical
Review, 69(681), 1946.
[2] V. Bouchiat, D. Vion, and M. H. Devoret. Quantum coherence with a single
cooper pair. Physica Scripta, T76:165{170, 1998.
[3] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic
quantum states in a single-cooper-pair box. Nature, 398:786{788, 1999.
[4] A. Wallra , D. I. Schuster, and A. Blais. Strong coupling of a single photon
to a superconducting qubit using circuit quantum electrodynamics. Nature,
431:162{167, 2004.
[5] D. I. Schuster, A. A. Houck, and R. J. Schoelkopf. Resolving photon number
states in a superconducting circuit. nature, 445:515{518, 2007.
[6] Hanhee Paik, D. I. Schuster, and R. J. Schoelkopf. Observation of high coher-
ence in josephson junction qubits measured in a three-dimensional circuit qed
architecture. PHYSICAL REVIEW LETTERS, 107:240501, 2011.
[7] Frank Arute, Kunal Arya, and John M. Martinis. Quantum supremacy using
a programmable superconducting processor. Nature, 547:505{510, 2019.
[8] M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum
information: An outlook. Science, 339:1169{1174, 2013.
[9] Y.Yamamoto, K. Inomata, and J. S. Tsai. Flux-driven josephson parametric
ampli er. APPLIED PHYSICS LETTERS, 93:042510, 2008.
[10] M. H. Devoret. Quantum
uctuation in electrical circuit. 1997.
[11] K Bladh, T Duty, and P Delsing. The single cooper-pair box as a charge qubit.
New J. Phys, 7:108, 2005.
[12] David M. Pozar. Microwave Engineering 4th edition. John Wiley & Sons, 2011.
[13] E.T. Jaynes and F.W. Cummings. Comparison of quantum and semiclassical
radiation theories with application to the beam maser. IEEE, 51:89{109, 1963.
[14] Alexandre Blais, Ren-Shou Huang, and R. J. Schoelkopf. Cavity quantum elec-
trodynamics for superconducting electrical circuits:an architecture for quantum
computation. PHYSICAL REVIEW A, 69:062320, 2004.
[15] D. I. Schuster, A. Wallra , and R. J. Schoelkopf. Ac-stark shift and dephasing
of a superconducting qubit strongly coupled to a cavity eld. Phys. Rev. Lett,
94:123602, 2007.
[16] R. Gross, A. Marx, and F. Deppe. Control of quantum two-level system.
Walther-Meiner-Institut, 2011-2013.
[17] J. R. Johansson, P.D. Nation, and F. Nori. QuTiP 2: A Python framework for
the dynamics of open quantum systems, 2013.
[18] Jay Gambetta, Alexandre Blais, and R. J. Schoelkopf. Qubit-photon inter-
actions in a cavity: Measurement-induced dephasing and number splitting.
PHYSICAL REVIEW A, 74:042381, 2006.
[19] Xiu Gu, Anton Frisk Kockum, and Franco Nori. Microwave photonics with
superconducting quantum circuits. Physics Report, 718-719:66{68, 2017.
[20] User munal of the cryogen-freedilution refrigerator system for ld250. 2011.
[21] Matthew Reagor, Hanhee Paik, and Robert J. Schoelkopf. Reaching 10 ms
single photon lifetimes for superconducting aluminum cavities. Appl. Phys.
Lett, 102:192604, 2013.
[22] Matthew Reagor, Wolfgang Pfa , and Robert J. Schoelkopf. Quantum memory
with millisecond coherence in circuit qed. PHYSICAL REVIEW B, 94:014506,
2016.
[23] Lev S. Bishop, Eran Ginossar, and S. M. Girvin. Response of the strongly
driven jaynes-cummings oscillator. Phys. Rev. Lett., 105:100505, 2010.
[24] Lev S. Bishop, J. M. Chow, and Robert J. Schoelkopf. Nonlinear response of
the vacuum rabi resonance. Nature, 5:105{109, 2009.
[25] A. Wallra , D. I. Schuster, and R. J. Schoelkopf. Approaching unit visibility
for control of a superconducting qubit with dispersive readout. PHYSICAL
REVIEW LETTERS, 95:060501, 2005.
指導教授 陳永富(Yung-Fu Chen) 審核日期 2021-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明