以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:105 、訪客IP:13.58.28.196
姓名 羅偉碩(Wei-Shuo Lo) 查詢紙本館藏 畢業系所 物理學系 論文名稱
(Percolating transition from weak to strong turbulence of wind-induced water surface waves)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 隨外加驅動增強,非平衡系統可以觀察到如展透模型描述之由規則至紊亂態轉換。例如管流研究顯示隨雷諾數提升,層流到紊流態的轉始於局域性無序流場之紊流團塊(local turbulent puffs)在規則層流中間歇性的出現、擴散以及消失,進而形成巨大的紊流團塊展透(percolate)至整個時空間。相似的展透轉換(percolating transition)也在微粒電漿系統之規則平面微粒聲波至紊波轉換研究中發現。然上述的展透理行為研究僅限於由有序狀態至紊亂轉換,未曾觸及多尺度弱紊波到強紊波之轉換過程,特別是此轉換是否遵循在非平衡系統中由規則態至紊態紊展透轉換的普世規律。
風驅水面波,廣存於自然界,展現豐富的非線性時空動力行為,然過去研究未曾以展透模型的觀點探討其在驅動增強下之轉換過程。此研究中,我們透過在長型水槽上方安裝風洞提供穩定風流,由數位影像記錄水面高度起伏,通過小波分析計算出局域瞬時能量,決定局域熱區,以風行距 x (fetch,即觀測點離入風口距離)為控制參數,探討隨其增加水波由弱紊波至強紊波的轉換程序。
我們發現隨x增加,高振幅熱點會形成團簇並逐漸占據整個yt(y為垂直風行方向)空間,最終形成一個可以展透yt空間的巨型團簇,熱點團簇大小呈現無尺(scale-free)冪次分布。而熱點團簇相鄰團簇在時間與空間的距離,則伴隨著熱點的擴散類似stretch exponential 的形式遞減。諸多重要在臨界點的尺度指數(scaling exponent) 亦展現類似在非平衡系統中由規則態至紊態紊展透轉換的普世規律。摘要(英) With increasing driving, the percolating type transition from the ordered state to the turbulent state has been observed in non-equilibrium systems, as forest fires, epidemic hydrodynamic flows, and nonlinear waves. For example, recent studies on pipe flows demonstrated that the transition from the laminar flow to turbulence is associated with the uncertain emergence, spreading, and decaying of the localized disordered flow, called turbulent puff, in the form of clusters, followed by the emergence of a large cluster percolating through the space. Similar scenario was also demonstrated in recent study on turbulent transition from ordered plane waves in nonlinear dust acoustic waves. However, the above percolating transitions were only limited to the turbulent transition from the ordered state.
Wind-driven water surface wave widely exist in nature. The large numbers of degrees of freedom of water and wind, and their complicated mutual interaction makes the wind-driven water surface wave exhibit rich spatiotemporal behaviors. However, the transition scenario from weak to strong wave turbulence and the associated waveform dynamics, especially whether the transition scenario belongs to the general class of percolating transition found in previous studies on non-equilibrium systems remain elusive.
In this work, the above unexplored issues are experimentally investigated in a shallow water wave system driven by steady wind. The spatiotemporal wave height evolution can be directly monitored through diffusion light photography. Hot and cold turbulent sites (HTSs and CTSs, respectively) in the 1+1D spatiotemporal (yt) space are identified through wavelet transform. Here, y is normal to the wave propagation direction. It is found that, with increasing fetch (x, the distance from the wind entrance), the transition from the weakly turbulent state to the strong turbulent state is associated with the sporadic emergence of HTSs in the form of clusters following power-law cluster size distribution in the yt space, followed by the formation of a large HTSs cluster percolating through the yt space. The quiescent space and quiescent time between two neighboring clusters also exhibit stretched exponential distributions. The scaling exponents around the transition point are also similar to those found in the model and experimental studies of direct percolating transition in hydrodynamic flows.關鍵字(中) ★ 風吹水面波
★ 波動紊流
★ 展透理論關鍵字(英) ★ wind-induced water surface wave
★ wave turbulence
★ percolating theory論文目次 1. Introduction 1
2. Background 5
2.1 Non-equilibrium order-disorder transition 5
2.1.1 Directed percolation 5
2.1.2 Hydrodynamic turbulent transition 6
2.1.3 Wave turbulence transition 7
2.2 Water wave and water wave turbulence 9
2.2.1 Water waves 9
2.2.2 Water wave turbulence 10
2.3 Wind-induced water wave 10
3. Experiment setup and data analysis 12
3.1 Experimental setup 12
3.2 Data analysis 14
3.2.1 Wave height reconstruction 14
3.2.2 Wavelet transform 15
4 Result and Discussion 16
4.1 Spatiotemporal properties of the wind-induced water waves 16
4.2 Identification of hot turbulent sites through wavelet analysis 19
4.3 Spatiotemporal distribution of hot turbulent sites 21
4.4 Statistical behaviors of hot turbulent sites 23
4.5 Comparison with findings in the direct percolation transition from order to turbulence 26
5. Conclusion 28
6. Reference 31參考文獻 [1] Masaki Sano and Keiichi Tamai, Nature Physics 12, pages 249–253 (2016).
[2] Grégoire Lemoult, Liang Shi, Kerstin Avila, Shreyas V. Jalikop, Marc Avila, and Björn Hof, Nature Physics volume 12 (2016).
[3] Avila, K., Moxey, D., Lozar, A., Avila, M., Barkley D., and Hof, B. Science 333, 192 (2011).
[4] D. Traphan, T. T. Wester, G. Gulker, J. Peinke, and P. G. Lind. Phys. Rev. X 8, 021015 (2018).
[5] H. Y. Shih, T. L. Hsieh & N.Goldenfeld. Nature Physics 12, 245-248 (2016).
[6] Y. Pomeau, “Front motion, metastability and subcritical bifurcations in hydro-
dynamics,” Physica D 23, 3–11 (1986).
[7] H. Hinrichsen, “Non-equilibrium critical phenomena and phase transitions into absorbing states,” Adv. Phys. 49, 815–958 (2000).
[8] J. S. Martins and P. D. Oliveira, “Computer simulations of statistical models and dynamic complex systems,” Braz. J. Phys. 34, 1077–1101 (2004).
[9] V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992).
[10] P. Denissenko, S. Lukaschuk, and S. Nazarenko, Phys. Rev. Lett. 99, 34 014501 (2007).
[11] E. Falcon, C. Laroche, and S. Fauve, Phys. Rev. Lett. 98, 094503 (2007).
[12] F. Boyer and E. Falcon, Phys. Rev. Lett. 101, 244502 (2008).
[13] U. Bortolozzo et al., J. Opt. Soc. Am. B 26, 2280 (2009).
[14] A. Boudaoud, O. Cadot, B. Odille, and C. Touz´e, Phys. Rev. Lett. 100, 234504 (2008).
[15] N. Mordant, Phys. Rev. Lett. 100, 234505 (2008).
[16] E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich & S. K. Turitsyn, Nature Photonics volume 7 (2013).
[17] P. C. Lin, W. J. Chen, and L. I. Phys. Plasmas 27, 010703 (2020)
[18] E. Falcon, S. Fauve, and C. Laroche. Phys. Rev. Lett. 98, 154501 (2007).
[19] A. Cazaubiel, S. Mawet, A. Darras, G. Grosjean, J. J. W. A. van Loon, S. Dorbolo, and E. Falcon. Phys. Rev. Lett. 123, 244501 (2019)
[20] H. Punzmann, M. G. Shats, and H. Xia. Phys. Rev. Lett. 103, 064502 (2009).
[21] William B. Wright, Raffi Budakian, and Seth J. Putterman. Phys. Rev. Lett. 76, 4528 (1996)
[22] H. Xia, T. Maimbourg, H. Punzmann, and M. Shats. Phys. Rev. Lett. 109, 114502 (2012)
[23] W. Thomson, Proc. R. Soc. London. 42, 80–83 (1887).
[24] H. L. von Helmholtz, Philos. Mag. 36, 337 (1868).
[25] T. E. Faber, Fluid Dynamics for Physicists, 1st ed. (Cambridge University Press, Cambridge, 1995), Chaps. 1, 5, 7, and 8.
[26] O. M. Phillips, J. Fluid Mech. 2, 417–445 (1957).
[27] J. W. Miles, J. Fluid Mech. 3, 185–204 (1957).
[28] P. B. Marc and F. Veron, “Structure of the airflow above surface waves,” J. Phys. Oceanogr. 46, 1377–1397 (2016).
[29] F. Collard and G. Caulliez, “Oscillating crescent-shaped water wave patterns,”
Phys. Fluids 11, 3195–3197 (1999).
[30] A. Chabchoub, N. Hoffmann, H. Branger, C. Kharif, and N. Akhmediev,“Experiments on wind-perturbed rogue wave hydrodynamics using the peregrine breather model,” Phys. Fluids 25, 101704 (2013).
[31] N. J. M. Laxague, M. Curcic, J.-V. Björkqvist, and B. K. Haus, “Gravity-capillary wave spectral modulation by gravity waves,” IEEE Trans. Geosci. Remote Sens. 55, 2477–2485 (2017).
[32] N. Takagaki, S. Komori, K. Iwano, N. Suzuki, and H. Kumamaru, “Generation
method of wind waves under long-fetch conditions over a broad range of wind
speeds,” Procedia IUTAM 26, 184–193 (2018), part of special issue on iUTAM
Symposium on Wind Waves.
[33] W. Y. Zhang, W. X. Huang, and C. X. Xu, “Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries,” Phys. Rev. Fluids 4, 054601 (2019).
[34] C. Jiang, Y. Yang, and B. Deng, “Study on the nearshore evolution of regular
waves under steady wind,” Water 12, 686 (2020).
[35] D. Eeltink, A. Lemoine, H. Branger, O. Kimmoun, C. Kharif, J. D. Carter, A. Chabchoub, M. Brunetti, and J. Kasparian, “Spectral up- and downshifting of Akhmediev breathers under wind forcing,” Phys. Fluids 29, 107103 (2017).
[36] A. Paquier, F. Moisy, and M. Rabaud, Phys. Fluids. 27,122103 (2015)指導教授 伊林(Lin I) 審核日期 2021-7-23 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare