博碩士論文 106222031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:3.138.119.68
姓名 周黃克鳴(Ke-Ming Chou Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(TCAD simulation of silicon detector)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ nono
★ Assembly and Beam Test Analysis of sPHENIX INTT Detector★ 研究 Dalitz Higgs 的 Muon 效率用於 Run II 和多變量電子用於 CMS 的 Run III
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自1990年起,各類偵測器使用矽晶圓製造已用於許多高能實驗中。由於矽偵測器在能量與位置的量測擁有很高的分辨度,因此在高能實驗中漸漸變成主流探測器。隨著科技的進步,偵測器晶圓也從4英吋變成6/8英吋,但晶圓面積越大良率就越低,因此施作成本也大幅上升,使得通過實際生產來驗證矽探測器的新設計逐漸變得不可行。對於矽探測器新的結構設計,TCAD(Technology Computer Aided Design)模擬軟體是進行研究與驗證的重要工具。在本研究中,我們使用Synopsys TCAD Sentaurus模擬軟體來研究提高擊穿電壓的重要結構 guard ring 在矽探測器不同結構設計的結果。
由於TCAD模擬軟體最初是為了小結構的模擬(大約幾十μm),為了模擬大的矽探測器結構(大約幾百μm)這裡使用鏡射法來建立結構。除此之外,在模擬中網格配置對於模擬結果的穩定性、模擬時間和電腦使用資源的優化也很重要。 Synopsys TCAD 模擬主要分成 Sprocess 與 Sdevices 兩個部分。Sprocess 為半導體工藝模擬的部分,主要用於建立矽探測器的結構。 Sdevices 為電性模擬的部分,主要用於尋找矽探測器在不同條件下的電性及其分佈。在不同 guard ring 設計的結構中,擊穿電壓的模擬結果也與有著相同結構設計的實際矽探測器測量結果進行了比較,其結果在大多數的設計中都是相似的。對於部分模擬與測量之間有落差的可能原因也已透過模擬進行了研究和確認。最後也找出了擁有最佳擊穿電壓的guard ring設計。
摘要(英) The various types of silicon detector have been used in high energy experiments since 1990. Because of the good resolution in both position and energy measurements, the silicon detector is the major detector in all high energy experiments. With the advance in the semiconductor technology, the size of wafer used in the production of silicon has been increased from 4 inches to 6/8 inches. The production cost is also increased dramatically. Now it is not feasible to verify the new design of silicon detector via the actual silicon detector production. The TCAD (Technology Computer Aided Design) Sentaurus simulation software is an important tool to study and verify the new design of silicon detector. In this study, we use Synopsys TCAD simulation software to study different guard ring designs of silicon detector, which is an important structure to improve the breakdown voltage.
Because the TCAD simulation software is originally designed to simulate a small structure (tens μm), the mirroring method is used in order to simulate a large silicon detector structure (hundreds μm). In addition, the grid design in the simulation is important to optimize among the stability of simulation results, simulation time and the usage of computer resource. There are two major processes in the Synopsys TCAD simulation; Sprocess is used to build the structure of silicon detector and simulate the semiconductor processes. Sdevices is to find electrical properties of silicon detector under different conditions and their distribution. Simulation results of the breakdown voltage in different guard ring designs are also compared with measurements of actual silicon detectors with the same design. They are consistent in most of designs. Possible reasons about discrepancies between the simulation and the measurement have been studied and confirmed by the simulation. The best guard ring design in terms of breakdown voltage is given.
關鍵字(中) ★ 矽偵測器
★ TCAD模擬
★ Guard ring
★ 擊穿電壓
★ 結構設計
★ 大空間模擬
★ 網格設置
★ 鏡射
關鍵字(英) ★ Silicon detector
★ TCAD simulation
★ guard ring
★ breakdown voltage
★ structural design
★ huge space simulation
★ grid setting
★ mirror
論文目次 1 Introduction 1
2 TCAD simulation and manufacturing process steps 5
2.1 Silicon wafer basic settings . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Parameter setting of TCAD simulation 25
3.1 PN junction TCAD simulation . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 TCAD sprocess simulation . . . . . . . . . . . . . . . . . . . . 25
3.1.2 TCAD sdevice simulation . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Breakdown voltage of different thickness wafers in TCAD simulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Large structure simulation method test . . . . . . . . . . . . . . . . . 39
3.2.1 CPU multiprogramming test result
(Space = 10×400(?m)) . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 The diffuse grid setting test result
(Space = 10×50(?m)) . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Use the mirroring method for structure testing
(Space = 20×50(?m)) . . . . . . . . . . . . . . . . . . . . . . 43
i
3.2.4 Sdevice parameters setting test
(Space = 20×50(?m)) . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Guard ring distance test in simulation
(Space = 150×400(?m)) . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 Guard ring grounding . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Guard ring floating . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 The result of guard ring distance test in simulation . . . . . . 51
3.4 The breakdown current test . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 The simulation space test . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Oxide thickness test . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Silicon detector simulation 57
4.1 Silicon detector design . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 TCAD Sprocess simulation of silicon detector . . . . . . . . . . . . . 60
4.2.1 Prepare the wafer . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Doping process . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Diffusion process . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.4 Etching, deposition, mirroring . . . . . . . . . . . . . . . . . . 76
4.2.5 For Sdevice simulation setting . . . . . . . . . . . . . . . . . . 82
4.3 TCAD Sdevice simulation of silicon detector . . . . . . . . . . . . . . 86
4.3.1 File section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Device section . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 System section . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.4 Plot section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.5 Math section . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.6 Solve section . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5 Analyze the simulation results of the silicon detector 95
5.1 Types of breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 No guard ring structure . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1 simulation result . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Single guard ring structure . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.1 simulation result . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 2R series structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 simulation result . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.3 New structure 2RH . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 3R series structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.1 simulation result . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.3 New structure 3RH . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6 Comparison of 2R series and 3R series with experimental data . . . . 121
5.7 Analysis the 2R series and 3R series simulation result . . . . . . . . . 134
6 Summary and recommendations of simulation 137
A TCAD simulation result 141
參考文獻 [1] M. Rold, N. Bacchetta, Dario Bisello, Gian-Franco Dalla Betta, Giovanni Verzellesi, Otilia Militaru, R. Wheadon, P. Fuochi, C. Bozzi, R. Dell’Orso, Alberto Messineo, G. Tonelli, and Piero Verdini. Study of breakdown effects in silicon multiguard structures. Nuclear Science, IEEE Transactions on, 46:1215 – 1223, 09 1999.
[2] K. Ranjan, Ashwani Bhardwaj, Namrata, Sudeep Chatterji, A.K. Srivastava, Ajay Kumar, Megha Jha, and R. Shivpuri. Impact of metal overhang and guard ring techniques on breakdown voltage of si strip sensors. IEEE Nuclear Science Symposium Conference Record, 2:780–783, 01 2003.
指導教授 郭家銘 審核日期 2021-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明