博碩士論文 104282606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.216.214.184
姓名 雷諾(Zeru Syum Hidaru)  查詢紙本館藏   畢業系所 物理學系
論文名稱 電極和溫度誘發界面效應對過渡金屬複合材料用於鋰離子電池的電化學活性之影響
(Electrode Support and Temperature Induced Interfacial Effect on the Electrochemical Activities of Transition Metal-Based Composite Materials for Li-Ion Batteries)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 可充電的鋰電池在近十多年來因為廣泛地應用在電動汽車工業、智慧型電網與行動裝置上而受到相當的關注。在現今的運輸產業中,鋰電池因為電池容量、工作穩定性以及壽命的需求不斷的增加,因此,新的陽極取代材料,例如二硫化錫(SnS2)與鋅銅錫硫化物(Cu2ZnSnS4,簡稱CZTS),因為其極高的理論電容量逐漸受到關注。然而,這些料在導電能力上的不足以及低溫下不佳的性能表現,加上充放電循環時體積膨脹的問題使得電池中電化學可逆性(electrochemical reversibility)和循環穩定性(cycling stability)仍無法滿足應用上的需求。
為了提升SnS2 與 CZTS在鋰離子電池中不足的導電能力、低溫下性能的表現以及抑制電容的劣化,我們改善其材料的表面型態(例如: 奈米結構)、分層配置(hierarchical configurations)和表面性質。本研究的結果顯示了材料的合成方式以及導體電極支架(conductive electrode support)作為儲存鋰離子負極材料的積體電極(integrated electrode)極為關鍵。我們在各種支撐層(conductive support),例如:無孔鉬箔(nonporous planar molybdenum foil)、多孔碳布(microporous carbon clothe)以及三維層狀碳管與碳布的複合材料(SnS2-CNT-CC)上直接沉積了片狀SnS2奈米結構。結果顯示,以SnS2生長於SnS2-CNT-CC表現出極佳的電容量保持能力(capacity retention)與循環充放電穩定性,優於片狀鉬與碳布的複合結構。SnS2-CNT-CC電極在循環充放電的表現以及速率比起其他電極架構好上許多,是因為在三維層狀CNT-CC的補助下具有較多的電子傳導途徑以及較大的表面積。
同樣地,我們也製備了CZTS薄膜,以探討在-10°C下、循環充放電時電解液與溫度效應。而結果顯示,透過水熱法(hydrothermal method)合成的四元鋅銅錫硫化物,在-10°C下,以EC/DEC/DMC作為電解液、在200次充放電循環後仍具有475 mAh g−1的可逆電容(reversible capacity); 相較之下,石墨電極在−10 °C、100次循環下為110 mAh g−1。CZTS的XPS陽極縱深分析(depth profile)結果也顯示在EC/DEC/DMC電解質中產生的固體電解質膜(solid electrolyte interphase,SEI)有較低的碳含量,其可能提供了低溫下界面的穩定性。CZTS循環充放電性質表現的提升可歸因於其改善後較佳的界面穩定性和鋰離子的動力學擴散機制,以及在低溫下形成活性材料架構。
摘要(英) Rechargeable lithium-ion batteries have attracted considerable attention over the previous two decades for a wide variety of applications such as electric vehicles, smart electricity grids, and portable energy devices. However, today′s lithium-ion batteries lack the higher capacity, stable operation capabilities, and longer lifetime required in transportation applications. In this regard, alternative anode materials, including, SnS2 and Cu2ZnSnS4 have received intensive attention because they deliver ultrahigh theoretical capacity. However, insufficient conductivity, poor low-temperature performance, and as well as volume expansion during cycling lead to poor electrochemical reversibility and cycling stability.

To address the insufficient conductivity, poor low-temperature performance, and mitigate the capacity degradation of SnS2 and Cu2ZnSnS4 materials in lithium–ion storage, morphology (e.g., nanosheet and nanowalls structures), hierarchical configuration, and surface properties of materials need to be developed.
In this regard, we demonstrated a synthesis and the importance of conductive electrode supports as integrated electrodes for anode materials in lithium-ion storage. We directly synthesize SnS2 nanosheet anode materials on various conductive supports, including nonporous planar molybdenum foils, macroporous carbon cloth as well as 3D hierarchical carbon nanotube-carbon cloth composites. Our findings reveal that the SnS2 nanosheet grown on 3D hierarchical carbon nanotube-carbon cloth composites (SnS2-CNT-CC) shows superior capacity retention and cycle stability, compared to that on planar molybdenum (Mo) sheets and carbon cloth. The SnS2-CNT-CC electrode outperforms the other electrode configurations in the cyclic performance and rate capability due to the multi-electron pathway and high surface area derived from 3D hierarchical CNT-CC electrode support.
Similarly, copper zinc tin sulfide (Cu2ZnSnS4, CZTS) thin-film were prepared to study the electrochemical activities under low-temperature (−10 °C ) and the effects of electrolyte on the electrochemical performance. Our results reveal that the quaternary CZTS synthesized by a simple hydrothermal method shows a higher reversible capacity of 475 mAh g−1 after 200 cycles at −10 °C with the EC/DEC/DMC-based electrolyte in the comparison with the graphite electrode (110 mAh g−1 after 100 cycles at −10 °C). The depth-profiling XPS results of the CZTS anode reveal that a solid electrolyte interphase (SEI) layer with less carbon content is formed in the EC/DEC/DMC-based electrolyte likely associated with the interfacial stability at low temperature. The enhanced cycling performance of CZTS could be attributed to its improved interfacial stability and Li+ diffusion kinetics, along with the formation of interconnected active material architecture at low temperatures.
關鍵字(中) ★ 鋰離子電池
★ 導電支撐層
★ 二硫化錫
★ 層狀碳複合材料
★ 酯基電極
★ 低溫電池
★ 鋅銅錫硫化物
關鍵字(英) ★ Lithium ion batteries
★ conductive supports
★ tin disulfide
★ hierarchical carbon composites
★ ester-based electrolyte
★ low-temperature battery
★ CZTS
論文目次 Tables of Content
論文摘要 i
Abstract ii
Acknowledgments iv
Tables of Content v
List of Figures vii
List of Tables xi
List of Abbreviations xii
1. Introduction 1
1.1. Energy Storage and Rechargeable Lithium-Ion Battery 1
1.2. Configuration and principle of reverseble batteries 3
1.3. Electrode materials for Lithium-Ion batteries 5
1.4. Effects of Low-Temperature on Anode Materials 8
1.5. Challenges of the Li-ion Batteries 10
1.6. Strategies for Developing Anode Materials 11
1.7. Thesis overview 13
2. Surface and Material Characterization Techniques 14
2.1. Introduction 14
2.1.1 Powder X-ray diffraction (PXRD) 14
2.1.2. Raman spectroscopy 15
2.1.3. Transmission Electron Microscopy (TEM) 15
2.1.4. Scanning Electron Microscopy (SEM) 16
2.1.5. X-ray photoelectron spectroscopy (XPS) 16
3. Lithium Ion Storage Performance of Hierarchical Tin Disulfide and Carbon Nanotube-Carbon Cloth Composites Materials 18
3.1. Introduction 18
3.2. Experimental Section 20
3.2.1. Characterization of SnS2 nanocomposites 20
3.2.2. Material Synthesis and Electrode Design Approaches 21
3.3. Result and Discussions 25
3.3.1. Morphology and structural characterization 25
3.3.2. Spectroscopy studies 31
3.3.3. Electrochemical Measurements 33
3.3.4. Lithium-Ion Storage Performance Characterizations 34
3.4. Summary 46
4. Copper Zinc Tin Sulfide Anode Materials for Lithium-ion Batteries at Low Temperature 47
4.1. Introduction 47
4.2. Experimental Methods 49
4.2.1. Characterization of Copper Zinc Tin Sulfide Thin Film Anode 50
4.2.2. Material Synthesis and Electrode Design Approaches 50
4.3. Result and Discussions 51
4.3.1. Morphology and structural characterization 52
4.3.2. Spectroscopy studies 54
4.3.3. Electrochemical Measurements 57
4.3.4. Lithium-Ion Storage Performance and Kinetics Analysis 59
4.4. Summary 72
5. Summary and Future Perspective 73
5.1. Summary 73
5.1.1. Conductive Electrode Support for Nanostructured SnS2 Nanosheets 73
5.1.2. Temperature Induced Interfacial Effect on The Electrochemical Activities of Nanostructured CZTS Electrode in Ester-based Electrolyte 75
5.2. Future Perspectives 76
Reference 78
Appendix A 99
List of Publications 103
List of Conferences/Award 104
參考文獻 (1) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
(2) Liang, J.; Li, F.; Cheng, H.-M. High-capacity lithium-ion batteries: Bridging future and current. Energy Storage Materials 2016, 4, A1-A2.
(3) Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343 (6176), 1210.
(4) Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
(5) Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451 (7179), 652-657.
(6) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126.
(7) Armand, M.; Tarascon, J. M. Building Better Batteries. Nature 2008, 451, 652.
(8) Kasavajjula, U.; Wang, C.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources 2007, 163, 1003-1039.
(9) Vazquez, S.; Lukic, S. M.; Galvan, E.; Franquelo, L. G.; Carrasco, J. M. Energy Storage Systems for Transport and Grid Applications. IEEE Transactions on Industrial Electronics 2010, 57 (12), 3881-3895.
(10) Budde-Meiwes, H.; Drillkens, J.; Lunz, B.; Muennix, J.; Rothgang, S.; Kowal, J.; Sauer, D. U. A review of current automotive battery technology and future prospects. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2013, 227 (5), 761-776.
(11) Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D. Batteries for Large-Scale Stationary Electrical Energy Storage. The Electrochemical Society Interface 2010, 19 (3), 49-53.
(12) Xu, J.; Dou, S.; Liu, H.; Dai, L. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2 (4), 439-442.
(13) Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 2004, 104 (10), 4245-4270.
(14) Divya, K. C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electric Power Systems Research 2009, 79 (4), 511-520.
(15) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
(16) Sparacino, A. R.; Reed, G. F.; Kerestes, R. J.; Grainger, B. M.; Smith, Z. T. In Survey of battery energy storage systems and modeling techniques, 2012 IEEE Power and Energy Society General Meeting, 22-26 July 2012; 2012; pp 1-8.
(17) Su , D. S.; Schlögl, R. Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem 2010, 3 (2), 136-168.
(18) Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO[sub 4] for Lithium Battery Cathodes. Journal of The Electrochemical Society 2001, 148 (3), A224.
(19) Yi, T.-F.; Jiang, L.-J.; Shu, J.; Yue, C.-B.; Zhu, R.-S.; Qiao, H.-B. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids 2010, 71 (9), 1236-1242.
(20) Zhou, G.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science 2014, 7 (4), 1307-1338.
(21) Gwon, H.; Hong, J.; Kim, H.; Seo, D.-H.; Jeon, S.; Kang, K. Recent progress on flexible lithium rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 538-551.
(22) Yamada, Y.; Usui, K.; Chiang, C. H.; Kikuchi, K.; Furukawa, K.; Yamada, A. General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes. ACS Applied Materials & Interfaces 2014, 6 (14), 10892-10899.
(23) Chan, M. K. Y.; Wolverton, C.; Greeley, J. P. First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon. Journal of the American Chemical Society 2012, 134 (35), 14362-14374.
(24) Shen, X.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Xu, R.; Chen, X.; Yan, C.; Su, F.-Y.; Chen, C.-M.; Liu, X.; Zhang, Q. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances 2021, 2021, 1205324.
(25) Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 2020, 49 (5), 1569-1614.
(26) Poizot, P.; Laruelle S Fau - Grugeon, S.; Grugeon S Fau - Dupont, L.; Dupont L Fau - Tarascon, J. M.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. (0028-0836 (Print)).
(27) Yu, S.-H.; Lee, S. H.; Lee, D. J.; Sung, Y.-E.; Hyeon, T. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small 2016, 12 (16), 2146-2172.
(28) Courtney, I. A.; Dahn, J. R. Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. Journal of The Electrochemical Society 1997, 144 (6), 2045-2052.
(29) Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. Journal of Power Sources 2010, 195 (9), 2419-2430.
(30) Wang, Y.; Huang, H.-Y. S., Comparison of Lithium-Ion Battery Cathode Materials and the Internal Stress Development. 2011; pp 1685-1694.
(31) Nyman, A.; Zavalis, T. G.; Elger, R.; Behm, M.; Lindbergh, G. Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations. Journal of the Electrochemical Society 2010, 157 (11), A1236-A1246.
(32) Park, G.; Gunawardhana, N.; Nakamura, H.; Lee, Y.-S.; Yoshio, M. The study of electrochemical properties and lithium deposition of graphite at low temperature. Journal of Power Sources 2012, 199, 293-299.
(33) Wang, C.-Y.; Zhang, G.; Ge, S.; Xu, T.; Ji, Y.; Yang, X.-G.; Leng, Y. Lithium-ion battery structure that self-heats at low temperatures. Nature 2016, 529 (7587), 515-518.
(34) Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M.; Mullins, C. B. Electrode Degradation in Lithium-Ion Batteries. ACS nano 2020, 14 (2), 1243-1295.
(35) Lu, Y.; Yu, L.; Lou, X. W. Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. Chem 2018, 4 (5), 972-996.
(36) Bragg, W. L. The diffraction of short electromagnetic Waves by a Crystal. Scientia 1929, 23 (45), 153.
(37) Jauncey, G. E. The Scattering of X-Rays and Bragg′s Law. (0027-8424 (Print)).
(38) Vbaková, H. In A powerful tool for material identification: Raman spectroscopy, 2011.
(39) Hofer, F.; Schmidt, F. P.; Grogger, W.; Kothleitner, G. Fundamentals of electron energy-loss spectroscopy. IOP Conference Series: Materials Science and Engineering 2016, 109, 012007.
(40) Ray, S.; Shard, A. G. Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy. Analytical Chemistry 2011, 83 (22), 8659-8666.
(41) Choi, N.-S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition 2012, 51 (40), 9994-10024.
(42) Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22 (3), 587.
(43) Manthiram, A. Materials Challenges and Opportunities of Lithium Ion Batteries. The Journal of Physical Chemistry Letters 2011, 2 (3), 176-184.
(44) Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39 (8), 3115-3141.
(45) Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. Journal of Materials Chemistry 2010, 20 (16), 3216-3220.
(46) Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews 2013, 113 (7), 5364-5457.
(47) Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
(48) Obrovac, M. N.; Chevrier, V. L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114, 11444.
(49) Xu, Y.; Liu Q Fau - Zhu, Y.; Zhu Y Fau - Liu, Y.; Liu Y Fau - Langrock, A.; Langrock A Fau - Zachariah, M. R.; Zachariah Mr Fau - Wang, C.; Wang, C. Uniform nano-Sn/C composite anodes for lithium ion batteries. (1530-6992 (Electronic)).
(50) Liu, D.; Liu, Z. J.; Li, X.; Xie, W.; Wang, Q.; Liu, Q.; Fu, Y.; He, D. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries. LID - 10.1002/smll.201702000 [doi]. (1613-6829 (Electronic)).
(51) Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Advanced Energy Materials 2014, 4 (1), 1300882, DOI: https://doi.org/10.1002/aenm.201300882.
(52) Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy & Environmental Science 2011, 4 (9), 3287-3295, DOI: 10.1039/C1EE01388B.
(53) Deng, J.; Ji H Fau - Yan, C.; Yan C Fau - Zhang, J.; Zhang J Fau - Si, W.; Si W Fau - Baunack, S.; Baunack S Fau - Oswald, S.; Oswald S Fau - Mei, Y.; Mei Y Fau - Schmidt, O. G.; Schmidt, O. G. Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. (1521-3773 (Electronic)).
(54) Ko, M.; Chae, S.; Cho, J. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries. ChemElectroChem 2015, 2 (11), 1645-1651.
(55) Wei, Z.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H.; Ma, J. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. Journal of Materials Chemistry A 2018, 6 (26), 12185-12214.
(56) Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery. Chemistry of Materials 2005, 17 (12), 3297-3301.
(57) Park, A.-R.; Park, C.-M. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes. ACS nano 2017, 11 (6), 6074-6084.
(58) Luo, B.; Qiu, T.; Hao, L.; Wang, B.; Jin, M.; Li, X.; Zhi, L. Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. Journal of Materials Chemistry A 2016, 4 (2), 362-367.
(59) Zhang, F.; Shen, Y.; Shao, M.; Zhang, Y.; Zheng, B.; Wu, J.; Zhang, W.; Zhu, A.; Huo, F.; Li, S. SnSe2 Nanoparticles Chemically Embedded in a Carbon Shell for High-Rate Sodium-Ion Storage. ACS Applied Materials & Interfaces 2020, 12 (2), 2346-2353.
(60) Coleman, J. N.; Lotya, M.; O′Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science (New York, N.Y.) 2011, 331 (6017), 568-571.
(61) Ke, H.; Luo, W.; Cheng, G.; Tian, X.; Pi, Z. Synthesis of flower-like SnS<sub>2</sub> nanostructured microspheres using PEG 200 as solvent Micro & Nano Letters [Online], 2009, p. 177-180.
(62) Liu, S.; Lu, X.; Xie, J.; Cao, G.; Zhu, T.; Zhao, X. Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces 2013, 5 (5), 1588-1595.
(63) Kim, E.; Son D Fau - Kim, T.-G.; Kim Tg Fau - Cho, J.; Cho J Fau - Park, B.; Park B Fau - Ryu, K.-S.; Ryu Ks Fau - Chang, S.-H.; Chang, S. H. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. (1433-7851 (Print)).
(64) Huang, J. Y.; Zhong L Fau - Wang, C. M.; Wang Cm Fau - Sullivan, J. P.; Sullivan Jp Fau - Xu, W.; Xu W Fau - Zhang, L. Q.; Zhang Lq Fau - Mao, S. X.; Mao Sx Fau - Hudak, N. S.; Hudak Ns Fau - Liu, X. H.; Liu Xh Fau - Subramanian, A.; Subramanian A Fau - Fan, H.; Fan H Fau - Qi, L.; Qi L Fau - Kushima, A.; Kushima A Fau - Li, J.; Li, J. In situ observation of the electrochemical lithiation of a single SnO₂ nanowire electrode. (1095-9203 (Electronic)).
(65) Chen, J.; Cheng, F. Combination of Lightweight Elements and Nanostructured Materials for Batteries. Accounts of chemical research 2009, 42 (6), 713-723.
(66) Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials 2006, 18 (17), 2325-2329.
(67) Xu, W.; Zhao, K.; Niu, C.; Zhang, L.; Cai, Z.; Han, C.; He, L.; Shen, T.; Yan, M.; Qu, L.; Mai, L. Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy 2014, 8, 196-204.
(68) Hou, C.; Wang, J.; Zhang, W.; Li, J.; Zhang, R.; Zhou, J.; Fan, Y.; Li, D.; Dang, F.; Liu, J.; Li, Y.; Liang, K. A.-O.; Kong, B. A.-O. Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage. (1944-8252 (Electronic)).
(69) Ji, L.; Xin, H. L.; Kuykendall, T. R.; Wu, S.-L.; Zheng, H.; Rao, M.; Cairns, E. J.; Battaglia, V.; Zhang, Y. SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Physical Chemistry Chemical Physics 2012, 14 (19), 6981-6986.
(70) Xu, W.; Xie, Z.; Cui, X.; Zhao, K.; Zhang, L.; Dietrich, G.; Dooley, K. M.; Wang, Y. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability. ACS Applied Materials & Interfaces 2015, 7 (40), 22533-22541.
(71) Chen, P.; Su, Y.; Liu, H.; Wang, Y. Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-Ion Storage and Photocatalytic Applications. ACS Applied Materials & Interfaces 2013, 5 (22), 12073-12082.
(72) Qu, B.; Ji, G.; Ding, B.; Lu, M.; Chen, W.; Lee, J. Y. Origin of the Increased Li+-Storage Capacity of Stacked SnS2/Graphene Nanocomposite. ChemElectroChem 2015, 2 (8), 1138-1143.
(73) Yan, S.; Li, K.; Lin, Z.; Song, H.; Jiang, T.; Wu, J.; Shi, Y. Fabrication of a reversible SnS2/RGO nanocomposite for high performance lithium storage. RSC Advances 2016, 6 (38), 32414-32421.
(74) Zhang, Q.; Li, R.; Zhang, M.; Zhang, B.; Gou, X. SnS2/reduced graphene oxide nanocomposites with superior lithium storage performance. Electrochimica Acta 2014, 115, 425-433.
(75) Wang, G.; Peng, J.; Zhang, L.; Zhang, J.; Dai, B.; Zhu, M.; Xia, L.; Yu, F. Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (7), 3659-3666.
(76) Zhang, Z.; Zhao, H. A.-O.; Du, Z.; Chang, X.; Zhao, L.; Du, X.; Li, Z.; Teng, Y.; Fang, J.; Świerczek, K. (101) Plane-Oriented SnS(2) Nanoplates with Carbon Coating: A High-Rate and Cycle-Stable Anode Material for Lithium Ion Batteries. (1944-8252 (Electronic)).
(77) Liu, Y.; Yu, X.-Y.; Fang, Y.; Zhu, X.; Bao, J.; Zhou, X.; Lou, X. W. Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage. Joule 2018, 2 (4), 725-735.
(78) Chen, Q.; Lu, F.; Xia, Y.; Wang, H.; Kuang, X. Interlayer expansion of few-layered Mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries. Journal of Materials Chemistry A 2017, 5 (8), 4075-4083.
(79) Bengono, D. A. M.; Zhang, B.; Yao, Y.; Tang, L.; Yu, W.; Zheng, J.; Chu, D.; Li, J.; Tong, H. Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Ionics 2020, 26 (4), 1695-1701.
(80) Luo, B.; Hu, Y.; Zhu, X.; Qiu, T.; Zhi, L.; Xiao, M.; Zhang, H.; Zou, M.; Cao, A.; Wang, L. Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A 2018, 6 (4), 1462-1472.
(81) Zhai, C.; Du, N.; Zhang, H.; Yu, J.; Yang, D. Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2011, 3 (10), 4067-4074.
(82) Wang, J.-G.; Sun, H.; Liu, H.; Jin, D.; Zhou, R.; Wei, B. Edge-oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A 2017, 5 (44), 23115-23122.
(83) Balogun, M.-S.; Qiu, W.; Jian, J.; Huang, Y.; Luo, Y.; Yang, H.; Liang, C.; Lu, X.; Tong, Y. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (41), 23205-23215.
(84) Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials 2012, 24 (38), 5166-5180.
(85) Horng, Y.-Y.; Lu, Y.-C.; Hsu, Y.-K.; Chen, C.-C.; Chen, L.-C.; Chen, K.-H. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. Journal of Power Sources 2010, 195 (13), 4418-4422.
(86) Yen, H.-F.; Horng, Y.-Y.; Hu, M.-S.; Yang, W.-H.; Wen, J.-R.; Ganguly, A.; Tai, Y.; Chen, K.-H.; Chen, L.-C. Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors. Carbon 2015, 82, 124-134.
(87) Mankelevich, Y. A.; Ashfold, M. N. R.; Ma, J. Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures. Journal of Applied Physics 2008, 104 (11), 113304.
(88) Wang, C. H.; Du, H. Y.; Tsai, Y. T.; Chen, C. P.; Huang, C. J.; Chen, L. C.; Chen, K. H.; Shih, H. C. High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC. Journal of Power Sources 2007, 171 (1), 55-62.
(89) Feng, J.; Chen, J.; Geng, B.; Feng, H.; Li, H.; Yan, D.; Zhuo, R.; Cheng, S.; Wu, Z.; Yan, P. Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism. Applied Physics A 2011, 103 (2), 413-419.
(90) Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano letters 2012, 12 (6), 3005-3011.
(91) Lee, S. H.; Jo, Y.-R.; Noh, Y.; Kim, B.-J.; Kim, W. B. Fabrication of hierarchically branched SnO2 nanowires by two-step deposition method and their applications to electrocatalyst support and Li ion electrode. Journal of Power Sources 2017, 367, 1-7.
(92) Zhou, J.; Jiang, Z.; Niu, S.; Zhu, S.; Zhou, J.; Zhu, Y.; Liang, J.; Han, D.; Xu, K.; Zhu, L.; Liu, X.; Wang, G.; Qian, Y. Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. Chem 2018, 4 (2), 372-385.
(93) Jiang, Y.; Song, D.; Wu, J.; Wang, Z.; Huang, S.; Xu, Y.; Chen, Z.; Zhao, B.; Zhang, J. Sandwich-like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. ACS nano 2019, 13 (8), 9100-9111.
(94) Lehman, J. H.; Terrones, M.; Mansfield, E.; Hurst, K. E.; Meunier, V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49 (8), 2581-2602.
(95) Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Bin Wu, H.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature communications 2014, 5 (1), 5002.
(96) Lu, F.; Chen, Q.; Wang, Y.; Wu, Y.; Wei, P.; Kuang, X. Flexible additive-free CC@TiOxNy@SnS2 nanocomposites with excellent stability and superior rate capability for lithium-ion batteries. RSC Advances 2016, 6 (29), 24366-24372.
(97) Wang, Q.; Huang, Y.; Miao, J.; Zhao, Y.; Wang, Y. Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochimica Acta 2013, 93, 120-130.
(98) Zhang Z Fau - Zhao, H.; Zhao, H. A.-O.; Fang J Fau - Chang, X.; Chang X Fau - Li, Z.; Li Z Fau - Zhao, L.; Zhao, L. Tin Disulfide Nanosheets with Active-Site-Enriched Surface Interfacially Bonded on Reduced Graphene Oxide Sheets as Ultra-Robust Anode for Lithium and Sodium Storage. (1944-8252 (Electronic)).
(99) Ge, X.; Liu, S.; Qiao, M.; Du, Y.; Li, Y.; Bao, J.; Zhou, X. Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel-Containing Carbon Nanofibers. Angewandte Chemie International Edition 2019, 58 (41), 14578-14583.
(100) Zhang, Z.; Zhao, H.; Fang, J.; Chang, X.; Li, Z.; Zhao, L. Tin Disulfide Nanosheets with Active-Site-Enriched Surface Interfacially Bonded on Reduced Graphene Oxide Sheets as Ultra-Robust Anode for Lithium and Sodium Storage. ACS Appl Mater Interfaces 2018, 10 (34), 28533-28540.
(101) Mei, L.; Xu, C.; Yang, T.; Ma, J.; Chen, L.; Li, Q.; Wang, T. Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries. Journal of Materials Chemistry A 2013, 1 (30), 8658-8664.
(102) Chao, J.; Zhang, X.; Xing, S.; Fan, Q.; Yang, J.; Zhao, L.; Li, X. Hierarchical three-dimensional porous SnS2/carbon cloth anode for high-performance lithium ion batteries. Materials Science and Engineering: B 2016, 210, 24-28.
(103) Huang, Z. X.; Wang, Y.; Liu, B.; Kong, D.; Zhang, J.; Chen, T.; Yang, H. Y. Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions. Scientific Reports 2017, 7 (1), 41015.
(104) Zhu, Y.; Chu, Y.; Liang, J.; Li, Y.; Yuan, Z.; Li, W.; Zhang, Y.; Pan, X.; Chou, S.-L.; Zhao, L.; Zeng, R. Tucked flower-like SnS2/Co3O4 composite for high-performance anode material in lithium-ion batteries. Electrochimica Acta 2016, 190, 843-851.
(105) Zhong, H.; Yang, G.; Song, H.; Liao, Q.; Cui, H.; Shen, P.; Wang, C.-X. Vertically Aligned Graphene-Like SnS2 Ultrathin Nanosheet Arrays: Excellent Energy Storage, Catalysis, Photoconduction, and Field-Emitting Performances. The Journal of Physical Chemistry C 2012, 116 (16), 9319-9326.
(106) Chang, K.; Wang, Z.; Huang, G.; Li, H.; Chen, W.; Lee, J. Y. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. Journal of Power Sources 2012, 201, 259-266.
(107) Gao, C.; Li, L.; Raji, A.-R. O.; Kovalchuk, A.; Peng, Z.; Fei, H.; He, Y.; Kim, N. D.; Zhong, Q.; Xie, E.; Tour, J. M. Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (48), 26549-26556.
(108) Liu, S. Y.; Lu, X.; Xie, J.; Cao, G. S.; Zhu, T. J.; Zhao, X. B. Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 1588.
(109) Jiang, Y.; Feng, Y.; Xi, B.; Kai, S.; Mi, K.; Feng, J.; Zhang, J.; Xiong, S. Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. Journal of Materials Chemistry A 2016, 4 (27), 10719-10726.
(110) Ma, Z.; Wang, Y.; Yang, Y.; Yousaf, M.; Zou, M.; Cao, A.; Han, R. P. S. Flexible hybrid carbon nanotube sponges embedded with SnS2 from tubular nanosheaths to nanosheets as free-standing anodes for lithium-ion batteries. RSC Advances 2016, 6 (36), 30098-30105.
(111) Deng, W.; Chen, X.; Liu, Z.; Hu, A.; Tang, Q.; Li, Z.; Xiong, Y. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. Journal of Power Sources 2015, 277, 131-138.
(112) Sun, H.; Ahmad, M.; Luo, J.; Shi, Y.; Shen, W.; Zhu, J. SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Materials Research Bulletin 2014, 49, 319-324.
(113) Zhang, L.; Huang, Y.; Zhang, Y.; Fan, W.; Liu, T. Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage. ACS Applied Materials & Interfaces 2015, 7 (50), 27823-27830.
(114) Zhai, C. X.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-ion Batteries. ACS Appl. Mater. Interfaces 2011, 3, 4067.
(115) Liu, Y.; Wang, C.; Yang, H.; Shi, Z.-J.; Huang, F.-Q. Uniform-loaded SnS2/single-walled carbon nanotubes hybrid with improved electrochemical performance for lithium ion battery. Materials Letters 2015, 159, 329-332.
(116) Guan, D.; Li, J.; Gao, X.; Yuan, C. Carbon nanotube-assisted growth of single-/multi-layer SnS2 and SnO2 nanoflakes for high-performance lithium storage. RSC Advances 2015, 5 (72), 58514-58521.
(117) Wu, Y.; Lin, G.; Zhou, X.; Chen, J.; Zhuang, J.; Chen, Q.; Luo, Y.; Lu, D.; Ganesh, V.; Zeng, R. Exploring structural stability mechanism of TiO2 encapsulated in 3D flower-like SnS2 anode for lithium ion batteries. Journal of Electroanalytical Chemistry 2020, 857, 113740.
(118) Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359.
(119) Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2008, 47 (16), 2930-2946.
(120) Liu, Y.; Zhou, G.; Liu, K.; Cui, Y. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity. Accounts of chemical research 2017, 50 (12), 2895-2905.
(121) Meng, J.; Guo, H.; Niu, C.; Zhao, Y.; Xu, L.; Li, Q.; Mai, L. Advances in Structure and Property Optimizations of Battery Electrode Materials. Joule 2017, 1 (3), 522-547.
(122) Wu, H.-L.; Huff, L. A.; Gewirth, A. A. In Situ Raman Spectroscopy of Sulfur Speciation in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2015, 7 (3), 1709-1719.
(123) Syum, Z.; Venugopal, B.; Sabbah, A.; Billo, T.; Chou, T.-C.; Wu, H.-L.; Chen, L.-C.; Chen, K.-H. Superior lithium-ion storage performance of hierarchical tin disulfide and carbon nanotube-carbon cloth composites. Journal of Power Sources 2021, 482, 228923.
(124) Zhu, G.; Wen, K.; Lv, W.; Zhou, X.; Liang, Y.; Yang, F.; Chen, Z.; Zou, M.; Li, J.; Zhang, Y.; He, W. Materials insights into low-temperature performances of lithium-ion batteries. Journal of Power Sources 2015, 300, 29-40.
(125) Luo, Y.; Xu, X.; Zhang, Y.; Pi, Y.; Zhao, Y.; Tian, X.; An, Q.; Wei, Q.; Mai, L. Hierarchical Carbon Decorated Li3V2(PO4)3 as a Bicontinuous Cathode with High-Rate Capability and Broad Temperature Adaptability. Advanced Energy Materials 2014, 4 (16), 1400107.
(126) Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. Journal of Power Sources 2014, 262, 129-135.
(127) Plichta, E. J.; Hendrickson, M.; Thompson, R.; Au, G.; Behl, W. K.; Smart, M. C.; Ratnakumar, B. V.; Surampudi, S. Development of low temperature Li-ion electrolytes for NASA and DoD applications. Journal of Power Sources 2001, 94 (2), 160-162.
(128) Ratnakumar, B. V.; Smart, M. C.; Surampudi, S. Effects of SEI on the kinetics of lithium intercalation. Journal of Power Sources 2001, 97-98, 137-139.
(129) Huang, C. K.; Sakamoto, J. S.; Wolfenstine, J.; Surampudi, S. The Limits of Low-Temperature Performance of Li-Ion Cells. Journal of The Electrochemical Society 2000, 147 (8), 2893.
(130) Zhang, S. S.; Xu, K.; Jow, T. R. A new approach toward improved low temperature performance of Li-ion battery. Electrochemistry Communications 2002, 4 (11), 928-932.
(131) Mancini, M.; Nobili, F.; Dsoke, S.; D’Amico, F.; Tossici, R.; Croce, F.; Marassi, R. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. Journal of Power Sources 2009, 190 (1), 141-148.
(132) Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. Journal of Power Sources 2010, 195 (15), 4997-5004.
(133) Zhang, S. S.; Xu, K.; Jow, T. R. Low temperature performance of graphite electrode in Li-ion cells. Electrochimica Acta 2002, 48 (3), 241-246.
(134) Smart, M. C.; Ratnakumar, B. V.; Surampudi, S. Use of Organic Esters as Cosolvents in Electrolytes for Lithium-Ion Batteries with Improved Low Temperature Performance. Journal of The Electrochemical Society 2002, 149 (4), A361.
(135) Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Croft, H.; Tice, D.; Staniewicz, R. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. Journal of Power Sources 2003, 119-121, 349-358.
(136) Tron, A.; Jeong, S.; Park, Y. D.; Mun, J. Aqueous Lithium-Ion Battery of Nano-LiFePO4 with Antifreezing Agent of Ethyleneglycol for Low-Temperature Operation. ACS Sustainable Chemistry & Engineering 2019, 7 (17), 14531-14538.
(137) Li, Q.; Jiao, S.; Luo, L.; Ding, M. S.; Zheng, J.; Cartmell, S. S.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (22), 18826-18835.
(138) Jansen, A. N.; Dees, D. W.; Abraham, D. P.; Amine, K.; Henriksen, G. L. Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode. Journal of Power Sources 2007, 174 (2), 373-379.
(139) Abraham, D. P.; Heaton, J. R.; Kang, S. H.; Dees, D. W.; Jansen, A. N. Investigating the Low-Temperature Impedance Increase of Lithium-Ion Cells. Journal of The Electrochemical Society 2008, 155 (1), A41.
(140) Sides, C. R.; Martin, C. R. Nanostructured Electrodes and the Low-Temperature Performance of Li-Ion Batteries. Advanced Materials 2005, 17 (1), 125-128.
(141) Sun, Z.; Li, Z.; Wu, X.-L.; Zou, M.; Wang, D.; Gu, Z.; Xu, J.; Fan, Y.; Gan, S.; Han, D.; Niu, L. A Practical Li-Ion Full Cell with a High-Capacity Cathode and Electrochemically Exfoliated Graphene Anode: Superior Electrochemical and Low-Temperature Performance. ACS Applied Energy Materials 2019, 2 (1), 486-492.
(142) Dong, X.; Guo, Z.; Guo, Z.; Wang, Y.; Xia, Y. Organic Batteries Operated at −70°C. Joule 2018, 2 (5), 902-913.
(143) Varzi, A.; Mattarozzi, L.; Cattarin, S.; Guerriero, P.; Passerini, S. 3D Porous Cu–Zn Alloys as Alternative Anode Materials for Li-Ion Batteries with Superior Low T Performance. Advanced Energy Materials 2018, 8 (1), 1701706.
(144) Ma, W.; Wang, Y.; Yang, Y.; Wang, X.; Yuan, Z.; Liu, X.; Ding, Y. Temperature-Dependent Li Storage Performance in Nanoporous Cu–Ge–Al Alloy. ACS Applied Materials & Interfaces 2019, 11 (9), 9073-9082.
(145) Fan, H.-H.; Li, H.-H.; Wang, Z.-W.; Li, W.-L.; Guo, J.-Z.; Fan, C.-Y.; Sun, H.-Z.; Wu, X.-L.; Zhang, J.-P. Tailoring Coral-Like Fe7Se8@C for Superior Low-Temperature Li/Na-Ion Half/Full Batteries: Synthesis, Structure, and DFT Studies. ACS Applied Materials & Interfaces 2019, 11 (51), 47886-47893.
(146) Liu, X.; Wang, Y.; Yang, Y.; Lv, W.; Lian, G.; Golberg, D.; Wang, X.; Zhao, X.; Ding, Y. A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 2020, 70, 104550.
(147) Liu, Y.; Yang, B.; Dong, X.; Wang, Y.; Xia, Y. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. Angewandte Chemie International Edition 2017, 56 (52), 16606-16610.
(148) Zhang, J.; Liu, X.; Wang, J.; Shi, J.; Shi, Z. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. Electrochimica Acta 2016, 187, 134-142.
(149) Ji, Y.; Zhang, Y.; Wang, C.-Y. Li-Ion Cell Operation at Low Temperatures. Journal of The Electrochemical Society 2013, 160 (4), A636-A649.
(150) Nobili, F.; Mancini, M.; Dsoke, S.; Tossici, R.; Marassi, R. Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. Journal of Power Sources 2010, 195 (20), 7090-7097.
(151) Yang, X.; Xu, J.; Xi, L.; Yao, Y.; Yang, Q.; Chung, C. Y.; Lee, C.-S. Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery. Journal of Nanoparticle Research 2012, 14 (6), 931.
(152) Jiang, Q.; Chen, X.; Gao, H.; Feng, C.; Guo, Z. Synthesis of Cu2ZnSnS4 as Novel Anode material for Lithium-ion Battery. Electrochimica Acta 2016, 190, 703-712.
(153) Wan, H.; Peng, G.; Yao, X.; Yang, J.; Cui, P.; Xu, X. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Materials 2016, 4, 59-65.
(154) Lin, J.; Guo, J.; Liu, C.; Guo, H. Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin-Film Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (31), 17311-17317.
(155) Chiu, J.-M.; Chou, T.-C.; Wong, D. P.; Lin, Y.-R.; Shen, C.-A.; Hy, S.; Hwang, B.-J.; Tai, Y.; Wu, H.-L.; Chen, L.-C.; Chen, K.-H. A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium ion storage. Nano Energy 2018, 44, 438-446.
(156) Chiu, J.-M.; Chen, E. M.; Lee, C.-P.; Shown, I.; Tunuguntla, V.; Chou, J.-S.; Chen, L.-C.; Chen, K.-H.; Tai, Y. Geogrid-Inspired Nanostructure to Reinforce a CuxZnySnzS Nanowall Electrode for High-Stability Electrochemical Energy Conversion Devices. Advanced Energy Materials 2017, 7 (12), 1602210.
(157) An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76.
(158) Schulz, N.; Hausbrand, R.; Dimesso, L.; Jaegermann, W. XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part I. Investigation of Initial Surface Chemistry. Journal of The Electrochemical Society 2018, 165 (5), A819-A832.
(159) Lee, J. T.; Nitta, N.; Benson, J.; Magasinski, A.; Fuller, T. F.; Yushin, G. Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy. Carbon 2013, 52, 388-397.
(160) Bree, G.; Geaney, H.; Stokes, K.; Ryan, K. M. Aligned Copper Zinc Tin Sulfide Nanorods as Lithium-Ion Battery Anodes with High Specific Capacities. The Journal of Physical Chemistry C 2018, 122 (35), 20090-20098.
(161) Choi, S.; Cho, Y.-G.; Kim, J.; Choi, N.-S.; Song, H.-K.; Wang, G.; Park, S. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range. Small 2017, 13 (13), 1603045.
(162) Zhang, Y.; Luo, Y.; Chen, Y.; Lu, T.; Yan, L.; Cui, X.; Xie, J. Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination. ACS Applied Materials & Interfaces 2017, 9 (20), 17145-17154.
(163) Zou, H. L.; Xiang, H. F.; Liang, X.; Feng, X. Y.; Cheng, S.; Jin, Y.; Chen, C. H. Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. Journal of Alloys and Compounds 2017, 701, 99-106.
(164) Wang, Y.; Ma, C.; Ma, W.; Fan, W.; Sun, Y.; Yin, H.; Shi, X.; Liu, X.; Ding, Y. Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Materials 2019, 6 (4), 045025.
(165) Li, Y.; Wong, K. W.; Dou, Q.; Zhang, W.; Ng, K. M. Improvement of Lithium-Ion Battery Performance at Low Temperature by Adopting Ionic Liquid-Decorated PMMA Nanoparticles as Electrolyte Component. ACS Applied Energy Materials 2018, 1 (6), 2664-2670.
(166) Huang, C.; Zhao, S.-X.; Peng, H.; Lin, Y.-H.; Nan, C.-W.; Cao, G.-Z. Hierarchical porous Li4Ti5O12–TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications. Journal of Materials Chemistry A 2018, 6 (29), 14339-14351.
(167) Li, J.; Wen, W.; Xu, G.; Zou, M.; Huang, Z.; Guan, L. Fe-added Fe3C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance. Electrochimica Acta 2015, 153, 300-305.
(168) Elia, G. A.; Nobili, F.; Tossici, R.; Marassi, R.; Savoini, A.; Panero, S.; Hassoun, J. Nanostructured tin–carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. Journal of Power Sources 2015, 275, 227-233.
(169) Li, K.; Lin, D.; Huang, H.; Liu, D.; Li, B.; Shi, S.-Q.; Kang, F.; Zhang, T.-Y.; Zhou, L. Interfacial kinetics induced phase separation enhancing low-temperature performance of lithium-ion batteries. Nano Energy 2020, 75, 104977.
(170) Cook, J. B.; Kim, H.-S.; Yan, Y.; Ko, J. S.; Robbennolt, S.; Dunn, B.; Tolbert, S. H. Mesoporous MoS2 as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li and Na-Ion Charge Storage. Advanced Energy Materials 2016, 6 (9), 1501937.
(171) Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials 2013, 12 (6), 518-522.
(172) Li, S.; Zhao, W.; Zhou, Z.; Cui, X.; Shang, Z.; Liu, H.; Zhang, D. Studies on Electrochemical Performances of Novel Electrolytes for Wide-Temperature-Range Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (7), 4920-4926.
(173) Liao, L. X.; Zuo, P. J.; Ma, Y. L.; An, Y. X.; Yin, G. P.; Gao, Y. Z. Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode. Electrochimica Acta 2012, 74, 260-266.
指導教授 陳貴賢 林麗瓊 陳賜原(Kuei-Hsien Chen Li-Chyong Chen Szu-Yuan Chen) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明