博碩士論文 108328017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.135.202.224
姓名 楊上禛(Shang-Jhen Yang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 移動式顆粒床過濾器應用於去除PM2.5之研究★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 各地山區經常因為地形坡度、土石量的大小及多寡、豪雨等引發坡地災害,若是土石顆粒於發生崩塌流動的同時,又侵蝕和夾帶底床的土石,則會造成更大規模的崩塌災害,導致附近居民生命安全危害與財產損失慘重,因此本研究將利用實驗模型來了解崩塌流動過程的現象。
本研究主要以實驗方式探討不同崩塌床顆粒尺寸與不同崩塌床初始寬高比對於不同可侵蝕床顆粒尺寸的侵蝕與堆積影響。實驗設備將使用一開放式二維傾斜流槽裝置,以手動快速拉起擋板使崩塌床顆粒釋放至可侵蝕床中,同時以電子天平稱量流出流槽之顆粒。實驗顆粒以黑白兩色顆粒區分,並利用影像處理方法來分析崩塌床與可侵蝕床的流場變化、崩塌床區剩餘面積、流動距離、流體深度隨著時間與距離的關係以及可侵蝕床的侵蝕面積隨時間的關係、最終侵蝕面積隨位置與寬高比的關係、流槽中各位置上的侵蝕面積隨著時間的變化、侵蝕速率的比較。
由實驗結果得知,顆粒尺寸與崩塌床寬高比皆會對崩塌床顆粒與可侵蝕床顆粒的流動行為有一定的影響。當可侵蝕床顆粒尺寸為大顆粒時,流出質量會較小而崩塌床的量化結果則會較大,是由於小顆粒於流動過程中會進入大顆粒與大顆粒之間的空隙,使小顆粒的流動受到阻擋,進而持續向上堆積使崩塌床顆粒流體深度較高、殘留面積變大。而當可侵蝕床顆粒尺寸相同時,侵蝕面積會隨著崩塌床顆粒尺寸越大而越大。在改變不同崩塌床初始寬高比的過程中,不論是流出質量還是影像分析量化的結果都會隨著崩塌床初始寬高比的增加而變大,單位時間內的變化率也是變大的。此外,我們在這也探討隨著時間的經過及在流槽中的不同位置上,崩塌床顆粒與可侵蝕床顆粒的流場變化與流動趨勢。最後,崩塌床的位能能量損失率對於不同可侵蝕床顆粒尺寸的侵蝕面積會有不一樣的影響,主要是因為造成能量損失的原因與分布不同有關。
摘要(英) Mountains in various regions often cause slope disaster due to terrain slope, the size and amount of soil and rock and heavy rain, etc. If the particles are eroding and entraining the soil and rock in the bottom bed at the same time as the flowing after collapse, it will cause a massive avalanche. Resulting in the human life safety hazards and the heavy property losses from residents. Therefore, the experimental model can be used to understand the phenomenon in the process of the avalanche flow in this study.
This study mainly uses experimental method to explore the effects of the different particle sizes of the granular bed (including the column bed and erodible bed) and the initial aspect ratio on the erosion and deposition behavior in the avalanche granular flow field. The experiment used an open two-dimensional inclined channel. We pulled up the baffle quickly by manual to release the particle from the column bed and measure the accumulated mass out with an electronic balance simultaneously. The experimental particle colors are distinguished by black and white, which can be analyze by image processing method. The flow field of the column bed and erodible bed, mass flow rate, residual area, runout distance, flow depth of the column bed, erosion area, final erosion area and erosion rate will be analyze and discuss in this research.
From the experimental results, it can be known that the particle size and the initial aspect ratio both have significant influence on the flow behavior of the column bed and erodible bed. When the particle size of the erodible bed is large, the accumulated mass out will be smaller and the quality of column bed will become larger. Because of the small particle enter in the gap between particles, the flow of small particle is blocked and then continued to accumulate upwards so that the flow depth of the column bed will be higher. However, when the particle size of the erodible bed is the same, the erosion area increases with the particle size of the column bed increases. In the process of changing the initial aspect ratio, the mass flow rate increases with the aspect ratio increases. Moreover, we also analyze and investigate the variety of the flow field and the flow trend of the column bed and erodible bed particles along the time and at different positions. Finally, the potential energy loss rate of the column bed has different effects on the erosion area of different erodible bed particle sizes. This is related to the different of the reason and the range for the energy loss.
關鍵字(中) ★ 顆粒
★ 傾斜流槽
★ 崩塌
★ 侵蝕
★ 顆粒尺寸
★ 寬高比
關鍵字(英) ★ particle
★ inclined channel
★ avalanche
★ erosion
★ particle size
★ aspect ratio
論文目次 摘要 i
Abstract ii
目錄 iv
附圖目錄 vi
附表目錄 x
符號目錄 x
第一章 簡介 1
1.1 前言 1
顆粒尺寸效應 2
崩塌床寬高比 4
侵蝕與夾帶行為 5
1.2 研究動機 6
第二章 實驗方法與原理 11
2.1 實驗設備與材料 11
1. 二維傾斜流槽裝置 11
2. 顆粒床顆粒材料 11
3. 質量流率量測設備 12
4. 影像拍攝與補光系統 12
2.2 實驗方法與分析方法 13
2.2.1 實驗方法 13
2.2.2分析方法 14
第三章 結果與討論 27
3.1 流動過程變化 27
3.2 累積流出質量與質量流率 29
3.2.1 流出顆粒之質量隨時間變化 29
3.2.2 崩塌床與可侵蝕床流出顆粒隨寬高比的比較 30
3.3 崩塌床 31
3.3.1 崩塌床顆粒流動距離隨時間的比較 31
3.3.2 最終崩塌床流體深度隨距離的比較 32
3.3.3 崩塌床流體深度隨時間的比較 33
3.3.4 崩塌床區剩餘面積隨時間的比較 34
3.4 可侵蝕床 35
3.4.1 侵蝕面積隨時間的比較 35
3.4.2 最終侵蝕面積與侵蝕速率 36
3.4.3 最終侵蝕面積隨位置的比較 38
3.4.4 各位置上的侵蝕面積隨著時間的關係 38
3.4.5 最終侵蝕面積與位能能量損失的關係 40
第四章 結論 92
參考文獻 94
參考文獻 [1] Tian, M., Hu, K., Ma, C., & Lei, F., “Effect of bed sediment entrainment on debris-flow resistance” Journal of Hydraulic Engineering, 140(1), pp.115-120, 2014.
[2] 大規模崩塌災害,科技部災害管理資訊研發應用平台。
http://dmip.tw/Lone/basicdata/historycase.aspx
[3] Louge, M.Y., Valance, A., Lancelot, P., Delannay, R., & Arti`eres, O., “Granular flows on a dissipative base” Physical Review E, 92, 022204, 2015.
[4] Lube, G., Huppert, H.E., Sparks, R.S.J., & Freundt, A., “Collapses of two-dimensional granular columns” Physical Review E, 72, 041301, 2005.
[5] Takagi, D., McElwaine, J.N., & Huppert, H.E., “Shallow granular flows” Physical Review E, 83, 031306, 2011.
[6] Lube, G., Huppert, H.E., Sparks, R.S.J., & Freundt, A., “Granular column collapses down rough, inclined channels” Journal of Fluid Mechanics, 675, pp.347-368, 2011.
[7] Ancey, C., “Dry granular flow down an inclined channel: Experimental investigations on the frictional-collisional regime” Physical Review E, 65, 011304, 2001.
[8] Pudasaini, S.P., Hutter, K., Hsiau, S.S., Tai, S.C, Wang, Y., & Katzenbach, R., “Rapid flow of dry granular materials down inclined chutes impinging on rigid walls” Physics of Fluids, 19, 053302, 2007.
[9] Chou, S. H., Lu, L. S., Hsiau, S. S., “DEM simulation of oblique shocks in gravity-driven granular flows with wedge obstacles” Granular Matter, 14, 719-732, 2012.
[10] Bi, Y., He, S., Li, X., Ouyang, C., and Wu, Y., “Effects of segregation in binary granular mixture avalanches down inclined chutes impinging on defending structures” Environmental Earth Sciences, 75, 263, 2016.
[11] Ikari, H., & Gotoh, H., “SPH-based simulation of granular collapse on an inclined bed” Mechanics Research Communications, 73, pp.12-18, 2016.
[12] Martin, N., Ionesue, I.R., Mangeney, A.,Bouchut, F., & Farin, M., “Continuum viscoplastic simulation of a granular column collapse on large slopes: μ(I) rheology and lateral wall effects” Physics of Fluids, 29, 013301, 2017.
[13] Phillips, J.C., Hogg, A.J., Kerswell, R.R., & Thomas, N.H., “Enhanced mobility of granular” Earth and Planetary Science Letters, 246, pp.466-480, 2006.
[14] Haas, T.D., Braat, L., Leuven, J.R.F.W., Lokhorst, I.R., & Kleinhans, M.G.,"Effects of debris-flow composition on runout, depositional mechanisms and deposit morphology in laboratory experiments" Journal of Geophysical Research: Earth Surface, 120(9), pp.1949-1972, 2015.
[15] Hu, Y.X., Li, H.B., Qi, S.C., Fan, G., & Zhou, J.W., "Granular Effects on Depositional Processes of Debris Avalanches" KSCE Journal of Civil Engineering, 24, pp.1116-1127, 2020.
[16] Fei, J., Jie, Y., Sun, X., & Chen, X., “Particle size effects on small-scale avalanches and a μ(I) rheology-based simulation” Computers and Geotechnics, 126, 103737, 2020.
[17] Lube, G., Huppert, H.E., Sparks, R.S.J., & Freundt, A., “Static and flowing regions in granular collapses down channels” Physics of Fluids, 19, 043301, 2007.
[18] Lacaze, L., Phillips, J.C., & Kerswell, R.R., “Planar collapse of a granular column: Experiments and discrete element simulations” Physics of Fluids, 20, 063302, 2008.
[19] Lee, C.H., Huang, Z., & Chiew, Y.M., “A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column” Physics of Fluids, 27, 113303, 2015.
[20] Xu, X., Sun, Q., Jin, F., & Chen, Y., “Measurements of velocity and pressure of a collapsing granular pile” Powder Technology, 303, pp.147-155, 2016.
[21] Farin, M., Mangeney, A., & Roche, O., “Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angle: Insights from laboratory experiments” Journal of Geophysical Research: Earth Surface, 119(3), pp.504-532, 2014.
[22] Staron, L., & Hinch, E.J., “Study of the collapse of granular columns using two-dimensional discrete-grain simulation” Journal of Fluid Mechanics, 545, pp.1-27, 2005.
[23] Mériaux, C., "Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall" Physics of Fluids, 18(9), 093301, 2006.
[24] Cabrera, M., & Estrada, N., "Granular column collapse: analysis of grain-size effects" Physical Review E, 99, 012905, 2019.
[25] Mangeney, A., Roche, O., Hungr., O., Mangold, N., Faccanoni, G., & Lucas, A., “Erosion and mobility in granular collapse over sloping beds” Journal of Geophysical Research, 115, F03040, 2010.
[26] Barbolini, M., Biancardi, A., Cappabianca, F., Natale, L., & Pagliardi, M., “Laboratory study of erosion processes in snow avalanches” Cold Regions Science and Technology, 43(1-2), pp.1-9, 2005.
[27] Crosta, G.B., Imposimato, S., & Roddeman, D., “Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface” Journal of Geophysical Research, 114, F03020, 2009.
[28] Wu, Y., Li, P., & Wang, D., “Erosion-deposition regime formation in granular column collapse over an erodible surface” Physical Review E, 98, 052909, 2018.
[29] Iverson, R.M., Reid, M.E., Logan, M., Lahusun, R.G., Godt, J.W., & Griswold, J.P., “Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment” Nature Geoscience, 4, pp.116-121, 2011.
[30] Lu, P., Yang, X., Hou, T., & Zhou, J., “An analysis of the entrainment effect of dry debris avalanches on loose bed materials” Springerplus, 5(1):1621, 2016.
[31] He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., & Chao, Y., “The connected-component labeling problem: A review of state-of -the-art algorithms” Pattern Recognition, 70, pp.25-43, 2017.
[32] Nixon, M. S., & Aguado, A. S., “Low-level feature extraction (including edge detection)” Feature Extraction & Image Processing for Computer Vision, pp.137-216, 2012.
[33] Trinh, T., Boltenhagen, P., Delannay, R., & Valance, A., “Erosion and deposition processes in surface granular flows” Physical Review E, 96, 042904, 2017.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明