博碩士論文 108222038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.145.191.214
姓名 高錢生(Chien-Sheng Kao)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Nucleation and Growth Dynamics of Hexagonal Boron Nitride Grown through Plasma-enhanced Chemical Vapor Deposition)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著石墨稀在2004年被機械剝離法製造出來,因此二維材料的研究和製造更加受到重視。其中六方氮化硼由於高能隙和高絕緣特性具有相當多的應用領域。在製造方面,由於可控制的高質量大面積生長,化學氣相沉積法最可能作為工業上的應用。而根據裂解前驅物的不同方式又分成熱化學氣相沉積和電漿輔助化學氣相沉積。
   本實驗中比較了兩種生長方式,使用氨硼烷(AB)作為前驅物。使用XPS和 Raman spectrum 確認了生長出的薄膜是SP2 鍵結的六方氮化硼。使用OES 檢測出在電漿分解氨硼烷的成分中含有NH和N2 分子,證明了電漿具備更強的脫氫能力。根據時間變化的動力學實驗表明,CVD的生長較慢,以低成核率和高成長率達成覆蓋。PECVD相反,由於強的脫氫能力和電漿帶給分解物質的高能量,達成了以高成核率為主的覆蓋方式。相比於 thermal CVD,PECVD以10倍快的速率完成覆蓋。JMAK model 的結果也證明了PECVD較高的成核率。
雖然PECVD的成核較高,但是有觀察到成核的核點晶向很一致。從XPS和Raman的量測中可以確認PECVD 能形成和CVD相同結構的薄膜。結論,PECVD能降低生長時間,同時形成結構好的薄膜,對於生長hBN薄膜具有高潛力。
摘要(英) With the mechanical stripping of graphite in 2004, the research and fabrication of two-dimensional materials has gained more attention. The hexagonal boron nitride has a lot of applications due to its high energy gap and high insulation properties. In manufacturing, chemical vapor deposition is most likely to be used for industrial applications due to the controlled high quality and large area growth. Depending on the way of decomposing precursors, it is divided into thermal chemical vapor deposition and plasma-enhanced chemical vapor deposition.
In this experiment, two growth methods were compared, using ammonia borane (AB) as a precursor. The film grown was confirmed to be SP2-bonded hexagonal boron nitride using XPS and Raman spectrum. The OES detected the presence of NH and N2 molecules in the composition of the plasma decomposed ammonia-borane, which proved the enhanced dehydrogenation ability of the plasma. The time-dependent kinetic experiments show that CVD grows slowly and the coverage is achieved with low nucleation rate and high grain growth rate. On the other hand, PECVD achieves a high nucleation rate due to its strong dehydrogenation capability and the high energy of plasma decomposition material. Compared with thermal CVD, PECVD is able to achieve coverage at a rate 10 times faster. The results of JMAK model also prove the high nucleation rate of PECVD.
Although the nucleation of PECVD is higher, it is observed that the nuclei are uniformly crystalline. According to measurements of XPS and Raman, it can be confirmed that PECVD can form the same structure of films as CVD.
In conclusion, PECVD have a good potential for growing hBN films because it can reduce the growth time and is also can produce the high quality films.
關鍵字(中) ★ 氮化硼
★ 化學氣相沉積
關鍵字(英)
論文目次 Contexts
Chapter1 Introduction 1
Chapter2 background 4
2.1 Introduction of hexagonal boron nitride (hBN) 4
2.1.1 The Basic properties of hBN 4
2.1.2 The different methods of CVD growth hBN 7
2.1.3 Another method to make hBN 9
2.1.4 The morphology of hBN 10
2.1.5 Etch effect 17
2.2 Introduction of Chemical vapor deposition(CVD) 19
2.2.1 Chemical vapor deposition (CVD) 19
2.2.2Plasma-enhanced chemical vapor deposition (PECVD) 21
2.2.3The operation mechanism of CVD 26
2.2.4 Different type of nucleation 28
2.2.5 Decomposition of ammonia borane 29
2.3 Characterization of hexagonal boron nitride 30
2.3.1 Raman spectroscopy 30
2.3.2 Scanning electron microscope (SEM) 32
2.3.4 Optical Emission Spectroscopy (OES) 36
2.4 JMAK model 38
Chapter 3 Experiment set up and method 42
3.1 System setup 42
3.2 sample preparation 44
3.2.1 Polish 44
3.2.2 CVD grow 44
3.2.3 Transfer 45
Chapter 4 Result and discussion 46
4.1 Characterization of hBN 47
4.2 The measurement of OES 48
4.3 Growth dynamic of CVD and PECVD 49
4.4 Arrhenius equation 59
4.5 JMAK model 64
Chapter 5 Conclusion 69
Reference 71
參考文獻 Reference
[1] Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Kelly, P. J.; van den Brink, J. Phys. Rev. B 2007, 76073103
[2] Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995) J Phys Chem 99:10694–10697
[3] Lei Liu et al., “Structural and electronic properties of h-BN” Physics Department, National University of Singapore, 2 Science Drive 3, 117542 Singapore
[4] L. Lindsay, D.A. Broido, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride, Phys. Rev. B 84 (15) (2011) 155421.
[5] L. Lindsay, D.A. Broido, Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes, Phys. Rev. B 85 (3) (2012) 035436.
[6] H. O. Pierson, J. Compos. Mater., 1975, 9, 228–240
[7] Rozenberg, A. S.; Sinenko, Y. A.; Chukanov, N. V. J. Mater. Sci. 1993, 28 (20) 5528– 5533
[8] Yumeng Shi et al., “Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition” Nano Lett. 2010, 10, 10, 4134–4139
[9] Ki Kang Kim, “Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition” Nano Lett. 2012, 12, 1, 161–166
[10] Kim G,Jang AR,Jeong HY,Lee Z,Kang DJ和Shin HS 2013 Nano Lett。 13 1834–9
[11] B. Deb et al., “Boron nitride films synthesized by RF plasma CVD of borane–ammonia and nitrogen” Materials Chemistry and Physics 76 (2002) 130–136
[12] J. Vilcarromero et al., “Mechanical properties of boron nitride thin films obtained by RF-PECVD at low temperatures” Thin Solid Films 373 2000 273 Ž . ]276
[13] Yu, J., Qin, L., Hao, Y., Kuang, S., Bai, X., Chong, Y.M., Zhang, W., and Wang, E., Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultravio let light emission, and superhydrophobicity, ACS Nano, 2010, vol. 4, no. 1, pp. 414–422.
[14] I.S. Merenkov, M.L. Kosinova, E.N. Ermakova, E.A. Maksimovskii, Yu.M. Rumyantsev, 2015, published in Neorganicheskie Materialy, 2015, Vol. 51, No. 11, pp. 1183–1189.
[15] Li Song et al., “Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers” Nano Lett. 2010, 10, 8, 3209–3215
[16] W. Auwärter, H. U. Suter, H. Sachdev and T. Greber, Chem. Mater. 2004, 16, 343-345
[17] G. Kim, A. R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang and H. S. Shin, Nano Lett., 2013, 13, 1834–1839
[18] Ruiqi Zhao et al., “Controlling the orientations of h-BN during growth on transition metals by chemical vapor deposition”. Nanoscale, 2017,9, 3561-3567
[19] L.Liu et al., “Unusual role of epilayer – substrate interactions in determining orientational relations in van der Waals epitaxy,” 2014.
[20] Preobrajenski, A. B.; Vinogradov, A. S.; Martensson, N. Surf. Sci. 2005, 582 (1–3) 21– 30
[21] Lifeng Wang et al., “Growth and Etching of Monolayer Hexagonal Boron Nitride” Advanced Materials. September 2, 2015 Pages 4858-4864
[22] Y.Stehle et al., “Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology” Chem. Mater., vol. 27, no. 23, pp. 8041–8047, 2015.
[23] Piran R. Kidambi et al., “In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper,” Chem. Mater., vol. 26, no. 22, pp. 6380–6392, 2014.
[24] Yijing Y. Stehle et al., “Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations” ACS Nano 2012, 6, 4, 3614–3623
[25] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York (1992)
[26] Babenko, V., Lane, G., Koos, A.A. et al. Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride. Sci Rep 7, 14297 (2017).
[27] R.VGorbachev et al., “Hunting for Monolayer Boron Nitride : Optical and Raman Signatures,” no. 4, pp. 465–468, 2011.
[28] https://en.wikipedia.org/wiki/Emission_spectrum
[29] Laurent Souqui et al., “Plasma CVD of B–C–N thin films using triethylboron in argon–nitrogen plasma” J. Mater. Chem. C, 2020, 8, 4112
[30] Nicholas R. Glavin ?? ??., Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films, J. Appl. Phys. 117, 165305 (2015); https://doi.org/10.1063/1.4919068
[31] Wenhua Zhang ?? ??., First-Principles Thermodynamics of Graphene Growth on Cu Surfaces, J. Phys. Chem. C 2011, 115, 36, 17782–17787
[32] Pai Li ?? ??., Dominant Kinetic Pathways of Graphene Growth in Chemical Vapor Deposition: The Role of Hydrogen, J. Phys. Chem. C 2017, 121, 25949−25955
指導教授 溫偉源(Wei-Yen Woon) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明