博碩士論文 108330603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.15.31.27
姓名 拉荷妤(Hesti Aprilianti Rahayu Setiadi)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 以衛星觀測資料估計印尼馬魯古省Dullah Laut海床生態系之碳庫存量
(Carbon Stock Estimation over Seagrass Ecosystem Using Satellite Observation in Dullah Laut, Maluku Indonesia)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討★ 結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ MODIS衛星資料在亞洲地區氣膠種類辨識之應用
★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用★ 應用衛星資料探討大台北地區都市熱島效應之時空分布
★ AERONET觀測資料在氣膠種類輻射參數之探討★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結
★ 季風輻合效應在台灣地區熱帶氣旋降雨影響之探討★ 衛星資料探討台南都市發展在熱島效應及區域降雨型態之影響
★ 福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球暖化和氣候變遷是目前國際上最急迫且重要的議題,大氣中溫室氣體(GHG)因為人類活動,特別是二氧化碳(CO2)的增加導致地球溫度之升高與暖化。另一方面,沿海生態系統之一的海草的碳庫存量是陸地森林的兩倍,或可有效地減緩二氧化碳的含量。然而,目前海草以每年2-5%的速率正逐漸消失中(Duarte et al. 2008),有統計以來,全球大約有 29% 的海草生態系統已經消失。如果以目前這樣的速度繼續下去,估計下個世紀會有30-40% 的海草消失(Pendleton et al., 2012)。海草面臨的主要威脅包括森林砍伐以及污染所導致的水質惡化。與此同時,由於未經調查的地理區域 (如東南亞),含有廣大的海草草原,導致目前的認知與實際上情形仍有很大的差距。因此,空間資訊的取得對於環境管理計畫就顯得非常重要。本研究透過Landsat 8 OLI/TIRS進行影像分類並分析海草生態系統,進而估計馬魯古 Dullah Laut 的碳庫存量。結果顯示,研究區域的海草覆蓋面積為 557.91 公頃,地上、地下、沉積物和碳封存能力分別估計為每年0.15 - 0.20 ktC、0.37-0.44 ktC、311.509 ktC 和 0.003 - 0.005 MtC。深度不變指數修正後準確率從86.11%提高到87.76%,提高了1.67%。結果也表明,印度尼西亞的海草區具有抵消氣候變化負面影響的潛力。此外,維護沿海生態系統對於長期碳封以維持環境穩定來說是個重要的議題。
摘要(英) Global warming and climate change are the emerging issues around the world currently. This phenomenon caused by the increase of the greenhouse gases (GHG) especially carbon dioxide (CO2) in the atmosphere that causes the rising temperature of the earth system further resulted in global warming and climate change. One of coastal ecosystems, on the other hand, seagrass ecosystems can store up to twice carbon than terrestrial forests in reducing carbon dioxide. However, the annual loss of seagrass 2-5% per year (Duarte et. al. 2008) and approximately 29% of historical global seagrass ecosystem have been lost. If these trends continue at the current rates, a further 30-40% of seagrass could be lost in the next century (Pendleton et al. 2012). Major threats to seagrass included degradation of water quality due to anthropogenic activities, deforestation and pollution. Meanwhile, knowledge gaps still exist in term of geographical extent for areas containing seagrass meadow because of unsurvey (e.g. Southeast Asia). Hence, the availability of spatial information becomes very important for planning environment-based management. Therefore, this research focus on analyzing seagrass ecosystems using Landsat 8 OLI/TIRS imagery through image classification and estimated the carbon stock in Dullah Laut, Maluku. The result shows seagrass in the studied area is covering 557.91 ha with the carbon stock estimate above, below ground, sediment and carbon sequestration capacity of ca. 0.15 - 0.20 ktC, 0.37-0.44 ktC, 311.509 ktC and 0.003 – 0.005 MtC/year respectively and the accuracy increase by 1.67% after Depth Invariant Index correction from 86.11% to 87.76%. It also indicated that the seagrass area in Indonesia has potential to offset the negative impact of climate change. Furthermore, to maintain the coastal ecosystem is a critical issue for the long-term carbon sinks to sustain the sustainability of environment.
關鍵字(中) ★ 海草
★ 碳儲量
★ Landsat 8 OLI/TIRS
★ 遙感探測
★ 深度不變指數
關鍵字(英) ★ Carbon Stock
★ Depth Invariant Index
★ Landsat 8 OLI/TIRS
★ Remote Sensing
★ Seagrass
論文目次 Table of Contents
摘要 i
Abstract ii
Acknowledgments iii
Chapter I : Introduction 1
1-1 Background and the issued of carbon stock in seagrass ecosystem 1
1-2 Research Problem and Objectives 3
1-3 Thesis Outline 4
Chapter II : Literature Review 5
2-1 Seagrass Ecosystem in Indonesia 5
2-2 Carbon Stock in seagrass ecosystem 6
2-3 IPCC Carbon Stock Inventory in Seagrass Ecosystem 8
2-4-1 Landsat Imagery 10
2-4-2 Application of Landsat images for Mapping Seagrass 21
Chapter III : Materials and Methodology 23
3-1 Study Area 23
3-2 Dataset 24
3-3 Image Processing 25
3-3-1 Pre-Processing 25
3-3-2 Image Classification 28
3-3-3 Accuracy Assessment 28
Chapter IV: Result and Discussion 30
4-1 Sampling for sea truth 30
4-2 Image Processing of Landsat 8 OLI/TIRS 30
4-3 Image Classification 32
4-4 Accuracy assessment analysis result 37
4-5 Carbon Stock Estimation 38
Chapter V : Conclusion 42
5-1 Conclusions 42
5-3 Limitation and Future Works 44
Reference 45
Appendix 52
參考文獻 Reference
Anggoro A, Siregar V P and Agus S B 2016 The Effect of Sunglint on Benthic Habitats Mapping in Pari Island Using Worldview-2 Imagery Procedia Environmental Sciences vol 33pp 487–95
Alongi DM, Murdiyarso D, Fourqurean JW, Kauffman JB, Hutahaean A, Crooks S, Lovelock CE, Howard J, Herr D, Fortes M, Pidgeon E, Wagey T (2016) Indonesia’s blue carbon: A globally significant and vulnerable sink for seagrass and mangrove carbon. Wetl Ecol Manag 24(1):3–13. doi:10.1007/s11273-015-9446-y
Bengen, D G. 2002. Sinopsis Ekosistem dan Sumberdaya Pesisir dan Laut Serta Prinsip Pengelolaannya. Cetakan Kedua. Bogor: Pusat Kajian Sumber Daya Pesisir dan Lautan, Institut Pertanian Bogor.
Belshe EF, Hoeijmakers D, Herran N, Mtolera M, Teichberg M (2018) Seagrass community-level controls over organic carbon storage are constrained by geophysical attributes within meadows of Zanzibar, Tanzania. Biogeosciences 15:4609–4626. doi:10.5194/bg-15-4609-2018
Chmura, G.L., Anisfeld, S.C., Cahoon, D.R. & Lynch, J.C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global biogeochemical cycles, 17, Article 11.
Conservation International. 2019. Coastal Blue Carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. https://www.thebluecarboninitiative.org/manual access on 10 May 2021
Danoedoro P 2012 Pengantar Penginderaan Jauh Digital (Yogyakarta: Andi Offset)
Duarte, C.M., Nuria M., Rui S. Five what may cause loss of seagrass. http://www.vliz.be/imisdocs/publications/67183.pdf access on 21 June 2021
Duarte, C. M., Middelburg, J. J., and Caraco, N. 2005. Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005.
Duarte CM, Dennison WC, Orth RJW, Caruthers TJB. 2008. Thecharisma of coastal ecosystems: Addressing the imbalance. Estuar Coast 31(2):233–238. doi:10.1007/s12237-008-9038-7
Eakin, C. M., Nim, C. J., Brainard, R. E., Aubrecht, C., Elvidge, C., Gledhill, D. K., Muller-Karger, F., Mumby, P. J., Skirving, W. J., Strong, A. E., Wang, M., Weeks, S., Wentz, F. & Ziskin, D. 2010. Monitoring coral reefs from space. Oceanography, 23, 118-133.
Fourqurean, J., Duarte, C., Kennedy, H. et al. Seagrass ecosystems as a globally significant carbon stock. Nature Geosci 5, 505–509 (2012). https://doi.org/10.1038/ngeo1477
Graha, Y.I. 2015. Simpanan Karbon Padang Lamun di Kawasan Pantai Sanur, Kota Denpasar. [Thesis]. Program Pascasarjana, Universitas Udayana, Bali.
Green, E. P., P. J. Mumby, A. J. Edwards, and C. D. Clark. 2000. Remote Sensing Handbook for Tropical Coastal Management. UNESCO. Coastal Management Sourcebook 3p.
Haris, Abdul. 2012. Rancang bangun pengelolaan mina wisata bahari pulau kecil berbasis konservasi : kasus Dullah Laut, Kota Tual, Provinsi Maluku. Thesis research. Bogor Agricultural University.
Hedley, J. D., A. R. Harborne, and P. J. Mumby. Technical note: Simple and robust removal of sun glint for mapping shallow water benthos. Int J Remote Sens 2005; 26(10):210
Hendriks IE, Olsen YS, Ramajo L, Basso L, Steckbauer A, Moore TS, Howard J and Duarte CM (2014) Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11:333–346. doi:10.5194/bg-11-333-2014
Hochberg, E. J., S. Andrefouet, and M. R. Tyler. Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE T Geosci Remote 2003; 41(7):1724-1729.
Hoshino, E., E.I. van Putten, W. Girsang, B.P. Resosudarmo, and S. Yamazaki. 2017. ‘Fishers’ Perceived Objectives of Community-based Coastal Resource Management in the Kei Islands, Indonesia.’ Frontiers in Marine Science, 4 (141).
Humoto, M. and Moosa, M.K. (2005). Indonesian marine and coastal biodiversity: present status. Indian Journal of Marine Sciences. 34:88-97
IPCC (2013). Coastal Wetlands. In: 2013 Supplement to the 2006 IPCC guidelines for National Greenhouse Gas Inventories (eds. Alongi, D, Karim, A, Kennedy, H, Chen, G, Chmura, G, Crooks, S et al.).
Kay, S., J. Hedley, and S. Lavender. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: a Review of Methods for Visible and Near-Infrared Wavelengths. Remote Sensing 2009; 1(4):697-730.
Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles 24, GB4026 (2010).
Kiswara, W. (1996). Inventory of seagrass in Kuta and Gerupak Bays, Lombok-Indonesia. In: Kuo, J., Philips, R.C., Walker, D.I., and Kirkman, H. (Eds) Seagrass Biology: Proceedings of an International Workshop, Rottnest Island, Western Australia, 25-29 January 1996. The University of Western Australia, Nedlands.
Kuo J (2007) New monoecious seagrass of Halophila sulawesii (Hydrocharitaceae) from Indonesia. Aquat Bot 87:171–75. doi:10.1016/j.aquabot.2007.04.006
Lillesand T, Kiefer RW, Chipman J. 2014. Remote sensing and image interpretation. New Jersey (US): John Wiley & Sons.
Lyzenga, D. Shallow-water bathymetry using combined lidar and passive ultispectral scanner data. Int. Journal of Remote Sensing 1985: 6(1), pp. 115-125.
M Hafizt et al 2017 IOP Conf. Ser.: Earth Environ. Sci. 98 012037
Manessa M D M, Haidar M, Budhiman S, Winarso G, Kanno A, Sagawa T and Sekine M 2016 Evaluating The Performance of Lyzenga’s Water Column Correction in Case-1 Coral Reef Water Using a Simulated Wolrdview-2 IOP Conf. Ser. Earth Environ. Sci. 47
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M. et al. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552–560.
Middelburg, J., Nieuwenhuize, J., Lubberts, R. & Van de Plassche, O. (1997). Organic carbon isotope systematics of coastal marshes. Estuarine, Coastal and Shelf Science, 45, 681–687.
Nienhuis, P.H. (1993). Structure and Functioning of Indonesia seagrass ecosystems. In : Moosa, M.K., de longh H.H, Blaauw, H.J.A. & Norimana, M.K.J. (eds.) Proceedings of International Seminar Coastalzone Management of small island ecoystems. Universittas Pattimura, CML-Leiden&AIDEnvironment Amsterdam. Pp. 82-86
Pendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S. et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One, 7, e43542.
Peraturan Kepala Badan Informasi Geospasial Nomor 8 Tahun 2014 and BIG 2014 Pedoman Teknis Pengumpulan dan Pengolahan Data Geospasial Habitat Dasar Perairan Laut Dangkal ed B I Geospasial (Jakarta)
Setiawan, F., Harahap, S.A., Andriani, Y. & Hutahaean, A.A. 2012. Deteksi Perubahan Padang Lamun Menggunakan Teknologi Penginderaan Jauh dan Kaitannya dengan Kemampuan Menyimpan Karbon di Perairan Teluk Banten. Jurnal Perikanan dan Kelautan, 3(3):275-286.
Short FT, Kosten S, Morgan P, Malone S, Moore G. Present and future impacts of climate change on submerged and emergent wetland plants: a review. In: Aquat. Bot. special issue: “40 years of Aquatic Botany”; 2016. http://dx.doi.org/10.1016/j.aquabot.2016.06.006.
Sjafrie NDM, Hernawan UE, Rahmawati S, Prayuda B, Supriyadi IH, Suyarso S, Iswari MY, Rahmat R, Anggraini K (2018) Status of the seagrass meadows in Indonesia 2018. Indonesian Institute of Sciences
Sobrino, J.A., Jimenez-Munoz, J.C., Paolini, L., 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment 90, 434-440.
Stumpf, R.P., K. Holderied, 2003, Determination of Water Depth with High-Resolution Satellite Imagery Over Variable Bottom Types, Liminology and Oceanography, 48(1):547-556.
Sunar Erbek, F., Ulubay, A., Maktav, D., Yagiz, E., 2005. The use of satellite image maps or urban planning in Turkey. International Journal of Remote Sensing 26, 775-784.
Unsworth, R.K.F. (2007). Aspect of the ecology of Indo-Pacific seagrass systems.PhD thesis, Department of Biological Science, University of Essax, 199pp.
Unsworth, R.K.F., McKenzie, L.J., Collier, C.J. et al. Global challenges for seagrass conservation. Ambio 48, 801–815 (2019). https://doi.org/10.1007/s13280-018-1115-y
USGS. 2021. Landsat missions : Landsat 8. https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con). Access on 15 May 2021
Wahyudi AJ, Afdal A, Adi NS (2018a) Summary for policy maker: The potentials of carbon stock and sequestration of Indonesia’s mangrove and seagrass ecosystem. Indonesian Institute of Sciences. http://oseanografi.lipi.go.id/hasilpenelitian/lihatpdf/37
Wahyudi, A.J., Rahmawati, S., Irawan, A. et al. Assessing Carbon Stock and Sequestration of the Tropical Seagrass Meadows in Indonesia. Ocean Sci. J. 55, 85–97 (2020). https://doi.org/10.1007/s12601-020-0003-0
Wardah., B. Toknok., dan Zulkaidhah. 2009. Persediaan Karbon Tegakan Agroforestri di Zona Penyangga Hutan Konservasi Taman Nasional Lore Lindu, Sulawesi Tengah. [Penelitian Strategi Nasional]. Universitas Tadulako, Palu, Sulawesi Tengah.
Waycott, M., Duarte, C.M., Carruthers, T.J., Orth, R.J., Dennison, W.C., Olyarnik, S. et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106, 12377–12381.
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明