參考文獻 |
[1] D.Huang, H.Zhang, S.Weng, and M.Su, “applied sciences Modeling and Simulation of IGCC Considering Pressure and Flow Distribution of Gasifier,” 2016, doi: 10.3390/app6100292.
[2] Y.Wang, K. S.Chen, J.Mishler, S. C.Cho, and X. C.Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011, doi: 10.1016/j.apenergy.2010.09.030.
[3] T. H.Huang, H. L.Shen, T. C.Jao, F. B.Weng, and A.Su, “Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine,” Int. J. Hydrogen Energy, vol. 37, no. 18, pp. 13872–13879, 2012, doi: 10.1016/j.ijhydene.2012.04.108.
[4] A.Brouzgou, S. Q.Song, andP.Tsiakaras, “Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges, and prospects,” Appl. Catal. B Environ., vol. 127, pp. 371–388, 2012, doi: 10.1016/j.apcatb.2012.08.031.
[5] M.Cavarroc et al., “Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings,” Electrochem. commun., vol. 11, no. 4, pp. 859–861, 2009, doi: 10.1016/j.elecom.2009.02.012.
[6] M. S.Çögenli, S.Mukerjee, andA. B.Yurtcan, “Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition,” Fuel Cells, vol. 15, no. 2, pp. 288–297, 2015, doi: 10.1002/fuce.201400062.
[7] N.Cunningham, E.Irissou, M.Lefèvre, M. C.Denis, D.Guay, andJ. P.Dodelet, “PEMFC anode with very low Pt loadings using pulsed laser deposition,” Electrochem. Solid-State Lett., vol. 6, no. 7, 2003, doi: 10.1149/1.1574232.
[8] S.Cuynet, A.Caillard, T.Lecas, J.Bigarré, P.Buvat, andP.Brault, “Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering,” J. Phys. D. Appl. Phys., vol. 47, no. 27, 2014, doi: 10.1088/0022-3727/47/27/272001.
[9] T. W.Huang, H.Qayyum, G. R.Lin, S. Y.Chen, andC. J.Tseng, “Production of high-performance and improved-durability Pt-catalyst /support for proton-exchange-membrane fuel cells with pulsed laser deposition,” J. Phys. D. Appl. Phys., vol. 49, no. 25, p. 255601, 2016, doi: 10.1088/0022-3727/49/25/255601.
[10] W.Mróz, B.Budner, W.Tokarz, P.Piela, andM. L.Korwin-Pawlowski, “Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells,” J. Power Sources, vol. 273, pp. 885–893, 2015, doi: 10.1016/j.jpowsour.2014.09.173.
[11] H.Qayyum, C. J.Tseng, T. W.Huang, andS. Y.Chen, “Pulsed laser deposition of platinum nanoparticles as a catalyst for high-performance PEM fuel cells,” Catalysts, vol. 6, no. 11, pp. 1–13, 2016, doi: 10.3390/catal6110180.
[12] M. A.Raso, I.Carrillo, E.Mora, E.Navarro, M. A.Garcia, andT. J.Leo, “Electrochemical study of platinum deposited by electron beam evaporation for application as fuel cell electrodes,” Int. J. Hydrogen Energy, vol. 39, no. 10, pp. 5301–5308, 2014, doi: 10.1016/j.ijhydene.2013.12.111.
[13] M. S.Saha, A. F.Gullá, R. J.Allen, andS.Mukerjee, “High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition,” Electrochim. Acta, vol. 51, no. 22, pp. 4680–4692, 2006, doi: 10.1016/j.electacta.2006.01.006.
[14] J.Iglesia, C. C.Lang, Y. M.Chen, S. yuanChen, andC. J.Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer,” J. Power Sources, vol. 436, no. July, p. 226886, 2019, doi: 10.1016/j.jpowsour.2019.226886.
[15] H.Tsuchiya andO.Kobayashi, “Mass production cost of PEM fuel cell by learning curve,” Int. J. Hydrogen Energy, vol. 29, no. 10, pp. 985–990, 2004, doi: 10.1016/j.ijhydene.2003.10.011.
[16] M. S.Wilson, J. A.Valerio, andS.Gottesfeld, “Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers,” Electrochim. Acta, vol. 40, no. 3, pp. 355–363, 1995, doi: 10.1016/0013-4686(94)00272-3.
[17] S.Litster andG.McLean, “PEM fuel cell electrodes,” J. Power Sources, vol. 130, no. 1–2, pp. 61–76, 2004, doi: 10.1016/j.jpowsour.2003.12.055.
[18] E. J.Taylor, E. B.Anderson, andN. R. K.Vilambi, “ELECTROCHEMICAL SOCIETY LETTERS Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange-Membrane Fuel Cells,” Business, vol. 139, no. 5, pp. 45–46, 1992.
[19] M. S.Wilson andS.Gottesfeld, “High Performance Catalyzed Membranes of Ultra‐low Pt Loadings for Polymer Electrolyte Fuel Cells,” J. Electrochem. Soc., vol. 139, no. 2, pp. L28–L30, 1992, doi: 10.1149/1.2069277.
[20] S.Chen, P. J.Ferreira, W.Sheng, N.Yabuuchi, L. F.Allard, andY.Shao-Horn, “Enhanced activity for oxygen reduction reaction on ‘Pt 3Co’ nanoparticles: Direct evidence of percolated and sandwich-segregation structures,” J. Am. Chem. Soc., vol. 130, no. 42, pp. 13818–13819, 2008, doi: 10.1021/ja802513y.
[21] B.Han et al., “Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells,” Energy Environ. Sci., vol. 8, no. 1, pp. 258–266, 2015, doi: 10.1039/c4ee02144d.
[22] A. U.Nilekar et al., “Bimetallic and ternary alloys for improved oxygen reduction catalysis,” Top. Catal., vol. 46, no. 3–4, pp. 276–284, 2007, doi: 10.1007/s11244-007-9001-z.
[23] V. R.Stamenkovic et al., “Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability,” Science (80-. )., vol. 315, no. 5811, pp. 493–497, 2007, doi: 10.1126/science.1135941.
[24] V. R.Stamenkovic et al., “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces,” Nat. Mater., vol. 6, no. 3, pp. 241–247, 2007, doi: 10.1038/nmat1840.
[25] S.Chen, H. A.Gasteiger, K.Hayakawa, T.Tada, andY.Shao-Horn, “Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes,” J. Electrochem. Soc., vol. 157, no. 1, p. A82, 2010, doi: 10.1149/1.3258275.
[26] K. J. J.Mayrhofer, K.Hartl, V.Juhart, andM.Arenz, “Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation,” J. Am. Chem. Soc., vol. 131, no. 45, pp. 16348–16349, 2009, doi: 10.1021/ja9074216.
[27] L.Du, Y.Shao, J.Sun, G.Yin, J.Liu, andY.Wang, “Advanced catalyst supports for PEM fuel cell cathodes,” Nano Energy, vol. 29, pp. 314–322, 2016, doi: 10.1016/j.nanoen.2016.03.016.
[28] M.Breitwieser, M.Klingele, B.Britton, S.Holdcroft, R.Zengerle, andS.Thiele, “Electrochemistry Communications Improved Pt-utilization ef fi ciency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition,” Electrochem. commun., vol. 60, pp. 168–171, 2015, doi: 10.1016/j.elecom.2015.09.006.
[29] M.Klingele, M.Breitwieser, R.Zengerle, andS.Thiele, “Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells,” J. Mater. Chem. A, vol. 3, no. 21, pp. 11239–11245, 2015, doi: 10.1039/c5ta01341k.
[30] S.Vierrath, M.Breitwieser, M.Klingele, andR.Zen-, “Reasons for the high power density of direct membrane deposition fuel cells revealed by impedance spectroscopy,” p. 11239, 2015.
[31] S.Cuynet et al., “Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings,” J. Power Sources, vol. 298, pp. 299–308, 2015, doi: 10.1016/j.jpowsour.2015.08.019.
[32] J. K.Koh, Y.Jeon, Y.IlCho, J. H.Kim, andY. G.Shul, “A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications,” J. Mater. Chem. A, vol. 2, no. 23, pp. 8652–8659, 2014, doi: 10.1039/c4ta00674g.
[33] C.Spiegel et al., Designing and Building Fuel Cells Library of Congress Cataloging-in-Publication Data. 2007.
[34] V. S. (Vladimir S.Bagot︠s︡kiĭ, Fuel cells : problems and solutions / Vladimir S. Bagotsky., 2nd ed. Hoboken, N.J. : Chichester: John Wiley & Sons ; John Wiley [distributor], 2012.
[35] S.Garc’ia-Rodr’iguez, T.Herranz, andS.Rojas, “Electrocatalysts for the Electrooxidation of Ethanol,” New Futur. Dev. Catal. Batter. Hydrog. Storage Fuel Cells2013, pp. 33–67, 2013.
[36] C.Lamy, C.Coutanceau, andJ.-M.Leger, “The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy,” Catal. Sustain. energy Prod., p. 3, 2009.
[37] M. Z. F.Kamarudin, S. K.Kamarudin, M. S.Masdar, andW. R. W.Daud, “Review: Direct ethanol fuel cells,” Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9438–9453, 2013, doi: https://doi.org/10.1016/j.ijhydene.2012.07.059.
[38] Z. W.Chia andJ. Y.Lee, “Fuel Cells: Direct Ethanol,” Encycl. Inorg. Chem., 2006.
[39] X.-Z.Yuan andH.Wang, “PEM fuel cell fundamentals,” in PEM fuel cell electrocatalysts and catalyst layers, Springer, 2008, pp. 1–87.
[40] R.Crisafulli, R. M.Antoniassi, A.Oliveira Neto, andE.VSpinacé, “Acid-treated PtSn/C and PtSnCu/C electrocatalysts for ethanol electro-oxidation,” Int. J. Hydrogen Energy, vol. 39, no. 11, pp. 5671–5677, 2014, doi: https://doi.org/10.1016/j.ijhydene.2014.01.111.
[41] T. S.Almeida, L. M.Palma, P. H.Leonello, C.Morais, K. B.Kokoh, andA. R.DeAndrade, “An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts,” J. Power Sources, vol. 215, pp. 53–62, 2012, doi: https://doi.org/10.1016/j.jpowsour.2012.04.061.
[42] B.Lin, “Conceptual design and modeling of a fuel cell scooter for urban Asia,” J. Power Sources, vol. 86, no. 1, pp. 202–213, 2000, doi: 10.1016/S0378-7753(99)00480-2.
[43] Canyon Hydro et al., “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %,” Intech, vol. 32, no. July, pp. 137–144, 2013, doi: 10.5772/2820.
[44] R.Manual, “COMSOL Multiphysics Reference Manual.”
[45] D. F.Cheddie, “Modelling of Ammonia-Fed Solid Oxide Fuel Cells in COMSOL,” vol. 2, no. 7, pp. 1–5, 2013.
[46] W.Kong, H.Zhu, Z.Fei, andZ.Lin, “A modified dusty gas model in the form of a Fick’s model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode,” J. Power Sources, vol. 206, pp. 171–178, 2012, doi: 10.1016/j.jpowsour.2012.01.107.
[47] M.Jourdani, H.Mounir, andA.Marjani, “Three-dimensional PEM fuel cells modeling using COMSOL multiphysics,” Int. J. Multiphys., vol. 11, no. 4, pp. 427–442, 2017, doi: 10.21152/1750-9548.11.4.427.
[48] X.Zhang, D.Song, Q.Wang, C.Huang, andZ.-S.Liu, “Influence of Anisotropic Transport Properties of the GDL on the Performance of PEMFCs,” ECS Trans., vol. 16, no. 2, pp. 913–923, 2019, doi: 10.1149/1.2981930.
[49] J.Lobato, P.Cañizares, M. A.Rodrigo, F. J.Pinar, E.Mena, andD.Úbeda, “Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence,” Int. J. Hydrogen Energy, vol. 35, no. 11, pp. 5510–5520, 2010, doi: 10.1016/j.ijhydene.2010.02.089. |