博碩士論文 104388603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.188.20.56
姓名 芭納利(BHAVANARI MALLIKARJUN)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 高效水分解電極之研究
(Efficient Catalytic Electrodes for Water Dissociation)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 為滿足未來大量可再生能源的間歇性發電造成的儲能問題,從能耗最小化的角度來探討能源的轉換,氫能被認為是最重要的解決方案,可滿足當前與未來的能源需求。利用再生能源電解水產氫僅會產生副產物氧氣,是生產潔淨氫的最佳方法。電解槽以工作酸鹼條件作區分,可分為質子交換膜proton exchange membrane, PEM)型和鹼性電解(alkaline electrolysis, AE) 型兩種。電解槽的電極須具備高效率、可自支撐性與低成本。為了降低電解水的能耗與提升效率,需降低催化劑分解水的電化學反應電位以降低電極工作電壓、增加觸媒表面積以增加活性部位 (active site)。同時,觸媒支撐材料需具備合適的三維結構,提供電解質傳輸與氣泡擴散的路徑。本論文包含兩項高效且經濟的電解水觸媒之研究並成功應用於PEM與AE電解槽的陰極。
第一項研究以熱退火與浸塗製程製備高電導性與具硫邊緣(S-edge)反應位MoSx奈米顆粒於具有氮參雜石墨烯碳布的表面作為高效催化電解產氫的電極。研究首先以X光光電子能譜、X光近邊光譜與電子能量損失能譜分析MoSx奈米顆粒沉積位置與石墨烯不同氮官能基 (nitrogen-functionality) 的組成奈米結構與電子組態。研究發現相較位於吡咯氮位的MoSx奈米顆粒,位於石墨氮位與吡啶氮位的MoSx奈米顆粒具有較佳的量子傳導與電子傳輸率。當MoSx奈米顆粒成長於石墨氮位較多的樣品時,具有較低的塔菲爾斜率 (Tafel slope) ,39.6 mV dec-1於0.5 M H2SO4硫酸溶液工作電壓215 mV與電流密度 10 mA cm-2 。Mo-N-C鍵結的高效電荷傳導性直接促進了MoSx奈米顆粒觸媒S-edge反應位的反應活性,並且多孔性的石墨烯與具三維結構的碳布進一步提升電解液與氣泡擴散的傳輸能力,在5000圈的加速老化測試中維持了95% 的性能,此研究開發的電解電極可應用於PEM電解槽。
第二項研究為製備CuFe層狀雙氫氧化合物 (Layered double hydroxide, LDH) 於三維鎳金屬發泡材應用於鹼性電解產氫。LDH是一種具有大量電催化活性部位的三維材料結構,金屬材料因容易與酸反應故較適合應用於鹼性電解槽。較低空d-軌域元素具有高的質子吸附能力與較高電子傳導能力,本研究製備之CuFe LDH於1.0 M NaOH工作電壓達159 mV時,電流密度達 10 mA cm-2。交互相連的LDH三維層狀結構使電荷與氣體有效傳輸,進一步提升了觸媒穩定性,於電流密度 30 mA cm-2可維持5和10小時以上。這項研究高性能的CuFe層狀雙氫氧化合物可大幅降低鹼性電解槽的成本。
我們開發了一種具有高反應面積、快速電荷轉移和具協同催化的電解觸媒,該電解觸媒具有優異的催化活性和良好的耐久性。這項工作有助降低PEM和AE電解槽的工作電壓,降低能源轉換消耗,能進一步降低觸媒成本,此觸媒可應用於各種儲能與發電裝置。本研究工作有助於促進減少使用化石燃料,並過渡到清潔能源發電系統。
摘要(英) In the perspective of clean energy transition with minimal losses, hydrogen is considered as a clean and sustainable energy carrier for reaching the current and future energy demands. Water dissociation is a favorable way to generate clean hydrogen with oxygen as byproduct. But it requires more external energy to start the water splitting. The hydrogen evolution and water oxidation reactions rely on highly effective electrocatalysts. The pH favored dissociation for low energy promoted two types of electrolysis cells namely, proton exchange membrane (PEM) and alkaline electrolysis (AE). Both of the types requires an efficient, low cost and robust self-supported electrodes. Moreover, lowering the potential required for generating hydrogen also reduces the energy required to initiate the reaction. The abundant exposed active sites with facile charge transport to active sites is one of the ways to enhance the efficiency of the catalyst. Also, the 3D structure of the catalyst and support provides larger surface area for catalytic process with electrolyte transport and bubble diffusion. This dissertation is an account of two detailed studies on developing highly efficient and cost effective electrocatalysts as cathode for water dissociation in PEM and AE.
MoSx nanoparticles with excellent conductivity and exposed reactive S-edge sites is functionally grown on nitrogen-doped-graphene pre-engrafted on a flexible carbon cloth by a thermal annealing and dip coating process as model system for developing an efficient electrocatalyst for hydrogen evolution reaction. The specific fraction of N is analyzed by X-ray photoelectron spectroscopy, X-ray near edge spectroscopy and energy electron loss spectroscopy to analyze the selective positioning of MoSx on nitrogen-functionality present in graphene structure. It was found that, MoSx is positioned on the graphitic ‘N’ and pyridinic ‘N’ site, where the quantum conductance and electron transport required is higher compared to pyrrolic ‘N’. MoSx nanoparticles grown on nitrogen doped graphene with higher amount of Graphitic ‘N’ require extremely low Tafel slope of 39.6 mV dec-1 with an overpotential of 214 mV at 10 mA cm-2 in 0.5 M H2SO4 solution. The Mo-N-C bond facilitates highly effective charge transfer directly to the active sulfur sites on the edges of MoSx. The porous structure of graphene and three dimensional structure of carbon cloth facilitates easy electrolyte and bubble diffusion required in continuous water dissociation process. The conducting support, graphene, functional bonding for constant electron transport to the S-edge site of MoSx helped in maintaining the excellent stability of the catalyst upto 5000 cycles with 95% retention. The electrocatalyst developed for PEM electrolysis is promising for current day clean energy generation.
Layered double hydroxide (LDH) structures are three dimensional materials with larger exposed active sites for electrocatalytic process. The reaction of metals with acid hinders the utilization of LDH for PEM electrolysis. Transition metal LDH possess excellent stability for oxygen evolution reaction in AE. CuFe layered double hydroxide is synthesized on a three dimensional nickel foam to promote HER in AE. The higher proton adsorption kinetics of lower empty d-orbital containing transition elements and their easy electron transfer outperformed CuFe LDH to generate 10 mA cm-2 with 159 mV for HER in 1M NaOH solution. The efficient charge transfer with interconnected LDH layers, favorable three dimensional structure facilitates easy electron transfer to active site and gas diffusion helped in maintaining the stability of catalyst at 30 mA cm-2 for 5 and 10 hours. This work helps in development of low cost and efficient hydroxide catalyst for HER.
We developed an electrocatalyst with high effective surface area, fast charge transfer kinetics, and strong synergistic coupled electrocatalyst with excellent catalytic activity and good durability for water dissociation. This work helps in reducing the potentials of water dissociation in both PEM and AE. Also, the strategical approach of designing an efficient and low cost catalyst helps in development of efficient electrocatalysts for various energy storage and generation application. This work helps in transition of the fossil fuel to clean energy generation systems.
關鍵字(中) ★ 析氫反應
★ 水分解
★ 電催化劑
★ 陰極
★ 層狀氫氧化物
★ MoSx
★ 石墨烯
★ CuFe 層狀氫氧化物
關鍵字(英) ★ Hydrogen evolution reaction
★ water splitting
★ electrocatalyst
★ cathode
★ layered double hydroxide
★ MoSx
★ graphene
★ CuFe layered double hydroxide
論文目次 Table of Contents

Chinese abstract v
English abstract vii
Dedication ix
Acknowledgement x
List of appended papers xii
Conference Presentations xiii
Table of Contents xv
List of Figures xviii
List of Tables xxii
List of Acronyms xxiii
Chapter 1

Introduction…………………………………………...………………………... 1
1.1 Background…………………………………………………………………. 1
1.2 Kinetics of the HER………………………………………………………… 4
1.3 Turnover frequency………………………………………………………… 7
1.4 Stability………………………………………………………………………. 8
1.5 Principle of electrolysis cell………………………………………………… 8

Chapter 2

Literature review……………………………………………………………… 10
2.1 Cathode electrocatalyst for Proton Exchange Membrane……………. 10
2.2 Cathode electrocatalyst for Alkaline Electrolysis Cell…………………. 14
Chapter 3

Experimental Procedures…………………………………………………… 20
3.1 Materials……………………………………………………………………. 20
3.2 Preparation of Catalyst……………………………………………………. 20
3.2.1 MoSx of Nitrogen doped graphene…………………..................... 20
3.2.1.1 Synthesis of graphene oxide………………………................ 20
3.2.1.2 Preparation of nitrogen-doped graphene/CC Composite…. 21
3.2.1.3 Preparation of rGO/CC composite………………………...... 21
3.2.1.4 Preparation of MoSx/Graphene/CC hybrid electrodes……. 21
3.2.2 Preparation of CuFe Electrocatalyst on Ni foam……................. 22
3.3 Characterizations………………………………………………………….. 23
3.3.1 Material characterization…………………................................... 23
3.3.2 Elemental Characterization……………………………………….. 23
3.3.3 Electrochemical characterization…………………………………. 24

Chapter 4

MoSx on Nitrogen-doped Graphene for High Efficiency Hydrogen Evolution Reaction…………………………………………………………… 27
4.1 Morphological analysis by scanning electron microscope……………. 30
4.2 Elemental and Functional characterization by X-ray Photoelectron Spectroscopy…………………………………………….……………….. 33
4.3 Elemental and Functional characterization by X-ray Absorption Near Edge Spectroscopy ……………………………………………………… 35
4.4 Functional characterization by Energy Electron Loss Spectroscopy… 44
4.5 Pictorial Representation of the MNG/CC Catalyst…………………….. 46
4.6 Electrochemical characterization by Hydrogen Evolution Reaction…. 49
4.7 Mechanism of MNGy catalyst for hydrogen evolution reaction………. 54
4.8 Reproducibility…………………………………………………………….. 55
4.9 Stability test………………………………………………………………... 57
4.10 Characterization of Stability Samples by High resolution - Transmission Electron Microscopy and Energy Electron Loss Spectroscopy……… 64
4.11 Characterization of Stability Samples by X-ray Photoelectron Spectroscopy……………………………………………………………… 68

Chapter 5

CuFe Layered Double Hydroxide for Hydrogen Evolution Reaction in Alkaline Electrolysis………..…………………………………………………74
5.1 Morphological characterization of CuFe LDH……………………………74
5.2 Structural Characterization of CuFe LDH…………….…………………. 77
5.3 Elemental characterization by X-ray Photoelectron Spectroscopy....... 79
5.4 Electrochemical characterization of CuFe LDH for Hydrogen Evolution Reaction……………………………………………………………………..81
5.5 Stability test………………………………………………………………….86
5.6 Morphological Analysis of Stability Samples……………………………. 90

Chapter 6

Conclusions………..……………………..……….…..……………………… 94

References………………….………..…………………….…….…..………... 97
參考文獻 [1] A. Midilli, M. Ay, I. Dincer, M. A. Rosen, “On hydrogen and hydrogen energy strategies I: current status and needs”, Renewable and Sustainable Energy Reviews, 9, 255-271 (2005).
[2] M. S. Dresselhaus, I. L. Thomas, “Alternative energy technologies”, Nature, 414, 332-337 (2001).
[3] G. J. Stiegel, M. Ramezan, “Hydrogen from coal gasification: An economical pathway to a sustainable energy future” International Journal of Coal Geology, 65, 173-190 (2006).
[4] M. H. Shedid, S. Elshokary, “Hydrogen Production from an Alkali Electrolyzer Operating with Egypt Natural Resources”, Smart Grid and Renewable Energy, 06 (01), 12.
[5] D. R. Palo, R. A. Dagle, J. D. Holladay, “Methanol steam reforming for hydrogen production”, Chemical Reviews, 107, 3992-4021 (2007).
[6] X. X. Zou, Y. Zhang, “Noble metal-free hydrogen evolution catalysts for water splitting”, Chemical Society Reviews, 44, 5148-5180 (2015).
[7] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, “Highly active oxide photocathode for photoelectrochemical water reduction”, Nature Materials, 10, 456-461 (2011).
[8] Y. H. Hung, C. Y. Su, “Highly efficient electrocatalytic hydrogen production via MoSx/3D-graphene as hybrid electrode”, International Journal of Hydrogen Energy, 42, 22091-22099 (2017).
[9] L. B. Wu, L. Yu, X. Xiao, F. H. Zhang, S. W. Song, S. Chen, Z. F. Ren, “Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction”, Research, 2020, 3976278-3976278 (2020).
[10] M. K. Min, J. H. Cho, K. W. Cho, H. Kim, “Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications”, Electrochimica Acta, 45, 4211-4217 (2000).
[11] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, “Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions”, The Journal of Physical Chemistry Letters, 3, 399-404 (2012).
[12] Q. Yuan, Z. Y. Zhou, J. Zhuang, X. Wang, Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities”, Chemical Communications, 46, 1491-1493 (2010).
[13] X. L. Yang, A. Y. Lu, Y. Zhu, S. X. Min, M. N. Hedhili, Y. Han, K. W. Huang, L. J. Li, “Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution”, Nanoscale, 7, 10974-10981 (2015).
[14] C. J. Tseng, C. H. Wang, K. W. Cheng, “Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process”, Solar Energy Materials and Solar Cells, 96, 33-42 (2012).
[15] K. R. Lee, Y. P. Hsu, J. K. Chang, S. W. Lee, C. J. Tseng, J. S. C. Jang, “Effects of Spin Speed on the Photoelectrochemical Properties of Fe2O3 Thin Films”, International Journal of Electrochemical Science, 9, 7680-7692 (2014).
[16] A. L. Wang, H. Xu, G. R. Li, “NiCoFe Layered Triple Hydroxides with Porous Structures as High-Performance Electrocatalysts for Overall Water Splitting”, ACS Energy Letters, 1, 445-453 (2016).
[17] Q. S. Liang, K. K. Huang, X. F. Wu, X. Y. Wang, W. Ma, S. H. Feng, “Composition-controlled synthesis of Ni2-xCoxP nanocrystals as bifunctional catalysts for water splitting”, RSC Advances, 7, 7906-7913 (2017).
[18] E. Skulason, G. S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jonsson, J. K. Norskov, “Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode”, Physical Chemistry Chemical Physics, 9, 3241-3250 (2007).
[19] W. Li, G. H. Liu, J. D. Li, Y. J. Wang, L. Ricardez-Sandoval, Y. G. Zhang, Z. S. Zhang, “Hydrogen evolution reaction mechanism on 2H-MoS2 electrocatalyst”, Applied Surface Science, 498, 143869 (2019).
[20] R. Moca, "Novel Inorganic materials for hydrogen evolution reaction in electrochemical water splitting", Ph.D., Thesis, University of Glasgow, Scotland, United Kingdom (2019).
[21] J. M. Wei, M. Zhou, A. C. Long, Y. M. Xue, H. B. Liao, C. Wei, Z. C. J. Xu, “Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions”, Nano-Micro Letters, 10, 75 (2018).
[22] C. G. Morales-Guio, L. A. Stern, X. Hu, “Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution”, Chemical Society Reviews, 43, 6555-6569 (2014).
[23] I. Chorkendorff, J. W. Niemantsverdriet, “Concepts of modern catalysis and kinetics”, Wiley-VCH, Weinheim, pp. 1- 452 (2003).
[24] N. M. Markovic, P. N. Ross, “Surface science studies of model fuel cell electrocatalysts”, Surface Science Reports, 45, 121-229 (2002).
[25] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F. Jaramillo, “Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials”, ACS Catalysis, 4, 3957-3971 (2014).
[26] J. O. M. Bockris, E. C. Potter, “The Mechanism of the Cathodic Hydrogen Evolution Reaction”, Journal of The Electrochemical Society, 99, 169 (1952).
[27] A. J. Bard, L. R. Faulkner, “Electrochemical methods : fundamentals and applications”, Wiley, New York, 2nd edition, pp. 1-833 (2001).
[28] E. Gileadi, “Physical electrochemistry : fundamentals, techniques and applications”, WILEY-VCH, Weinheim, pp 1-373 (2011).
[29] F. M. Sapountzi, J. M. Gracia, C. J. Weststrate, H. O. A. Fredriksson, J. W. Niemantsverdriet, “Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas”, Progress in Energy and Combustion Science, 58, 1-35 (2017).
[30] S. Shiva Kumar, V. Himabindu, “Hydrogen production by PEM water electrolysis – A review”, Materials Science for Energy Technologies, 2, 442-454 (2019).
[31] J. Zhu, Z. C. Wang, H. Dai, Q. Wang, R. Yang, H. Yu, M. Liao, J. Zhang, W. Chen, Z. Wei, N. Li, L. Du, D. Shi, W. Wang, L. Zhang, Y. Jiang, G. Zhang, “Boundary activated hydrogen evolution reaction on monolayer MoS2”, Nature Communications, 10, 1348 (2019).
[32] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F. Jaramillo, “Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials”, ACS Catalysis, 4, 3957-3971 (2014).
[33] Y. Yan, B. Y. Xia, Z. C. Xu, X. Wang, “Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction”, ACS Catalysis, 4, 1693-1705 (2014).
[34] P. Liu, J. Li, Y. Lu, B. Xiang, “Facile synthesis of NiS2 nanowires and its efficient electrocatalytic performance for hydrogen evolution reaction”, International Journal of Hydrogen Energy, 43, 72-77 (2018).
[35] J. Y. Zhang, Y. C. Liu, C. Q. Sun, P. X. Xi, S. L. Peng, D. Q. Gao, D. S. Xue, “Accelerated Hydrogen Evolution Reaction in CoS2 by Transition-Metal Doping”, ACS Energy Letters, 3, 779-786 (2018).
[36] J. Y. Zhang, W. Xiao, P. X. Xi, S. B. Xi, Y. H. Du, D. Q. Gao, J. Ding, “Activating and Optimizing Activity of CoS2 for Hydrogen Evolution Reaction through the Synergic Effect of N Dopants and S Vacancies”, ACS Energy Letters, 2, 1022-1028 (2017).
[37] T. T. Wang, D. Q. Gao, W. Xiao, P. X. Xi, D. S. Xue, J. Wang, “Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions”, Nano Research, 11, 6051-6061 (2018).
[38] X. Zhang, J. Ji, Q. Yang, L. Zhao, Q. Yuan, Y. Hao, P. Jin, L. Feng, “Phosphate Doped Ultrathin FeP Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction in Acid Media”, ChemCatChem, 11, 2484-2489 (2019).
[39] T. Liu, P. Li, N. Yao, G. Cheng, S. Chen, W. Luo, Y. Yin, “CoP-Doped MOF-Based Electrocatalyst for pH-Universal Hydrogen Evolution Reaction”, Angewandte Chemie International Edition, 131, 4727-4732 (2019).
[40] J. Kibsgaard, T. F. Jaramillo, “Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction”, Angewandte Chemie International Edition, 53, 14433-14437 (2014).
[41] E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, “Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction” Journal of the American Chemical Society, 135, 9267-9270 (2013).
[42] P. V. Sarma, C. S. Tiwary, S. Radhakrishnan, P. M. Ajayan, M. M. Shaijumon, “Oxygen incorporated WS2 nanoclusters with superior electrocatalytic properties for hydrogen evolution reaction”, Nanoscale, 10, 9516-9524 (2018).
[43] W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, “Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production”, Energy & Environmental Science, 6, 943-951 (2013).
[44] T. Ishii, K. Yamada, N. Osuga, Y. Imashiro, J.I. Ozaki, “Single-Step Synthesis of W2C Nanoparticle-Dispersed Carbon Electrocatalysts for Hydrogen Evolution Reactions Utilizing Phosphate Groups on Carbon Edge Sites”, ACS Omega, 1, 689-695 (2016).
[45] T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts”, Science, 317, 100-102 (2007).
[46] Y. H. Hung A. Y. Lu, Y. H. Chang, J. K. Huang, J. K. Chang, L. J. Li, C. Y. Su, “Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries”, ACS Applied Materials & Interfaces, 8, 20993-21001 (2016).
[47] J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman, T. F. Jaramillo, “Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity”, ACS Catalysis, 2, 1916-1923 (2012).
[48] Y. Yan, B. Xia, X. Ge, Z. Liu, J.-Y. Wang, X. Wang, “Ultrathin MoS2 Nanoplates with Rich Active Sites as Highly Efficient Catalyst for Hydrogen Evolution”, ACS Applied Materials & Interfaces, 5, 12794-12798 (2013).
[49] D. Merki, S. Fierro, H. Vrubel, X. Hu, “Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water”, Chemical Science, 2, 1262-1267 (2011).
[50] X. R. Gan, L. Y. S. Lee, K. Y. Wong, T. W. Lo, K. H. Ho, D. Y. Lei, H. M. Zhao, “2H/1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies”, ACS Applied Energy Materials, 1, 4754-4765 (2018).
[51] D. Z. Wang, X. Y. Zhang, S. Y. Bao, Z. T. Zhang, H. Fei, Z. Z. Wu, “Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution”, Journal of Materials Chemistry A, 5, 2681-2688 (2017).
[52] H. F. Dong, C. H. Liu, H. T. Ye, L. P. Hu, B. S. Fugetsu, W. H. Dai, Y. Cao, X. Q. Qi, H. T. Lu, X. J. Zhang, “Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction”, Scientific Reports, 5, (2015).
[53] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, “The role of graphene for electrochemical energy storage”, Nature Materials, 14, 271-279 (2015)..
[54] K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang, Y. Chen, C. Yuan, X. Feng, U. Scherf, “Synergetic Contribution of Boron and Fe-Nx Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction”, ACS Energy Letters, 3, 252-260 (2018).
[55] Y. H. Hung, D. Dutta, C. J. Tseng, J. K. Chang, A. J. Bhattacharyya, C. Y. Su, “Manipulation of Heteroatom Substitution on Nitrogen and Phosphorus Co-Doped Graphene as a High Active Catalyst for Hydrogen Evolution Reaction”, The Journal of Physical Chemistry C, 123, 22202-22211 (2019).
[56] G. Y. Li, Z. H. Li, X. Xiao, Y. L. An, W. Wang, Z. Q. Hu, “An ultrahigh electron-donating quaternary-N-doped reduced graphene oxide@carbon nanotube framework: a covalently coupled catalyst support for enzymatic bioelectrodes”, J. Mater. Chem. A, 7, 11077-11085 (2019).
[57] S. K. Park, D. Y. Chung, D. Ko, Y. E. Sung, Y. Piao, “Three-dimensional carbon foam/N-doped graphene@MoS2 hybrid nanostructures as effective electrocatalysts for the hydrogen evolution reaction”, Journal of Materials Chemistry A, 4, 12720-12725 (2016).
[58] Y. J. Tang, Y. Wang, X. L. Wang, S. L. Li, W. Huang, L. Z. Dong, C. H. Liu, Y. F. Li, Y. Q. Lan, “Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution”, Advanced Energy Materials, 6, 1600116 (2016).
[59] F. C. Yang, M. J. Kim, M. Brown, B. J. Wiley, “Alkaline Water Electrolysis at 25 A cm-2 with a Microfibrous Flow-through Electrode”, Advanced Energy Materials, 10, 2001174 (2020).
[60] Q. F. Liu, E. D. Wang, G. Q. Sun, “Layered transition-metal hydroxides for alkaline hydrogen evolution reaction”, Chinese Journal of Catalysis, 41, 574-591 (2020).
[61] S. Si, H. S. Hu, R. J. Liu, Z. X. Xu, C. B. Wang, Y. Y. Feng, “Co-NiFe layered double hydroxide nanosheets as an efficient electrocatalyst for the electrochemical evolution of oxygen” International Journal of Hydrogen Energy, 45, 9368-9379 (2020).
[62] X. L. Ma, X. M. Li, A. D. Jagadale, X. G. Hao, A. Abudula, G. Q. Guan, “Fabrication of Cu(OH)2@NiFe-layered double hydroxide catalyst array for electrochemical water splitting”, International Journal of Hydrogen Energy, 41, 14553-14561 (2016).
[63] Y. L. Zhu, Q. Lin, Y. J. Zhong, H. A. Tahini, Z. P. Shao, H. T. Wang, “Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts”, Energy & Environmental Science ,13, 3361-3392 (2020).
[64] L. H. Zhang, Q. Fan, K. Li, S. Zhang, X. B. Ma, “First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings”, Sustainable Energy & Fuels, 4, 5417-5432 (2020).
[65] C. L. Hu, L. Zhang, J. L. Gong, “Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting”, Energy & Environmental Science, 12, 2620-2645 (2019).
[66] Y. Q. Wang, J. T. Zhang, “Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting”, Frontiers of Chemical Science and Engineering, 12, 838-854 (2018).
[67] J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, J. B. Baek, “An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction”, Nature Nanotechnology, 12, 441-446 (2017).
[68] B. C. Zheng, L. Ma, B. Li, D. Chen, X. L. Li, J. B. He, J. H. Xie, M. Robert, T. C. Lau, “pH universal Ru@N-doped carbon catalyst for efficient and fast hydrogen evolution”, Catalysis Science & Technology, 10, 4405-4411 (2020).
[69] J. Q. Zhao, Z. X. Lu, X. He, X. F. Zhang, Q. Y. Li, T. Xia, W. Zhang, C. H. Lu, “Fabrication and Characterization of Highly Porous Fe(OH)3@Cellulose Hybrid Fibers for Effective Removal of Congo Red from Contaminated Water”, ACS Sustainable Chemisty & Engineering, 5, 7723-7732 (2017).
[70] M. Gong, D. Y. Wang, C. C. Chen, B. J. Hwang, H. J. Dai, “A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction”, Nano Research, 9, 28-46 (2016).
[71] Z. Qiu, C. W. Tai, G. A. Niklasson, T. Edvinsson, “Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting”, Energy & Environmental Science, 12, 572-581 (2019).
[72] J. X. Guo, J. K. Sun, Y. F. Sun, Q. Y. Liu, X. Zhang, “Electrodepositing Pd on NiFe layered double hydroxide for improved water electrolysis”, Materials Chemistry Frontiers, 3, 842-850 (2019).
[73] Y. Wang, P. Zheng, M. X. Li, Y. R. Li, X. Zhang, J. Chen, X. Fang, Y. J. Liu, X. L. Yuan, X. P. Dai, H. Wang, “Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation”, Nanoscale, 12, 9669-9679 (2020).
[74] R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, “Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts”, Nature Materials, 11, 550-557 (2012).
[75] X. H. Sun, Q. Shao, Y. C. Pi, J. Guo, X. Q. Huang, “A general approach to synthesise ultrathin NiM (M = Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting”, Journal of Materials Chemistry A, 5, 7769-7775 (2017).
[76] Y. H. Tang, Q. Liu, L. Dong, H. B. Wu, X. Y. Yu, “Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction”, Applied Catalalysis B-Environmental, 266, 118627 (2020).
[77] H. J. Yan, Y. Xie, A. P. Wu, Z. C. Cai, L. Wang, C. G. Tian, X. M. Zhang, H. G. Fu, “Anion-Modulated HER and OER Activities of 3D Ni-V-Based Interstitial Compound Heterojunctions for High-Efficiency and Stable Overall Water Splitting”, Advanced Materials, 31, 1901174 (2019).
[78] U. Costantino, F. Marmottini, M. Nocchetti, R. Vivani, “New synthetic routes to hydrotalcite-like compounds - Characterisation and properties of the obtained materials”, European Journal of Inorganic Chemistry, 1439-1446 (1998).
[79] M. Mališová, M. Horňáček, J. Mikulec, P. Hudec, V. Jorík, “FTIR study of hydrotalcite”, Acta Chimica Slovaca, 11, 147-156 (2018).
[80] C. Arruda, P. H. L. Cardoso, I. M. M. Dias, R. Salomão, “Hydrotalcite Mg6Al2(OH)16(CO3)·4H2O: A potentially useful raw material for refractories”, InterCeram: International Ceramic Review, 62, 187-191 (2013).
[81] Y. Arishige, D. Kubo, K. Tadanaga, A. Hayashi, M. Tatsumisago, “Electrochemical oxygen separation using hydroxide ion conductive layered double hydroxides”, Solid State Ionics, 262, 238-240 (2014).
[82] J. S. Valente, J. Hernandez-Cortez, M. S. Cantu, G. Ferrat, E. Lopez-Salinas, “Calcined layered double hydroxides Mg-Me-Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts”, Catalysis Today, 150, 340-345 (2010).
[83] K. Kannimuthu, K. Sangeetha, S. Sam Sankar, A. Karmakar, R. Madhu, S. Kundu, “Investigation on nanostructured Cu-based electrocatalysts for improvising water splitting: a review”, Inorganic Chemistry Frontiers, 8, 234-272 (2021).
[84] A. Jaiswal, R. K. Guautam, M. C. Chattopadhyaya, "Layered Double Hydroxides and the Environment: An Overview” in “Advanced Materials for Agriculture, Food, and Environmental Safety”, Editor: A. Tiwari and S. Mikael, WILEY Scrivener Publishing LLC, Canada, chap. 1, pp. 1-26, 2014.
[85] E. Uzunova, D. Klissurski, S. Kassabov, “Nickel-Iron Hydroxide Carbonate Precursors in the Synthesis of High-Dispersity Oxides”, Journal of Materials Chemistry, 4, 153-159 (1994).
[86] T. S. K. Sharma, K. Y. Hwa, “Rational design and preparation of copper vanadate anchored on sulfur doped reduced graphene oxide nanocomposite for electrochemical sensing of antiandrogen drug nilutamide using flexible electrodes”, Journal of Hazardous Materials, 124659 (2020).
[87] J. Liu, J. S. Wang, B. Zhang, Y. J. Ruan, L. Lv, X. Ji, K. Xu, L. Miao, J. J. Jiang, “Hierarchical NiCo2S4@NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity”, ACS Applied Materials & Interfaces 9, 15364-15372 (2017).
[88] M. Bhavanari, K. R. Lee, B. J. Su, D. Dutta, Y. H. Hung, C. J. Tseng, C. Y. Su, “MoSx on Nitrogen-Doped Graphene for High-Efficiency Hydrogen Evolution Reaction: Unraveling the Mechanisms of Unique Interfacial Bonding for Efficient Charge Transport and Stability”, ACS Applied Materials & Interfaces, 12, 34825-34836 (2020).
[89] J. S. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan, M. Gratzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts”, Science, 345, 1593-1596 (2014).
[90] S. Anantharaj, K. Karthick, M. Venkatesh, T. V. S. V. Simha, A. S. Salunke, L. Ma, H. Liang, S. Kundu, “Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces”, Nano Energy, 39, 30-43 (2017).
[91] C. Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C. H. Tsai, L. J. Li, “Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers”, Chemistry of Materials, 21, 5674-5680 (2009).
[92] X. Wu, Y. L. Du, X. An, X. M. Xie, “Fabrication of NiFe layered double hydroxides using urea hydrolysis-Control of interlayer anion and investigation on their catalytic performance”, Catalysis Communications, 50, 44-48 (2014).
[93] D. H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, “Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts”, Science, 351, 361 (2016).
[94] Y. Xu, Y. P. Mo, J. Tian, P. Wang, H. G. Yu, J. G. Yu, “The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites”, Applied Catalalysis B, 181, 810-817 (2016).
[95] X. F. Li, K. Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, “Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia”, Scientific Reports, 6, 23495 (2016).
[96] X. W. Wang, G. Z. Sun, P. Routh, D. H. Kim, W. Huang, P. Chen, “Heteroatom-doped graphene materials: syntheses, properties and applications”, Chemical Society Reviews, 43, 7067-7098 (2014).
[97] A. Y. Lu, X. L. Yang, C. C. Tseng, S. X. Min, S. H. Lin, C. L. Hsu, H. N. Li, H. C. Idriss, J. L. Kuo, K. W. Huang, L. J. Li, “High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution”, Small, 12, 5530-5537 (2016).
[98] L. Zhang, L. Ji, P. A. Glans, Y. Zhang, J. Zhu, J. Guo, “Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells”, Physical Chemistry Chemical Physics, 14, 13670-13675 (2012).
[99] M. C. Meng, H. J. Yan, Y. Q. Jiao, A. P. Wu, X. M. Zhang, R. H. Wang, C. G. Tian, “A 1-methylimidazole-fixation route to anchor small-sized nitrides on carbon supports as non-Pt catalysts for the hydrogen evolution reaction”, RSC Advances, 6, 29303-29307 (2016).
[100] D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, D. S. L. Law, “Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2”, The Journal of Physical Chemistry C, 114, 4636-4645 (2010).
[101] K. Inzani, M. Nematollahi, S. M. Selbach, T. Grande, F. Vullum-Bruer, “Progression of reduction of MoO3 observed in powders and solution-processed films”, Thin Solid Films, 626, 94-103 (2017).
[102] Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, “A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,N-Decorated Graphene”, Angewandte Chemie International Edition, 56, 7121-7125 (2017).
[103] D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D. V. Vyalikh, “Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties”, Nano Letters, 11, 5401-5407 (2011).
[104] R. Kapoor, S. T. Oyama, B. Frühberger, J. G. Chen, “NEXAFS Characterization and Reactivity Studies of Bimetallic Vanadium Molybdenum Oxynitride Hydrotreating Catalysts”, The Journal of Physical Chemistry B, 101, 1543-1547 (1997).
[105] J. Purans, A. Kuzmin, P. Parent, C. Laffon, “X-ray absorption study of the electronic structure of tungsten and molybdenum oxides on the O K-edge”, Electrochimica Acta, 46, 1973-1976 (2001).
[106] E. J. Yoo, Y. Qiao, H. S. Zhou, “Understanding the effect of the concentration of LiNO3 salt in Li–O2 batteries”, Journal of Materials Chemistry A, 7, 18318-18323 (2019).
[107] J. Y. Hong, W. E. Gent, P. H. Xiao, K. Lim, D. H. Seo, J. P. Wu, P. M. Csernica, C. J. Takacs, D. Nordlund, C. J. Sun, K. H. Stone, D. Passarello, W. L. Yang, D. Prendergast, G. Ceder, M. F. Toney, W. C. Chueh, “Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides”, Nature Materials, 18, 256-265 (2019).
[108] H. K. Jeong, H. J. Noh, J. Y. Kim, M. H. Jin, C. Y. Park, Y. H. Lee X-ray absorption spectroscopy of graphite oxide”, Europhysics Letters, 82, 67004 (2008).
[109] J. T. Francis, A. P. Hitchcock, “Inner-shell spectroscopy of p-benzoquinone, hydroquinone, and phenol: distinguishing quinoid and benzenoid structures”, The Journal of Physical Chemistry, 96, 6598-6610 (1992).
[110] J. A. Rodriguez, J. Dvorak, T. Jirsak“Chemistry of SO2, H2S, and CH3SH on Carbide-Modified Mo(110) and Mo2C Powders:  Photoemission and XANES Studies”, The Journal of Physical Chemistry B, 104, 11515-11521 (2000).
[111] K. S. Kim, P. Y. Zhu, N. Li, X. L. Ma, Y. S. Chen, “Characterization of oxygen containing functional groups on carbon materials with oxygen K-edge X-ray absorption near edge structure spectroscopy”, Carbon, 49, 1745-1751 (2011).
[112] S. F. Wu, W. X. Wang, M. C. Li, L. J. Cao, F. C. Lyu, M. Y. Yang, Z. Y. Wang, Y. Shi, B. Nan, S. C. Yu, Z. F. Sun, Y. Liu, Z. G. Lu, “Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate”, Nature Communications, 7, 13318 (2016).
[113] B. Debret, M. Andreani, A. Delacour, S. Rouméjon, N. Trcera, H. Williams, “Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy”, Earth and Planetary Science Letters, 466, 1-11 (2017).
[114] A. M. El-Sawy, I. M. Mosa, D. Su, C. J. Guild, S. Khalid, R. Joesten, J. F. Rusling, S. L. Suib, “Controlling the Active Sites of Sulfur-Doped Carbon Nanotube–Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis”, Advanced Energy Materials, 6, 150196 (2016).
[115] S. Yagi, Y. Menjo, C. Tsukada, S. Ogawa, G. Kutluk, H. Namatame, M. Taniguchi, “Vulcanization reaction of squalene and S8powder studied by Sulfur K-edge NEXAFS under liquid phase”, IOP Conference Seriers: Materials Science and Engineering, 76, 012004 (2015).
[116] B. Lassalle-Kaiser, D. Merki, H. Vrubel, S. Gul, V. K. Yachandra, X. Hu, J. Yano, “Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst”, Journal of The American Chemical Society, 137, 314-321 (2015).
[117] V. R. Surisetty, Y. Hu, A. K. Dalai, J. Kozinski, “Structural characterization and catalytic performance of alkali (K) and metal (Co and Rh)-promoted MoS2 catalysts for higher alcohols synthesis”, Applied Catalysis A, 392, 166-172 (2011).
[118] J. X. Song, T. Xu, M. L. Gordin, P. Y. Zhu, D. P. Lv, Y. B. Jiang, Y. S. Chen, Y. H. Duan, D. H. Wang, “Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries”, Advanced Functional Materials, 24, 1243-1250 (2014).
[119] P. Y. Zhu, J. X. Song, D. P. Lv, D. H. Wang, C. Jaye, D. A. Fischer, T. P. Wu, Y. S. Chen, “Mechanism of Enhanced Carbon Cathode Performance by Nitrogen Doping in Lithium–Sulfur Battery: An X-ray Absorption Spectroscopic Study”, The Journal of Physical Chemistry C, 118, 7765-7771 (2014).
[120] Y. Gorlin, A. Siebel, M. Piana, T. Huthwelker, H. Jha, G. Monsch, F. Kraus, H. A. Gasteiger, M. Tromp, “Operando Characterization of Intermediates Produced in a Lithium-Sulfur Battery”, Journal of The Electrochemical Society, 162, A1146-A1155 (2015).
[121] I. Persson, E. Damian Risberg, P. D′Angelo, S. De Panfilis, M. Sandström, A. Abbasi, “X-ray Absorption Fine Structure Spectroscopic Studies of Octakis(DMSO)lanthanoid(III) Complexes in Solution and in the Solid Iodides”, Inorganic Chemistry, 46, 7742-7748 (2007).
[122] K. Peng, H. J. Wang, H. F. Gao, P. F. Wan, M. B. Ma, X. Y. Li, “Emerging hierarchical ternary 2D nanocomposites constructed from montmorillonite, graphene and MoS2 for enhanced electrochemical hydrogen evolution”, Chemical Engineering Journal, 393, 124704 (2020).
[123] S. Stambula, N. Gauquelin, M. Bugnet, S. Gorantla, S. Turner, S. H. Sun, J. Liu, G. X. Zhang, X. L. Sun, G. A. Botton, “Chemical Structure of Nitrogen-Doped Graphene with Single Platinum Atoms and Atomic Clusters as a Platform for the PEMFC Electrode”, The Journal of Physical Chemistry C, 118, 3890-3900 (2014).
[124] R. J. Nicholls, A. T. Murdock, J. Tsang, J. Britton, T. J. Pennycook, A. Koos, P. D. Nellist, N. Grobert, J. R. Yates, “Probing the Bonding in Nitrogen-Doped Graphene Using Electron Energy Loss Spectroscopy”, ACS Nano, 7, 7145-7150 (2013).
[125] J. Gao, Y. Wang, H. H. Wu, X. Liu, L. L. Wang, Q. L. Yu, A. W. Li, H. Wang, C. Q. Song, Z. R. Gao, M. Peng, M. T. Zhang, N. Ma, J. O. Wang, W. Zhou, G. X. Wang, Z. Yin, D. Ma, “Construction of a sp3/sp2 Carbon Interface in 3D N-Doped Nanocarbons for the Oxygen Reduction Reaction”, Angewandte Chemie International Edition, 58, 15089-15097 (2019).
[126] S. H. AlMarzooqi, M. S. Katsiotis, S. M. Alhassan, “Hybrid Porous Molybdenum Disulfide Monolith for Liquid Removal of Dibenzothiophene”, Industrial & Engineering Chemistry Research, 56, 15049-15057 (2017).
[127] J. Ekspong, T. Sharifi, A. Shchukarev, A. Klechikov, T. Wågberg, E. Gracia-Espino, “Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogen-Doped Carbon Nanotubes for Hydrogen Evolution Reaction”, Advanced Functional Materials, 26, 6766-6776 (2016).
[128] Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, H. J. Dai, “MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction”, Journal of The American Chemical Society, 133, 7296-7299 (2011).
[129] J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Norskov, I. Chorkendorff, “Hydrogen evolution on nano-particulate transition metal sulfides”, Faraday Discussions, 140, 219-231 (2008).
[130] D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, S. O. Kim, “Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction”, Nano Letters, 14, 1228-1233 (2014).
[131] Z. Zhang, J. Hao, W. Yang, J. Tang, “Defect-Rich CoP/Nitrogen-Doped Carbon Composites Derived from a Metal–Organic Framework: High-Performance Electrocatalysts for the Hydrogen Evolution Reaction”, ChemCatChem, 7, 1920-1925 (2015).
[132] J. G. Li, K. F. Xie, H. C. Sun, Z. S. Li, X. Ao, Z. H. Chen, K. K. Ostrikov, C. D. Wang, W. J. Zhang, “Template-Directed Bifunctional Dodecahedral CoP/CN@MoS2 Electrocatalyst for High Efficient Water Splitting”, ACS Applied Materials & Interfaces, 11, 36649-36657 (2019).
[133] D. M. Nguyen, P. D. H. Anh, L. G. Bach, Q. B. Bui, “Hierarchical heterostructure based on molybdenum dichalcogenide nanosheets assembled nitrogen doped graphene layers for efficient hydrogen evolution reaction”, Materials Research Bulletin, 115, 201-210 (2019).
[134] H. H. Sun, X. Y. Ji, Y. F. Qiu, Y. Y. Zhang, Z. Ma, G. G. Gao, P. A. Hu, “Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance”, Journal of Alloys & Compounds, 777, 514-523 (2019).
[135] C. Gennequin, S. Kouassi, L. Tidahy, R. Cousin, J. F. Lamonier, G. Garcon, P. Shirali, F. Cazier, A. Aboukais, S. Siffert, “Co-Mg-Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic compounds Identification and toxicological impact of the by-products”, Comptes Rendus Chimie, 13, 494-501 (2010).
[136] S. S. Zhang, J. Y. Zhu, X. W. Zhang, R. L. Zhu, F. Ge, Y. Xu, “The removal mechanism of nitrobenzene by the Cu-Fe/Carbon material under different aeration conditions”, Journal of Hazardous Materials, 403, 123584 (2021).
[137] L. H. Zhang, F F. Li, D. G. Evans, X. Duan, “Cu-Zn-(Mn)-(Fe)-Al Layered Double Hydroxides and Their Mixed Metal Oxides: Physicochemical and Catalytic Properties in Wet Hydrogen Peroxide Oxidation of Phenol”, Industrial & Engineering Chemistry Research, 49, 5959-5968 (2010).
[138] X. Wu, X. An, X. M. Xie, “Preparation of Ni(HCO3)2 and its catalytic performance in synthesis of benzoin ethyl ether”, Transactions of Nonferrous Metals Society of China, 24, 1440-1445 (2014).
[139] D. Rosu, M. Birzescu, M. S. Milea, M. C. Pascariu, V. Sasca, M. Niculescu, “Synthesis-Structure Relationship in the Aqueous Ethylene Glycol-Iron(Iii) Nitrate System”, Revue Roumaine de Chimie, 59, 789-796 (2014).
[140] L. Chen, S. P. Wang, J. J. Zhou, Y. L. Shen, Y. J. Zhao, X. B. Ma, “Dimethyl carbonate synthesis from carbon dioxide and methanol over CeO2 versus over ZrO2: comparison of mechanisms”, RSC Advances, 4, 30968-30975 (2014).
[141] S. Y. Gong, X. F. Wu, J. L. Zhang, N. Han, Y. F. Chen, Facile solution synthesis of Cu2O-CuO-Cu(OH)2 hierarchical nanostructures for effective catalytic ozone decomposition”, CrystEngComm, 20, 3096-3104 (2018).
[142] J. Park, K. Lim, R. D. Ramsier, Y. C. Kang, “Spectroscopic and Morphological Investigation of Copper Oxide Thin Films Prepared by Magnetron Sputtering at Various Oxygen Ratios”, Bulletin - Korean Chemical Society, 32, 3395-3399 (2011).
[143] K. R. Aguiar, V V. G. Santos, M. N. Eberlin, K. Rischka, M. Noeske, G. Tremiliosi-Filho, U. P. Rodrigues, “Efficient green synthesis of bis(cyclic carbonate) poly(dimethylsiloxane) derivative using CO2 addition: a novel precursor for synthesis of urethanes”, RSC Advances, 4, 24334-24343 (2014).
[144] V. Bondarenka, V. Jasulaitiene, R. Sereika, A. Stirk, “Sol-gel synthesis and XPS study of vanadium pentoxide xerogels intercalated with glucose”, Journal of Sol-Gel Science and Technology, 71, 385-390 (2014).
[145] D. M. de los Santos, S. Chahid, R. Alcantara, J. Navas, T. Aguilar, J. J. Gallardo, R. Gomez-Villarejo, I. Carrillo-Berdugo, C. Fernandez-Lorenzo, “MoS2/Cu/TiO2 nanoparticles: synthesis, characterization and effect on photocatalytic decomposition of methylene blue in water under visible light”, Water Science & Technology, 184-193 (2018).
[146] Riyanto, M. R. Othman, “Electrosynthesis and Characterization of Cu(OH)2 Nanoparticle using Cu and Cu-PVC Electrodes in Alkaline Solution”, International Journal of Electrochemical Science, 10, 4911-4921 (2015).
[147] D. Li, X. F. Chen, Y. Z. Lv, G. Y. Zhang, Y. Huang, W. Liu, Y. Li, R. S. Chen, C. Nuckolls, H. W. Ni, “An effective hybrid electrocatalyst for the alkaline HER: Highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide”, Applied Catalalysis B : Environmental, 269, 118824 (2020).
[148] G. B. Chen, T. Wang, J. Zhang, P. Liu, H. J. Sun, X. D. Zhuang, M. W. Chen, X. L. Feng, “Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites”, Advanced Materials, 30, 1706279 (2018).
[149] D. Li, B. W. Zhang, Y. Li, R. S. Chen, S. Hu, H. W. Ni, “Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide”, Electrochemistry Communications, 101, 23-27 (2019).
[150] M. Bhavanari, K. R. Lee, C. J. Tseng, I. H. Tang, H. H. Chen, “CuFe electrocatalyst for hydrogen evolution reaction in alkaline electrolysis”, International Journal of Hydrogen Energy, (2021).
[151] E. Ochiai, Chemicals for Life and Living (Springer, Berlin, Heidelberg, 2011), pp. 288.
[152] Z. Y. Kang, G. Q. Yang, J. K. Mo, Y. F. Li, S. L. Yu, D. A. Cullen, S. T. Retterer, T. J. Toops, G. Bender, B. S. Pivovar, J. B. Green, F. Y. Zhang, “Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells”, Nano Energy, 47, 434-441 (2018).
[153] A. I. Inamdar, H. S. Chavan, B. Hou, C. H. Lee, S. U. Lee, S. Cha, H. Kim, H. Im, “A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting”, Small, 16, 1905884 (2020).
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2021-5-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明