參考文獻 |
1. Feynman, R. P. There’s plenty of room at the bottom. J. Microelectromechanical Syst. 1, 60–66 (1992).
2. Purcell, E. M. The efficiency of propulsion by a rotating flagellum. Proc. Natl. Acad. Sci. U. S. A. 94, 11307–11 (1997).
3. Schuhmacher, J. S., Thormann, K. M. & Bange, G. How bacteria maintain location and number of flagella? FEMS Microbiol. Rev. 39, 812–822 (2015).
4. Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8, 634–644 (2010).
5. McCarter, L. L. Dual flagellar systems enable motility under different circumstances. J. Mol. Microbiol. Biotechnol. 7, 18–29 (2004).
6. Ulitzur, S. & Kessel, M. Giant flagellar bundles of Vibrio alginolyticus (NCMB 1803). Arch. Mikrobiol. 94, 331–339 (1973).
7. Berg, H. C. E. coli in Motion.(Springer New York, 2004). doi:10.1007/b97370
8. Berg, H. C. & Brown, D. A. Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking. Nature 239, 500–504 (1972).
9. Taylor, B. L. & Koshland, D. E. Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction. J. Bacteriol. 119, 640–642 (1974).
10. Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756–1764 (2007).
11. Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).
12. Yorimitsu, T. & Homma, M. Na+-driven fagellar motor of Vibrio. Components 1505, 82–93 (2001).
13. Sowa, Y., Hotta, H., Homma, M. & Ishijima, A. Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Mol. Biol. 327, 1043–1051 (2003).
14. Muramoto, K. et al. High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. J. Mol. Biol. 251, 50–58 (1995).
15. Magariyama, Y. et al. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed. Biophys. J. 69, 2154–2162 (1995).
16. Ogawa, R., Abe-Yoshizumi, R., Kishi, T., Homma, M. & Kojima, S. Interaction of the C-terminal tail of Flif with Flig from the Na+-driven flagellar motor of Vibrio alginolyticus. J. Bacteriol. 197, 63–72 (2015).
17. Lynch, M. J. et al. Co-folding of a FliF-FliG split domain forms the basis of the MS:C ring interface within the bacterial flagellar motor. Structure 25, 317–328 (2017).
18. Xue, C. et al. Crystal structure of the FliF-FliG complex from Helicobacter pylori yields insight into the assembly of the motor MS-C ring in the bacterial flagellum. J. Biol. Chem. 293, 2066–2078 (2018).
19. Lloyd, S. A. & Blair, D. F. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol. 266, 733–744 (1997).
20. Yakushi, T., Yang, J., Fukuoka, H., Homma, M. & Blair, D. F. Roles of charged residues of rotor and stator in flagellar rotation: Comparative study using H+-driven and Na+-driven motors in Escherichia coli. J. Bacteriol. 188, 1466–1472 (2006).
21. Takekawa, N., Kojima, S. & Homma, M. Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. J. Bacteriol. 196, 1377–1385 (2014).
22. Brown, P. N., Hill, C. P. & Blair, D. F. Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J. 21, 3225–3234 (2002).
23. Brown, P. N., Terrazas, M., Paul, K. & Blair, D. F. Mutational analysis of the flagellar protein FliG: Sites of interaction with FliM and implications for organization of the switch complex. J. Bacteriol. 189, 305–312 (2007).
24. Paul, K., Brunstetter, D., Titen, S. & Blair, D. F. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 108, 17171–17176 (2011).
25. Carroll, B. L. et al. The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching. Elife 9, 1–19 (2020).
26. Vartanian, A. S., Pazs, A., Fortgang, E. A., Abramsons, J. & Dahlquist, F. W. Structure of flagellar motor proteins in complex allows for insights into motor structure and switching. J. Biol. Chem. 287, 35779–35783 (2012).
27. Minamino, T. et al. Structural insight into the rotational switching mechanism of the bacterial flagellar motor. PLoS Biol. 9, (2011).
28. dosSantos, R. N., Khan, S. & Morcos, F. Characterization of C-ring component assembly in flagellar motors from amino acid coevolution. R. Soc. Open Sci. 5, (2018).
29. Brown, P. N., Mathews, M. A. A., Joss, L. A., Hill, C. P. & Blair, D. F. Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. J. Bacteriol. 187, 2890–2902 (2005).
30. Reid, S. W. et al. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc. Natl. Acad. Sci. U. S. A. 103, 8066–71 (2006).
31. Chen, S. et al. Structural diversity of bacterial flagellar motors. EMBO J. 30, 2972–81 (2011).
32. Beeby, M. et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl. Acad. Sci. 113, E1917–E1926 (2016).
33. Santiveri, M. et al. Structure and function of stator units of the bacterial flagellar motor. Cell 183, 244-257.e16 (2020).
34. Deme, J. C. et al. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat. Microbiol. 5, 1553–1564 (2020).
35. Zhu, S. et al. Conformational change in the periplamic region of the flagellar stator coupled with the assembly around the rotor. Proc. Natl. Acad. Sci. U. S. A. 111, 13523–8 (2014).
36. Thormann, K. M. & Paulick, A. Tuning the flagellar motor. Microbiology 156, 1275–1283 (2010).
37. Paulick, A. et al. Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor. Mol. Microbiol. 1–9 (2015). doi:10.1111/mmi.12984
38. Ito, M., Terahara, N., Fujinami, S. & Krulwich, T. A. Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J. Mol. Biol. 352, 396–408 (2005).
39. Asai, Y., Kawagishi, I., Sockett, R. E. & Homma, M. Hybrid motor with H+- and Na+-driven components can rotate vibrio polar flagella by using sodium ions. J. Bacteriol. 181, 6332–6338 (1999).
40. Yorimitsu, T., Asai, Y., Sato, K. & Homma, M. Intermolecular cross-linking between the periplasmic Loop3-4 regions of PomA, a component of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Biol. Chem. 275, 31387–31391 (2000).
41. Zhou, J. et al. Function of protonatable residues in the flagellar motor of Escherichia coli: A critical role for Asp 32 of MotB. J. Bacteriol. 180, 2729–2735 (1998).
42. Hosking, E. R., Vogt, C., Bakker, E. P. & Manson, M. D. The Escherichia coli MotAB proton channel unplugged. J. Mol. Biol. 364, 921–937 (2006).
43. Li, N., Kojima, S. &Homma, M. Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus. J. Bacteriol. 193, 3773–3784 (2011).
44. Takekawa, N. et al. Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA. J. Biochem. 153, 441–451 (2013).
45. Kojima, S. et al. Stator assembly and activation mechanism of the flagellar motor by the periplasms region of MotB. Mol. Microbiol. 73, 710–718 (2009).
46. Kojima, S. et al. The helix rearrangement in the periplasmic domain of the flagellar stator B subunit activates peptidoglycan binding and ion influx. Structure 26, 590-598.e5 (2018).
47. Mandadapu, K. K., Nirody, J. a, Berry, R. M. & Oster, G. Mechanics of torque generation in the bacterial flagellar motor. Proc. Natl. Acad. Sci. U. S. A. 1–18 (2015). doi:10.1073/pnas.1501734112
48. Zhou, J., Lloyd, S. A. & Blair, D. F. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl. Acad. Sci. U. S. A. 95, 6436–41 (1998).
49. Michael Silverman & Melvin Simon. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974).
50. Berg, H. C. & Tedesco, P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. 72, 3235–3239 (1975).
51. Inoue, Y. Rotation measurements of tethered cells. in The Bacterial Flagellum 163–174 (2017). doi:10.1007/978-1-4939-6927-2_12
52. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–7 (2000).
53. Yuan, J. & Berg, H. C. Resurrection of the flagellar rotary motor near zero load. Proc. Natl. Acad. Sci. U. S. A. 105, 1182–1185 (2008).
54. Nord, A. L. et al. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. Proc. Natl. Acad. Sci. 0, 201716002 (2017).
55. Kasai, T. & Sowa, Y. Measurements of the rotation of the flagellar motor by bead assay. in 185–192 (2017). doi:10.1007/978-1-4939-6927-2_14
56. Berg, H. C. & Turner, L. Torque Generated by the Flagellar Motor of Escherichia coil. 65, (1993).
57. Chen, X. & Berg, H. C. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 78, 1036–1041 (2000).
58. Inoue, Y. et al. Torque–speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. J. Mol. Biol. 376, 1251–1259 (2008).
59. Blair, D. & Berg, H. Restoration of torque in defective flagellar motors. Science (80-. ). 242, 1678–1681 (1988).
60. Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M. & Van derDrift, C. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. U. S. A. 74, 3060–4 (1977).
61. Felle, H., Porter, J. S., Slayman, C. L. & Kaback, H. R. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19, 3585–3590 (1980).
62. Zilberstein, D., Agmon, V., Schuldiner, S. & Padan, E. Escherichia coli intracellular pH, membrane potential, and cell growth. J. Bacteriol. 158, 246–252 (1984).
63. Bot, C. T. & Prodan, C. Quantifying the membrane potential during E. coli growth stages. Biophys. Chem. 146, 133–137 (2010).
64. Fung, D. C. & Berg, H. C. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375, 809–812 (1995).
65. Gabel, C.V. & Berg, H. C. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc. Natl. Acad. Sci. U. S. A. 100, 8748–8751 (2003).
66. Lo, C.-J., Leake, M. C., Pilizota, T. & Berry, R. M. Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys. J. 93, 294–302 (2007).
67. Minamino, T., Imae, Y., Oosawa, F., Kobayashi, Y. & Oosawa, K. Effect of intracellular pH on rotational speed of bacterial flagellar motorst. J. Bacteriol. 185, 1190–1194 (2003).
68. Meister, M., Lowe, G. & Berg, H. C. The proton flux through the bacterial flagellar motor. Cell 49, 643–650 (1987).
69. Asai, Y., Yakushi, T., Kawagishi, I. & Homma, M. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J. Mol. Biol. 327, 453–463 (2003).
70. Lo, C.-J., Leake, M. C. & Berry, R. M. Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys. J. 90, 357–365 (2006).
71. Nord, A. L., Sowa, Y., Steel, B. C., Lo, C.-J. & Berry, R. M. Speed of the bacterial flagellar motor near zero load depends on the number of stator units. Proc. Natl. Acad. Sci. 114, 11603–11608 (2017).
72. Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).
73. Delalez, N. J. et al. Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc. Natl. Acad. Sci. U. S. A. 107, 11347–51 (2010).
74. Delalez, N. J., Berry, R. M. & Armitage, J. P. Stoichiometry and Turnover of the Bacterial Flagellar Switch Protein. (2014). doi:10.1128/mBio.01216-14.Updated
75. Lele, P. P., Hosu, B. G. & Berg, H. C. Dynamics of mechanosensing in the bacterial flagellar motor. Proc. Natl. Acad. Sci. U. S. A. 110, 11839–44 (2013).
76. Tipping, M. J., Delalez, N. J., Lim, R., Berry, R. M. & Armitage, J. P. Load-dependent assembly of the bacterial flagellar motor. MBio 4, 1–6 (2013).
77. Wadhwa, N., Phillips, R. & Berg, H. C. Torque-dependent remodeling of the bacterial flagellar motor. Proc. Natl. Acad. Sci. 116, 201904577 (2019).
78. Schoenhals, G. J. & Macnab, R. M. FliL is a membrane-associated component of the flagellar basal body of Salmonella. Microbiology 145, 1769–1775 (1999).
79. Motaleb, M. A., Pitzer, J. E., Sultan, S. Z. & Liu, J. A novel gene inactivation system reveals altered periplasmic flagellar orientation in a Borrelia burgdorferi flil mutant. J. Bacteriol. 193, 3324–3331 (2011).
80. Partridge, J. D., Nieto, V. & Harshey, R. M. A new player at the flagellar Motor: FliL controls both motor output and bias. MBio 6, e02367-14 (2015).
81. Rajagopala, S.V. et al. The protein network of bacterial motility. Mol. Syst. Biol. 3, 128 (2007).
82. Suaste-Olmos, F. et al. The flagellar protein FliL is essential for swimming in Rhodobacter sphaeroides. J. Bacteriol. 192, 6230–6239 (2010).
83. Li, H. & Sourjik, V. Assembly and stability of flagellar motor in Escherichia coli. Mol. Microbiol. 80, 886–899 (2011).
84. Zhu, S., Kumar, A., Kojima, S. & Homma, M. FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio. Mol. Microbiol. 98, 101–110 (2015).
85. Attmannspacher, U., Scharf, B. E. & Harshey, R. M. FliL is essential for swarming: Motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol. Microbiol. 68, 328–341 (2008).
86. Belas, R. & Suvanasuthi, R. The Ability of proteus mirabilis to sense surfaces and regulate virulence gene expression Involves FliL , a Flagellar Basal Body Protein. J. Bacteriol. 187, 6789–6803 (2005).
87. Fukuoka, H., Wada, T., Kojima, S., Ishijima, A. & Homma, M. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol. Microbiol. 71, 825–835 (2009).
88. Tipping, M. J., Steel, B. C., Delalez, N. J., Berry, R. M. & Armitage, J. P. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol. Microbiol. 87, 338–347 (2013).
89. Suzuki, Y. et al. Effect of the MotA(M206I) mutation on torque generation and stator Assembly in the Salmonella H+-driven fagellar motor. J. Bacteriol. 201, 1–14 (2019).
90. Morimoto, Y.V., Nakamura, S., Kami-Ike, N., Namba, K. & Minamino, T. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol. Microbiol. 78, 1117–1129 (2010).
91. Sowa, Y. et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437, 916–919 (2005).
92. Hata, H. et al. High pressure inhibits signaling protein binding to the flagellar motor and bacterial chemotaxis through enhanced hydration. Sci. Rep. 10, 2351 (2020).
93. Okunishi, I., Kawagishi, I. & Homma, M. Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus. J. Bacteriol. 178, 2409–2415 (1996).
94. Kitaoka, M. et al. A novel dnaJ family gene, sfLA, encodes an inhibitor of flagellation in marine vibrio species. J. Bacteriol. 195, 816–822 (2013).
95. Lin, T.-S., Zhu, S., Kojima, S., Homma, M. & Lo, C.-J. FliL association with flagellar stator in the sodium-driven Vibrio motor characterized by the fluorescent microscopy. Sci. Rep. 8, 11172 (2018).
96. Pilizota, T. & Shaevitz, J. W. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS One 7, e35205 (2012).
97. Fukuoka, H., Yakushi, T., Kusumoto, A. & Homma, M. Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. J. Mol. Biol. 351, 707–17 (2005).
98. Cras, J. J., Rowe-Taitt, C. A., Nivens, D. A. & Ligler, F. S. Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens. Bioelectron. 14, 683–688 (1999).
99. Nishiyama, M. & Kojima, S. Bacterial motility measured by a miniature chamber for high-pressure microscopy. Int. J. Mol. Sci. 13, 9225–39 (2012).
100. Kiernan, J. A. Formaldehyde, Formalin, Paraformaldehyde And Glutaraldehyde: What They Are And What They Do. Micros. Today 8, 8–13 (2000).
101. Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996).
102. Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7 (1998).
103. Farré, A., Marsà, F. & Montes-Usategui, M. Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. Opt. Express 20, 12270 (2012).
104. Axelrod, D., Thompson, N. L. & Burghardt, T. P. Total internal reflection fluorescent microscopy. J. Microsc. 129, 19–28 (1983).
105. Axelrod, D. Chapter 9 Total internal reflection fluorescence microscopy. in Encyclopedia of Cell Biology 2, 245–270 (Elsevier, 1989).
106. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A. H. &Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).
107. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. &Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).
108. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).
109. Diaspro, A. Optical Fluorescence Microscopy. Advancement Of Science 138, (Springer Berlin Heidelberg, 2011).
110. Bulinski, J. C., Odde, D. J., Howell, B. J., Salmon, T. D. & Waterman-Storer, C. M. Rapid dynamics of the microtubule binding of ensconsin in vivo. J. Cell Sci. 114, 3885–3897 (2001).
111. Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237 (1995).
112. Yildiz, A. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science (80-. ). 300, 2061–2065 (2003).
113. Dickson, R. M., Cubitt, A. B. & Tsien, R. Y. On / off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).
114. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–7 (2002).
115. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–5 (2006).
116. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–83 (2002).
117. Lacoste, T. D. et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. U. S. A. 97, 9461–9466 (2000).
118. Tang, H. & Blair, D. F. Regulated underexpression of the FliM protein of Escherichia coli and evidence for a location in the flagellar motor distinct from the MotA/MotB torque generators. J. Bacteriol. 177, 3485–3495 (1995).
119. Chao, Y. & Z hang, T. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl. Microbiol. Biotechnol. 92, 381–92 (2011).
120. Joosen, L., Hink, M. A., Gadella, T. W. J. & Goedhart, J. Effect of fixation procedures on the fluorescence lifetimes of Aequorea victoria derived fluorescent proteins. J. Microsc. 256, 166–176 (2014).
121. Berezin, M. Y. &Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010).
122. Patterson, G. H. &Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–7 (2002).
123. Heo, M. et al. Impact of fluorescent protein fusions on the bacterial flagellar motor. Sci. Rep. 7, 1–10 (2017).
124. Dickson, R. M., Cubittt, A. B., Tsient, R. Y. &Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).
125. Leake, M. C., Wilson, D., Gautel, M. &Simmons, R. M. The elasticity of single titin molecules using a two-bead optical tweezers assay. Biophys. J. 87, 1112–1135 (2004).
126. Svoboda, K., Schmidt, C. F., Schnapp, B. J. &Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).
127. Zhu, S. et al. Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus. Proc. Natl. Acad. Sci. 201712489 (2017). doi:10.1073/pnas.1712489114
128. Wayne Niblack. An Introduction to Digital Image Processing. (Prentice Hall, 1986).
129. Sauvola, J. &Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 33, 225–236 (2000).
130. Kumar, M., Mommer, M. S. & Sourjik, V. Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophys. J. 98, 552–559 (2010).
131. Oswald, F., Varadarajan, A., Lill, H., Peterman, E. J. G. & Bollen, Y. J. M. MreB-dependent organization of the E. coli cytoplasmic membrane controls membrane protein diffusion. Biophys. J. 110, 1139–1149 (2016).
132. Castle, A. M., Macnab, R. M. & Shulman, R. G. Coupling between the sodium and proton gradients in respiring Escherichia coli cells measured by 23Na and 31P nuclear magnetic resonance. J. Biol. Chem. 261, 7797–7806 (1986).
133. Nirody, J. A., Berry, R. M. & Oster, G. The limiting speed of the bcterial flagellar Motor. Biophys. J. 111, 557–564 (2016).
134. Wang, B., Zhang, R. & Yuan, J. Limiting (zero-load) speed of the rotary motor of Escherichia coli is independent of the number of torque-generating units. Proc. Natl. Acad. Sci. 114, 201713655 (2017).
135. Khan, S., Dapice, M. & Reese, T. S. Effects of mot gene expression on the structure of the flagellar motor. J. Mol. Biol. 202, 575–584 (1988).
136. Samuel, A. D. T. & Berg, H. C. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71, 918–923 (1996).
137. Block, S. M. & Berg, H. C. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309, 470–472 (1984).
138. Van DenHeuvel, M. G. L. & Dekker, C. Motor proteins at work for nanotechnology. Science (80-. ). 317, 333–336 (2007).
139. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000).
140. Xie, L., Altindal, T., Chattopadhyay, S. & Wu, X. L. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 108, 2246–2251 (2011).
141. Zhou, X. & Roujeinikova, A. The structure, composition, and role of periplasmic stator scaffolds in polar bacterial flagellar motors. Front. Microbiol. 12, (2021).
142. Nishino, Y., Onoue, Y., Kojima, S. & Homma, M. Functional chimeras of flagellar stator proteins between E. coli MotB and Vibrio PomB at the periplasmic region in Vibrio or E. coli. Microbiologyopen 4, 323–331 (2015).
143. Sowa, Y. & Berry, R. M. Bacterial flagellar motor. Q. Rev. Biophys. 41, 103–32 (2008).
144. Armitage, J. P. & Berry, R. M. Assembly and dynamics of the bacterial flagellum. Annu. Rev. Microbiol. 74, 181–200 (2020).
145. Goodwin, J. S. & Kenworthy, A. K. Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells. Methods 37, 154–164 (2005).
146. Prescher, J. Assembly and optimization of a super-resolution STORM microscope for nanoscopic imaging of biological structures. (LMU München, 2016).
147. Chung, S. H. & Kennedy, R. A. Forward-backward non-linear filtering technique for extracting small biological signals from noise. J. Neurosci. Methods 40, 71–86 (1991).
148. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophys. J. 82, 2775–2783 (2002). |