參考文獻 |
[1] M. C. Artale, S. E. Pedrosa, P. B. Tissera, P. Cataldi, and A. Di Cintio, “Dark matter response to galaxy assembly history,” Astronomy Astrophysics, vol. 622, p. A197, Feb 2019.
[2] V. Trimble, History of Dark Matter in Galaxies, pp. 1091–1118. Dordrecht: Springer Netherlands, 2013.
[3] S. Profumo, L. Giani, and O. F. Piattella, “An introduction to particle dark matter,” 2019.
[4] A. Boveia and C. Doglioni, “Dark matter searches at colliders,” Annual Review of Nuclear and Particle Science, vol. 68, p. 429–459, Oct 2018.
[5] V. A. Mitsou, “Overview of searches for dark matter at the LHC,” Journal of Physics: Conference Series, vol. 651, p. 012023, nov 2015.
[6] G. Arcadi, G. Busoni, T. Hugle, and V. T. Tenorth, “Comparing 2hdm + scalar and pseudoscalar simplified models at lhc,” Journal of High Energy Physics, vol. 2020, Jun 2020.
[7] S. Lowette, “Search for dark matter at cms,” Nuclear and Particle Physics Proceedings, vol. 273-275, pp. 503–508, 2016. 37th International Conference on High Energy Physics (ICHEP).
[8] B. T. Carlson, “Dark Matter searches with the ATLAS detector,” Aug 2020.
[9] J. Schieck, “Direct dark matter search with the cresst-ii experiment,” 2015.
[10] R. Bernabei, P. Belli, A. Bussolotti, F. Cappella, V. Caracciolo, R. Cerulli, C. Dai, A. d’ Angelo, A. Di Marco, and et al., “First model independent results from 95dama/libra-phase2,” Nuclear Physics and Atomic Energy, vol. 19, p. 307–325, Dec 2018.
[11] T. Emken and C. Kouvaris, “How blind are underground and surface detectors to strongly interacting dark matter?,” Phys. Rev. D, vol. 97, p. 115047, Jun 2018.
[12] B. J. Kavanagh, “Earth scattering of superheavy dark matter: Updated constraints from detectors old and new,” Physical Review D, vol. 97, Jun 2018.
[13] M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, “Migdal effect in dark matter direct detection experiments,” Journal of High Energy Physics, vol. 2018, Mar 2018.
[14] C. Kouvaris and J. Pradler, “Probing sub-gev dark matter with conventional detectors,” Phys. Rev. Lett., vol. 118, p. 031803, Jan 2017.
[15] A. Klypin, H. Zhao, and R. S. Somerville, “{upLambdaCDM-based models for the milky way and m31. i. dynamical models,” The Astrophysical Journal, vol. 573, pp. 597–613, jul 2002.
[16] V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, and S. D. M. White, “The aquarius project: the subhaloes of galactic haloes,” Monthly Notices of the Royal Astronomical Society, vol. 391, p. 1685–1711, Dec 2008.
[17] M. Battaglieri, A. Belloni, A. Chou, P. Cushman, B. Echenard, R. Essig, J. Estrada, J. Feng, B. Flaugher, P. Fox, P. Graham, C. Hall, R. Harnik, J. Hewett, J. Incandela, E. Izaguirre, D. Mckinsey, M. Pyle, N. Roe, and Y.-M. Zhong, “Us cosmic visions: New ideas in dark matter 2017: Community report,” 07 2017.
[18] K. Kadota, T. Sekiguchi, and H. Tashiro, “A new constraint on millicharged dark matter from galaxy clusters,” 2016.
[19] V. A. Bednyakov, “Spin in the dark matter problem,” Phys. Part. Nucl., vol. 38, pp. 326–363, 2007.
[20] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Physics Reports, vol. 267, p. 195–373, Mar 1996. 96
[21] A. D. Medina, “Higgsino-like dark matter from sneutrino late decays,” Physics Letters B, vol. 770, p. 161–165, Jul 2017.
[22] F. Zwicky, “Republication of: The redshift of extragalactic nebulae,” General Relativity and Gravitation, vol. 41, pp. 207–224, Jan. 2009.
[23] F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae,” , vol. 86, p. 217, Oct. 1937.
[24] P. Kosso, Dark Matter, p. 187–198. Cambridge University Press, 2017.
[25] E. Corbelli and P. Salucci, “The extended rotation curve and the dark matter halo of m33,” Monthly Notices of the Royal Astronomical Society, vol. 311, p. 441–447, Jan 2000.
[26] M. Bartelmann, “Gravitational lensing,” Classical and Quantum Gravity, vol. 27, p. 233001, Nov 2010.
[27] R. M. Wald, General Relativity. Chicago, USA: Chicago Univ. Pr., 1984.
[28] F. W. Dyson, A. S. Eddington, and C. Davidson, “A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919,” Phil. Trans. Roy. Soc. Lond. A, vol. 220, pp. 291–333, 1920.
[29] R. Narayan and M. Bartelmann, “Lectures on gravitational lensing,” in 13th Jerusalem Winter School in Theoretical Physics: Formation of Structure in the Universe, 6 1996.
[30] M. J. Jee, “Tracing the peculiar dark matter structure in the galaxy cluster cl 0024+17 with intracluster stars and gas,” The Astrophysical Journal, vol. 717, p. 420–434, Jun 2010.
[31] P. Katgert, A. Biviano, and A. Mazure, “The ESO nearby abell cluster survey. XII. the mass and mass-to-light ratio profiles of rich clusters,” The Astrophysical Journal, vol. 600, pp. 657–669, jan 2004.
[32] Y. Sofue and V. Rubin, “Rotation curves of spiral galaxies,” Annual Review of Astronomy and Astrophysics, vol. 39, p. 137–174, Sep 2001. 97
[33] E. W. Kolb and M. S. Turner, The Early Universe, vol. 69. 1990.
[34] P. J. E. Peebles, Principles of Physical Cosmology. 1993.
[35] D. Baumann, “Tasi lectures on inflation,” 2012.
[36] H. Baer, K.-Y. Choi, J. E. Kim, and L. Roszkowski, “Dark matter production in the early universe: Beyond the thermal wimp paradigm,” Physics Reports, vol. 555, p. 1–60, Feb 2015.
[37] S. Dodelson, E. I. Gates, and M. S. Turner, “Cold dark matter,” Science, vol. 274, p. 69–75, Oct 1996.
[38] L. Roszkowski, E. M. Sessolo, and S. Trojanowski, “WIMP dark matter candidates and searches—current status and future prospects,” Reports on Progress in Physics, vol. 81, p. 066201, may 2018.
[39] H. T.-K. Wong, “Taiwan experiment on neutrino –history, status and prospects,” 2016.
[40] V. Singh and H. T. Wong, “Nuclear reactor operation monitoring and dark matter searches,” Procs. Peaceful Uses of Atomic Energy, vol. II, p. 406, 04 2009.
[41] F. Iachello, “Open problems in neutrino physics,” Journal of Physics: Conference Series, vol. 1056, p. 012027, jul 2018.
[42] P. S. Wesson, “Fundamental unsolved problems in astrophysics.”
[43] S.-T. Lin and H. T. Wong, “Dark matter search with germanium detector at O(100eV) threshold,” in 5th Patras Workshop on Axions, WIMPs and WISPs, 6 2010.
[44] H. T. Wong, H. B. Li, S. T. Lin, F. S. Lee, V. Singh, S. C. Wu, C. Y. Chang, H. M. Chang, C. P. Chen, M. H. Chou, and et al., “Search of neutrino magnetic moments with a high-purity germanium detector at the kuo-sheng nuclear power station,” Physical Review D, vol. 75, Jan 2007.
[45] T. Kosmas, O. Miranda, D. Papoulias, M. Tórtola, and J. Valle, “Sensitivities to neutrino electromagnetic properties at the texono experiment,” Physics Letters B, vol. 750, p. 459–465, Nov 2015. 98
[46] H. B. Li et al., “Limits on spin-independent couplings of wimp dark matter with a p-type point-contact germanium detector,” Phys. Rev. Lett., vol. 110, p. 261301, Jun 2013.
[47] M. K. Singh, L. Singh, M. Agartioglu, V. Sharma, V. Singh, and H. T.-k. Wong, “Constraints on bosonic dark matter with low threshold germanium detector at kuosheng reactor neutrino laboratory,” Chinese Journal of Physics, vol. 58, p. 63–74, Apr 2019. [48] M. Deniz et al., “Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor,” Phys. Rev. D, vol. 81, p. 072001, 2010.
[49] M. Tanabashi et al., “Review of particle physics,” Phys. Rev. D, vol. 98, p. 030001, Aug 2018.
[50] Y. F. Zhu et al., “Measurement of the intrinsic radiopurity of Cs-137 / U-235 / U-238 / Th-232 in CsI(Tl) crystal scintillators,” Nucl. Instrum. Meth. A, vol. 557, pp. 490–500, 2006.
[51] E. M. Pell, “Ion drift in an n-p junction,” Journal of Applied Physics, vol. 31, no. 2, pp. 291–302, 1960.
[52] R. N. Hall and T. J. Soltys, “High purity germanium for detector fabrication,” IEEE Transactions on Nuclear Science, vol. 18, no. 1, pp. 160–165, 1971.
[53] G. Morgan, G. Owen, and Y. Lee, “Fabrication of large planar ge(li) detectors,” Nuclear Instruments and Methods, vol. 76, no. 1, pp. 169–170, 1969.
[54] J. M. Marler and P. V. Hewka, “Coaxial detectors from high purity germanium,” IEEE Transactions on Nuclear Science, vol. 21, no. 1, pp. 287–295, 1974.
[55] S. Mertens, A. Hegai, D. Radford, N. Abgrall, Y.-D. Chan, R. Martin, A. Poon, and C. Schmitt, “Characterization of high purity germanium point contact detectors with low net impurity concentration,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 921, p. 81–88, Mar 2019. 99
[56] P. Barton, M. Amman, R. Martin, and K. Vetter, “Ultra-low noise mechanically cooled germanium detector,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 812, p. 17–23, Mar 2016.
[57] J. Mayer, “Ion implantation in semiconductors,” in 1973 International Electron Devices Meeting, pp. 3–5, 1973.
[58] D.-M. Mei, Z.-B. Yin, and S. Elliott, “Cosmogenic production as a background in searching for rare physics processes,” Astroparticle Physics, vol. 31, p. 417–420, Jul 2009.
[59] S. Cebrian, H. Gomez, G. Luzon, J. Morales, A. Tomas, and J. A. Villar, “Cosmogenic activation in germanium and copper for rare event searches,” Astropart. Phys., vol. 33, pp. 316–329, 2010.
[60] H. Li, L. Singh, M. Singh, A. Soma, C. Tseng, S. Yang, M. Agartioglu, G. Asryan, Y. Chuang, M. Deniz, and et al., “Differentiation of bulk and surface events in p-type point-contact germanium detectors for light wimp searches,” Astroparticle Physics, vol. 56, p. 1–8, Apr 2014.
[61] R. Agnese, T. Aralis, T. Aramaki, I. Arnquist, E. Azadbakht, W. Baker, S. Banik, D. Barker, D. Bauer, T. Binder, and et al., “Production rate measurement of tritium and other cosmogenic isotopes in germanium with cdmslite,” Astroparticle Physics, vol. 104, p. 1–12, Jan 2019.
[62] L.-T. Yang, H.-B. Li, Q. Yue, K.-J. Kang, J.-P. Cheng, Y.-J. Li, H. T.-K. Wong, M. Aˇgartioˇglu, H.-P. An, J.-P. Chang, J.-H. Chen, Y.-H. Chen, Z. Deng, Q. Du, H. Gong, L. He, J.-W. Hu, Q.-D. Hu, H.-X. Huang, L.-P. Jia, H. Jiang, H. Li, J.-M. Li, J. Li, X. Li, X.-Q. Li, Y.-L. Li, F.-K. Lin, S.-T. Lin, S.-K. Liu, Z.-Z. Liu, H. Ma, J.-L. Ma, H. Pan, J. Ren, X.-C. Ruan, B. Sevda, V. Sharma, M.-B. Shen, L. Singh, M. K. Singh, C.-J. Tang, W.-Y. Tang, Y. Tian, J.-M. Wang, L. Wang, Q. Wang, Y. Wang, S.-Y. Wu, Y.-C. Wu, H.-Y. Xing, Y. Xu, T. Xue, S.-W. Yang, N. Yi, C.-X. Yu, H.-J. Yu, J.-F. Yue, X.-H. Zeng, M. Zeng, Z. Zeng, Y.-H. Zhang, M.-G. Zhao, W. Zhao, J.-F. Zhou, Z.-Y. Zhou, J.-J. Zhu, and Z.-H. Z. and, “Limits on light WIMPs with a 1 kg-scale germanium detector at 160 eVee physics threshold at the 100china jinping underground laboratory,” Chinese Physics C, vol. 42, p. 023002, jan 2018.
[63] K.-J. Kang et al., “Introduction to the CDEX experiment,” Front. Phys. (Beijing), vol. 8, pp. 412–437, 2013.
[64] H.-B. Li, “Status and prospects of CDEX: the China Dark Matter Experiment,” PoS, vol. ICHEP2018, p. 648, 2019.
[65] H. Ma et al., “CDEX Dark Matter Experiment: Status and Prospects,” J. Phys. Conf. Ser., vol. 1342, no. 1, p. 012067, 2020. [66] R. W. SCHNEE, “Introduction to dark matter experiments,” Physics of the Large and the Small, Mar 2011.
[67] A. M. Dziewonski and D. L. Anderson, “Preliminary reference earth model,” Physics of the Earth and Planetary Interiors, vol. 25, no. 4, pp. 297–356, 1981.
[68] R. A. Minzner, “The 1976 standard atmosphere and its relationship to earlier standards,” Jun 2010.
[69] T. Emken and C. Kouvaris, “How blind are underground and surface detectors to strongly interacting dark matter?,” Physical Review D, vol. 97, Jun 2018.
[70] G. Angloher, P. Bauer, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb, F. v. Feilitzsch, N. F. Iachellini, P. Gorla, and et al., “Results on mev-scale dark matter from a gram-scale cryogenic calorimeter operated above ground,” The European Physical Journal C, vol. 77, Sep 2017.
[71] J. Barreto, H. Cease, H. Diehl, J. Estrada, B. Flaugher, N. Harrison, J. Jones, B. Kilminster, J. Molina, J. Smith, and et al., “Direct search for low mass dark matter particles with ccds,” Physics Letters B, vol. 711, p. 264–269, May 2012.
[72] C. collaboration, F. Petricca, G. Angloher, P. Bauer, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb, F. v. Feilitzsch, N. F. Iachellini, P. Gorla, A. Gütlein, D. Hauff, J. Jochum, M. Kiefer, H. Kluck, H. Kraus, J. C. Lanfranchi, A. Lagenkämper, J. Loebell, M. Mancuso, E. Mondragon, A. Münster, C. Pagliarone, W. Potzel, F. Pröbst, R. Puig, F. Reindl, J. Rothe, K. Schäffner, J. Schieck, S. Schönert, W. Seidel, 101M. Stahlberg, L. Stodolsky, C. Strandhagen, R. Strauss, A. Tanzke, H. H. T. Thi, C. Türkoğlu, A. Ulrich, I. Usherov, S. Wawoczny, M. Willers, and M. Wüstrich, “First results on low-mass dark matter from the cresst-iii experiment,” 2017. [73] E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, F. Amaro, M. Anthony, F. Arneodo, P. Barrow, L. Baudis, B. Bauermeister, and et al., “First dark matter search results from the xenon1t experiment,” Physical Review Letters, vol. 119, Oct 2017.
[74] A. L. Erickcek, P. J. Steinhardt, D. McCammon, and P. C. McGuire, “Constraints on the interactions between dark matter and baryons from the x-ray quantum calorimetry experiment,” Physical Review D, vol. 76, Aug 2007.
[75] V. Gluscevic and K. K. Boddy, “Constraints on scattering of kev–tev dark matter with protons in the early universe,” Physical Review Letters, vol. 121, Aug 2018.
[76] C. A. O’Hare, “Dark matter astrophysical uncertainties and the neutrino floor,” Physical Review D, vol. 94, Sep 2016.
[77] C. Savage, G. Gelmini, P. Gondolo, and K. Freese, “Compatibility of DAMA/LIBRA dark matter detection with other searches,” Journal of Cosmology and Astroparticle Physics, vol. 2009, pp. 010–010, apr 2009.
[78] C. E. Aalseth, P. S. Barbeau, J. Colaresi, J. I. Collar, J. Diaz Leon, J. E. Fast, N. E. Fields, T. W. Hossbach, A. Knecht, M. S. Kos, and et al., “Cogent: A search for low-mass dark matter usingp-type point contact germanium detectors,” Physical Review D, vol. 88, Jul 2013.
[79] D. Neamen, Semiconductor Physics And Devices. USA: McGraw-Hill, Inc., 3 ed., 2002.
[80] C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B, vol. 24, pp. 1014–1026, Jul 1981.
[81] D. M. Riffe, “Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements,” J. Opt. Soc. Am. B, vol. 19, pp. 1092–1100, May 2002. 102
[82] T. Lackner, “Avalanche multiplication in semiconductors: A modification of chynoweth’s law,” Solid-State Electronics, vol. 34, no. 1, pp. 33 –42, 1991.
[83] W. Z. Wei, L. Wang, and D. M. Mei, “Average energy expended per e-h pair for germanium-based dark matter experiments,” JINST, vol. 12, no. 04, p. P04022, 2017.
[84] A. S. Starostin and A. G. Beda, “Germanium detector with an internal amplification for investigating rare processes,” Physics of Atomic Nuclei, vol. 63, no. 7, pp. 12971300, 2000.
[85] H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, G. Roelkens, and J. Van Campenhout, “Dark current analysis in high-speed germanium p-i-n waveguide photodetectors,” Journal of Applied Physics, vol. 119, no. 21, p. 213105, 2016.
[86] W.-Z. Wei, X.-H. Meng, Y.-Y. Li, J. Liu, G.-J. Wang, H. Mei, G. Yang, D.-M. Mei, and C. Zhang, “Investigation of amorphous germanium contact properties with planar detectors made from USD-grown germanium crystals,” Journal of Instrumentation, vol. 13, pp. P12026–P12026, dec 2018.
[87] Q. Looker, M. Amman, and K. Vetter, “Leakage current in high-purity germanium detectors with amorphous semiconductor contacts,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 777, pp. 138 –147, 2015.
[88] S. Li, Semiconductor Physical Electronics. Berlin, Heidelberg: Springer-Verlag, 2006.
[89] A. Milnes and D. Feucht, “Chapter 7 -metal–semiconductor junction behavior,” in Heterojunctions and Metal Semiconductor Junctions (A. Milnes and D. Feucht, eds.), pp. 171 –200, Academic Press, 1972.
[90] P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in inas avalanche photodiodes,” IEEE Journal of Quantum Electronics, vol. 47, no. 8, pp. 1123–1128, 2011.
[91] S. Bhattarai, R. Panth, W. Z. Wei, H. Mei, D. M. Mei, M. S. Raut, P. Acharya, and G. J. Wang, “Investigation of the electrical conduction mechanisms in P-type 103amorphous germanium electrical contacts for germanium detectors in searching for rare-event physics,” Eur. Phys. J. C, vol. 80, no. 10, p. 950, 2020.
[92] C. D. Bulucea and D. C. Prisecaru, “The calculation of the avalanche multiplication factor in silicon p—n junctions taking into account the carrier generation (thermal or optical) in the space-charge region,” IEEE Transactions on Electron Devices, vol. 20, no. 8, pp. 692–701, 1973.
[93] S. L. Miller, “Avalanche breakdown in germanium,” Phys. Rev., vol. 99, pp. 12341241, Aug 1955.
[94] P. Spirito, “Avalanche multiplication factors in ge and si abrupt junctions,” IEEE Transactions on Electron Devices, vol. 21, no. 3, pp. 226–231, 1974.
[95] L. Zhao, “A formula to calculate solid dielectric breakdown strength based on a model of electron impact ionization and multiplication,” AIP Advances, vol. 10, p. 025003, Feb. 2020.
[96] D. M. Mei et al., “Impact of Charge Trapping on the Energy Resolution of Ge Detectors for Rare-Event Physics Searches,” J. Phys. G, vol. 47, no. 10, p. 105106, 2020. |