博碩士論文 102690602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.144.100.38
姓名 史朗祺(Suranjith Bandara Koralegedara)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 未來氣候變化在斯里蘭卡科倫坡大都市區春季極 端降雨事件中的作用
(The role of future climate change in springtime extreme rainfall events in Colombo metropolitan region, Sri Lanka)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於全球變暖化可能加劇極端天氣事件對社會經濟的影響,特別是在人口稠密的亞洲城市大都市,極端天氣事件受到了極大的關注。與由季風交替形成的熱帶氣旋 (TC)/低壓系統 (LPS) 等極端天氣事件是孟加拉灣地區最重大且災難性的自然災害之一。然而,春季此類極端事件的詳細特徵和未來變化仍不清楚,也是該地區長期存在的問題。因此,本論文旨在了解與 TC/LPS 相關的春季極端降雨事件動力機制及其在斯里蘭卡背景、未來全球變暖情況下的變化及可能影響。使WRF模式降尺度技術 (Weather Research and forecasting model, WRF) 模擬現在與未來暖化條件下的結果。並使用來自本地和遙測的多個觀測系統的數據用於驗證結果。首先,通過歷史春季降雨分析確定了一個獨特的案例研究。 其次,對案例研究進行數值模擬和分析。 最後,使用PGW(Pseudo Global Warming)方法對當前和未來氣候變暖的事件進行氣候變化影響分析。
歷史數據顯示,大約 10% 的春季極端降雨事件與 TC/LPS 相關。這些 TC/LPS 相關事件起源於西南季風肇始,而TC/LPS相關事件之平均日降雨量為其他強降雨事件中最高。分析2016 年 5 月個案數值模擬結果顯示,TC/LPS伴隨極端降雨事件的機制為結合 季風西風流、LPS 和局部地形效應交互作用之結果。根據 PGW 模擬,顯示未來更暖的大氣條件會影響 TC/LPS 的發展、極端降雨強度以及位置。TC/LPS在氣候變暖且與現今相似的綜觀天氣下,斯里蘭卡的極端降雨在本世紀中葉相較於現在將增加21%,而到本世紀末增加42%。未來降雨的空間分佈將在中部山區累積。然而,敏感度實驗顯示,未來極端降雨的位置和強度將與駛流場和可用水氣通量具高度敏感,凸顯了熱力和動力作用反饋的重要性。
本研究著重詳細研究分析斯里蘭卡極端降雨事件的中尺度動力機制與氣候變化影響。本研究之結果有助於了解熱帶氣候與春季 TC/LPS 相關的極端降雨事件的影響機制。同時顯示將氣候變遷衝擊分析之詳細結果納入未來潛在極端事件之調適和土地利用的重要性,特別是在斯里蘭卡和其他相似地區。
摘要(英) There is significant attention on extreme weather events due to their potential in exacerbating the impacts of global warming on socioeconomics, particularly over the highly populated Asian urban metropolises. Extreme weather events associated with Tropical Cyclones (TCs)/Low-Pressure Systems (LPS) modulated by alternating Monsoon flow are among the most significant and disastrous natural hazards over the Bay of Bengal region. However, the detailed characteristics and projected future variability of such extreme events over springtime are still not well understood and a long-standing problem in this region. Thus, this thesis was designed to understand the dynamics of the springtime extreme rainfall events associated with TC/LPS and their variabilities under the future projected global warming for the Sri Lankan context. Analysis was built on downscaling simulations with present-day and projected future conditions using the Weather Research and forecasting model. Data from multiple observational systems, both local and remotely sensed, were used to validate the results. First, a unique case study was identified through a historical springtime rainfall analysis. Second, numerical modeling and analysis on the case study were conducted to analyze the extreme weather event. Finally, the climate change impact analysis of the event comparing the present day and future warming climates was carried out using the Pseudo Global Warming (PGW) method.
Historical data show that about 10% of the springtime extreme rainfall events are associated with the TC/LPS. These TC/LPS associated events originated with the southwestern monsoon onset and showed the highest average daily rainfall per event among the other extreme rainfall event types. Detailed numerical analysis on the May 2016 case study revealed that the TC/LPS associated extreme rainfall events has a mechanism combining the SW monsoon westerly flow, LPS flow, and the local topographic effect. According to the PGW simulations, it is indicated that the future warmer atmosphere affects the TC/LPS development, associated extreme rainfall intensity, as well as location. A future TC/LPS in a warming climate with similar synoptic conditions as in the present-day would enhance the extreme rainfall over Sri Lanka by 21% in the mid-century and by 42 % at the end of the century compared to the present day. Spatial distribution of the future rainfall will be accumulated over the central mountains regions. However, sensitivity experiments suggest that the location and the intensity of the future extreme rainfall are highly sensitive to the governing steering flow and the moisture availability, highlighting the importance of the thermodynamic and dynamic feedbacks.
This study marks one of the first detailed studies focusing on analyzing mesoscale dynamics and climate change impacts of extreme rainfall events over Sri Lanka. The findings of this research study shall contribute to the scientific knowledge of the springtime TC/LPS related extreme rainfall events in tropical climates. It shall also stress the importance of incorporating the results of detailed climate change impact analysis in managing the potential extreme events and land use in the future, particularly in Sri Lanka and similar localities elsewhere in the world.
關鍵字(中) ★ 極端降雨
★ 斯里蘭卡
★ 春季
★ 氣候變化
★ 低壓系統
★ PGW
關鍵字(英) ★ Extreme rainfall
★ Sri Lanka
★ springtime
★ Climate Change
★ Low-pressure systems
★ Pseudo global warming
論文目次 Table of Contents

List of publications and presentations iii
摘要 v
Abstract vii
Acknowledgments ix
Table of Contents xi
List of Figures xv
List of Tables xxi
List of Abbreviations and Symbols xxiii
1. Introduction 1
1.1. Background and motivation 1
1.2. Specific aims and objectives 3
1.3. Outline of the dissertation 5
2. Literature review and existing knowledge 7
2.1. Rainfall climatology of Sri Lanka 7
2.1.1. Rainfall seasonality 7
2.1.2. Interannual variability of rainfall 10
2.1.3. Rain causing mechanisms and extreme rainfall events 11
2.1.4. Springtime rainfall and monsoon onset in Sri Lanka 12
2.2. Extreme rainfall events and mesoscale modeling 14
2.3. Global warming and extreme rainfall events 16
2.3.1. General circulation models 18
2.3.2. Downscaling 19
2.4. Trends, climate change, and impact studies of extreme rainfall events 22
2.4.1. Climate change on tropical cyclone development 22
2.4.2. Impact of climate change on extreme weather events 24
2.4.3. Future climate change impacts on society 25
3. Study Area, Data, and Methodology 27
3.1. Study area 27
3.1.1. Sri Lanka and Colombo metropolitan region 27
3.1.2. Topography 27
3.1.3. Climate 29
3.1.4. Population 30
3.1.5. Natural disasters of Sri Lanka 31
3.2. Data 33
3.2.1. Ground observation data 33
3.2.2. Satellite/remote sensing data 34
3.2.3. Reanalysis data 34
3.2.4. Topographical data 35
3.2.5. TC track data 35
3.2.6. Natural disaster-related data 35
3.3. Methodology 36
3.3.1. Historical rainfall analysis 36
3.3.2. Mesoscale modeling 37
3.3.3. Climate change analysis 46
4. Historical extreme rainfall event analysis 57
4.1. Introduction 57
4.2. Rainfall Climatology 57
4.2.1. Rainfall climatology of CMR 57
4.3. Springtime extreme rainfall events 60
4.4. May 2016 extreme rainfall event 66
4.4.1. Low-pressure system development 66
4.4.2. Rainfall 69
4.4.3. Damages caused by the May 2016 extreme rainfall event 70
5. Mesoscale modeling and analysis of the springtime extreme rainfall events 71
5.1. Introduction 71
5.2. Model validation and simulated extreme rainfall event 71
5.3. Mechanisms responsible for extreme rainfall 74
5.3.1. Effect of Southwesterly flow 75
5.3.2. Mesoscale effects on extreme rainfall 78
5.3.3. Orographic effect on extreme rainfall 81
5.4. Summary and conclusions 84


6. Climate change impact analysis of the springtime extreme rainfall 85
6.1. Introduction 85
6.2. Model validation 86
6.3. Future environmental conditions and structure of the TC/LPS 90
6.3.1. Possible future environmental conditions 90
6.3.2. Low-pressure system track and intensity 93
6.3.3. Synoptic flow structure 97
6.4. Future changes in springtime extreme rainfall event 99
6.4.1. Spatial distribution of the rainfall 99
6.4.2. Temporal distribution of the rainfall 103
6.4.3. Physical mechanisms of future changes in springtime extreme rainfall 106
6.5. Summary and conclusions 113
7. Summary and conclusions 115
7.1. Key contributions 116
7.2. Caveats in the study 116
7.3. Scope for future research 117
8. Bibliography 119
9. Appendices 145
參考文獻 8. Bibliography
Akter, N., 2015. Mesoscale Convection and Bimodal Cyclogenesis over the Bay of Bengal. Monthly Weather Review 143(9), pp. 3495-3517. doi:10.1175/mwr-d-14-00260.1
Akter, N. and Tsuboki, K., 2014. Role of synoptic-scale forcing in cyclogenesis over the Bay of Bengal. Climate Dynamics 43(9-10), pp. 2651-2662. doi:10.1007/s00382-014-2077-9
Akter, N. and Tsuboki, K., 2016. Climatology of the premonsoon Indian dryline. International Journal of Climatology 37(11), pp. 3991-3998. doi:10.1002/joc.4968
Alappattu, D.P. and Kunhikrishnan, P.K., 2009. Premonsoon estimates of convective available potential energy over the oceanic region surrounding the Indian subcontinent. Journal of Geophysical Research 114(D8). doi:10.1029/2008jd011521
Allan, R.P., Liu, C., Zahn, M., Lavers, D.A., Koukouvagias, E. and Bodas-Salcedo, A., 2013. Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations. Surveys in Geophysics 35(3), pp. 533-552. doi:10.1007/s10712-012-9213-z
Allen, M.R. and Ingram, W.J., 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903), pp. 224-232. doi:10.1038/nature01092
Anandhi, A., Srinivas, V.V., Kumar, D.N. and Nanjundiah, R.S., 2009. Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine. International Journal of Climatology 29(4), pp. 583-603. doi:10.1002/joc.1719
Ananthakrishnan, R., Acharya, U.R. and Ramakrishnan, A.R., 1967. On the criteria for declaring the onset of the southwest monsoon over Kerala, Forecasting Manual. . India Meteorological Department, Pune, India.
Ananthakrishnan, R. and Soman, M., 1988. The onset of the southwest monsoon over Kerala: 1901–1980. Journal of Climatology 8(3), pp. 283-296.
Ananthakrishnan, R., Srinivasan, V., Ramakrishnan, A.R. and Jambunathan, R., 1968. Synoptic features associated with onset of southwest monsoon over Kerala, Forecasting Manual Report No. IV-18.2. India Meteorological Department, Pune, India.



Arsenault, K.R., Shukla, S., Hazra, A., Getirana, A., McNally, A., Kumar, S.V., Koster, R.D., Peters-Lidard, C.D., Zaitchik, B.F., Badr, H., Jung, H.C., Narapusetty, B., Navari, M., Wang, S., Mocko, D.M., Funk, C., Harrison, L., Husak, G.J., Adoum, A., Galu, G., Magadzire, T., Roningen, J., Shaw, M., Eylander, J., Bergaoui, K., McDonnell, R.A. and Verdin, J.P., 2020. The NASA Hydrological Forecast System for Food and Water Security Applications. Bulletin of the American Meteorological Society 101(7), pp. E1007-E1025. doi:10.1175/bams-d-18-0264.1
Balaguru, K., Taraphdar, S., Leung, L.R. and Foltz, G.R., 2014. Increase in the intensity of postmonsoon Bay of Bengal tropical cyclones. Geophysical Research Letters 41(10), pp. 3594-3601. doi:10.1002/2014gl060197
Balaji, M., Chakraborty, A. and Mandal, M., 2018. Changes in tropical cyclone activity in north Indian Ocean during satellite era (1981-2014). International Journal of Climatology 38(6), pp. 2819-2837. doi:10.1002/joc.5463
Bamford, A.J., 1922. Ceylon Rainfall. Quarterly Journal of the Royal Meteorological Society LXVIII(202), pp. 206–207.
Barnes, E.A. and Polvani, L., 2013. Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models. Journal of Climate 26(18), pp. 7117-7135. doi:10.1175/jcli-d-12-00536.1
Beljaars, A.C.M., 1995. The parametrization of surface fluxes in large-scale models under free convection. Quarterly Journal of the Royal Meteorological Society 121(522), pp. 255-270. doi:10.1002/qj.49712152203
Bell, S.S., Chand, S.S., Tory, K.J., Ye, H. and Turville, C., 2020. North Indian Ocean tropical cyclone activity in CMIP5 experiments: Future projections using a model‐independent detection and tracking scheme. International Journal of Climatology 40(15), pp. 6492-6505. doi:10.1002/joc.6594
Bhat, G.S., Srinivasan, J. and Gadgil, S., 1996. Tropical Deep Convection, Convective Available Potential Energy and Sea Surface Temperature. Journal of the Meteorological Society of Japan 74(2), pp. 155-166. doi:10.2151/jmsj1965.74.2_155
Bhatia, K., Vecchi, G., Murakami, H., Underwood, S. and Kossin, J., 2018. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. Journal of Climate 31(20), pp. 8281-8303. doi:10.1175/jcli-d-17-0898.1
Black, M.L., Gamache, J.F., Marks, F.D., Samsury, C.E. and Willoughby, H.E., 2002. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Monthly Weather Review 130(9), pp. 2291-2312. doi: 10.1175/1520-0493(2002)130<2291:Ephjoa>2.0.Co;2
Brubaker, K.L., Entekhabi, D. and Eagleson, P., 1993. Estimation of continental precipitation recycling. Journal of Climate 6(6), pp. 1077-1089.
Cadet, D. and Desbois, M., 1981. A Case-Study of a Fluctuation of the Somali Jet during the Indian-Summer Monsoon. Monthly Weather Review 109(1), pp. 182-187. doi:10.1175/1520-0493(1981)109<0182:Acsoaf>2.0.Co;2
Caldwell, P., Chin, H.-N.S., Bader, D.C. and Bala, G., 2009. Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change 95(3-4), pp. 499-521. doi: 10.1007/s10584-009-9583-5
Camargo, S.J., Emanuel, K.A. and Sobel, A.H., 2007. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate 20(19), pp. 4819-4834.
Cannon, A.J. and Innocenti, S., 2019. Projected intensification of sub-daily and daily rainfall extremes in convection-permitting climate model simulations over North America: implications for future intensity–duration–frequency curves. Natural Hazards and Earth System Sciences 19(2), pp. 421-440. doi:10.5194/nhess-19-421-2019
Carter, T.R. and Kenkyū, K.K.K.C.K., 1994. IPCC Technical guidelines for assessing climate change impacts and adaptations: part of the IPCC special report to the first session of the conference of the parties to the UN framework convention on climate change. London.
Chand, R. and Singh, C., 2017. Relation of Frequency of Tropical Cyclones Over North Indian Ocean and North West Pacific Ocean with Sea Surface Temperature Anomaly Over Nino 3.4 Region and Indian Ocean Dipole, In: Mohapatra, M., Bandyopadhyay, B.K., Rathore, L.S. (Eds.), Tropical Cyclone Activity over the North Indian Ocean. Springer International Publishing, Cham, Switzerland, pp. 233-243. doi:10.1007/978-3-319-40576-6_16
Chen, C.S., Chen, W.C., Chen, Y.L., Lin, P.L. and Lai, H.C., 2005. Investigation of orographic effects on two heavy rainfall events over southwestern Taiwan during the Mei-yu season. Atmospheric Research 73(1-2), pp. 101-130. doi:10.1016/j.atmosres.2004.07.005
Chen, D. and Chen, H.W., 2013. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environmental Development 6, pp. 69-79. doi:10.1016/j.envdev.2013.03.007
Chen, G., Wang, W.-C., Cheng, C.-T. and Hsu, H.-H., 2021. Extreme Snow Events along the Coast of the Northeast United States: Potential Changes due to Global Warming. Journal of Climate 34(6), pp. 2337-2353. doi:10.1175/jcli-d-20-0197.1
Chen, J., Dai, A., Zhang, Y. and Rasmussen, K.L., 2020. Changes in Convective Available Potential Energy and Convective Inhibition under Global Warming. Journal of Climate 33(6), pp. 2025-2050. doi:10.1175/jcli-d-19-0461.1

Chen Ji-long, Wang, Z., Tam, C.-Y., Lau, N.-C., Lau, D.-S.D. and Mok, H.-Y., 2020. Impacts of climate change on tropical cyclones and induced storm surges in the Pearl River Delta region using pseudo-global-warming method. Scientific Reports 10(1), p. 1965. doi:10.1038/s41598-020-58824-8
Chou, C., Chen, C.-A., Tan, P.-H. and Chen, K.T., 2012. Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity. Journal of Climate 25(9), pp. 3291-3306. doi:10.1175/jcli-d-11-00239.1
Choudhury, D., Nath, D. and Chen, W., 2019. Impact of Indian Ocean warming on increasing trend in pre-monsoon rainfall and Hadley circulation over Bay of Bengal. Theoretical and Applied Climatology 137(3-4), pp. 2595-2606. doi:10.1007/s00704-018-02751-2
CIESIN, 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density, In: Center for International Earth Science Information Network - CIESIN - Columbia University (Ed.). NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M.F., Allen, M.R., Andrews, T., Beyerle, U., Bitz, C.M., Bony, S. and Booth, B.B.B., 2013. Long-term Climate Change: Projections, Commitments and Irreversibility, In: Stocker, T.F., D.Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013 - The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Cambridge, United Kingdom, New York, USA.
Dammalage, T.L. and Jayasinghe, N.T., 2019. Land-Use Change and Its Impact on Urban Flooding: A Case Study on Colombo District Flood on May 2016. Engineering Technology & Applied Science Research 9(2), pp. 3887-3891. doi:http://doi.org/10.5281/zenodo.2647703
Daniels, E., Lenderink, G., Hutjes, R. and Holtslag, A., 2016. Relative impacts of land use and climate change on summer precipitation in the Netherlands. Hydrology and Earth System Sciences 20(10), pp. 4129-4142. doi:10.5194/hess-20-4129-2016
DeMott, C.A., 2004. Observed variations of tropical convective available potential energy. Journal of Geophysical Research 109(D2). doi:10.1029/2003jd003784
Denamiel, C., Tojčić, I. and Vilibić, I., 2020. Far future climate (2060–2100) of the northern Adriatic air–sea heat transfers associated with extreme bora events. Climate Dynamics 55(11), pp. 3043-3066. doi:10.1007/s00382-020-05435-8
DesInventar, 2019. Disaster Information Management System of UNISDR [Online] (National Disaster Inventories), United Nations Office for Disaster Risk Reduction, Colombo, Sri Lanka, Available: http://www.desinventar.lk/ [Accessed 2016.11.14].
Dickinson, R., Errico, R., Giorgi, F. and Bates, G., 1989. A regional climate model for the western United States. Climatic Change 15(3), pp. 383-422. doi:10.1007/bf00240465
Diffenbaugh, N.S., Scherer, M. and Trapp, R.J., 2013. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc Natl Acad Sci U S A 110(41), pp. 16361-16366. doi:10.1073/pnas.1307758110
Dissanayaka, K.D.C.R. and Rajapakse, R.L.H.L., 2019. Long-term precipitation trends and climate extremes in the Kelani River basin, Sri Lanka, and their impact on streamflow variability under climate change. Paddy and Water Environment. doi:10.1007/s10333-019-00721-6
DMC, 2016. Flood Inundation Maps [Online]. Disaster Management Centre of Sri Lanka, Colombo, Sri Lanka, Available: http://www.dmc.gov.lk/IndexInnundationMaps.htm [Accessed 2016.12.05 2016].
DMC and UNDP, 2012. Hazard Profiles of Sri Lanka. Disaster Management Centre (DMC), Colombo, Sri Lanka.
DOM, 2003. Booklet of Department of Meteorology. Department of Meteorology, Colombo, Sri Lanka.
Dudhia, J., 1989. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences 46(20), pp. 3077-3107. doi:10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2
Dundee, 2016. Thermal Infrared Satellite Image - Meteosat VISSR Indian Ocean Data Coverage (IODC), EUMETSAT - Dundee Satellite Image [Online], NERC Satellite Receiving Station, Dundee University, Scotland, Available: http://www.sat.dundee.ac.uk/ [Accessed 2016.10.15].
Durman, C.F., Gregory, J.M., Hassell, D.C., Jones, R.G. and Murphy, J.M., 2001. A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Quarterly Journal of the Royal Meteorological Society 127(573), pp. 1005-1015. doi:https://doi.org/10.1002/qj.49712757316
Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R. and Mearns, L.O., 2000. Climate extremes - observations, modeling, and impacts. Science 289(5487), pp. 2068-2074. doi:10.1126/science.289.5487.2068
Eckstein, D., M-L., H. and Winges, M., 2019. GLOBAL CLIMATE RISK INDEX 2019. Germanwatch e.V, Bonn, Germany.
Emanuel, K., 2007. Quasi-Equilibrium Dynamics of the Tropical Atmosphere, In: Schneider, T., Sobe, A.H. (Eds.), The Global Circulation of the Atmosphere. Princeton University Press, USA.
Emanuel, K.A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences 43(6), pp. 585-605.
Emanuel, K.A., 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of the Atmospheric Sciences 52(22), pp. 3969-3976.
Emmanuel, K., DesAutels, C., Holloway, C. and Korty, R., 2004. Environmental Control of Tropical Cyclone Intensity. Journal of the Atmospheric Sciences 61(7), pp. 843–858. doi:https://doi.org/10.1175/1520-0469(2004)061%3C0843:ECOTCI%3E2.0.CO;2
Eriyagama, N., Smakhtin, V., Chandrapala, L. and Fernando, K., 2010. Impacts of Climate Change on Water Resources and Agriculture in Sri Lanka: A Review and Preliminary Vulnerability Mapping, IWMI Research Reports. International Water Management Institute, Colombo, Sri Lanka, p. 51. doi:10.3910/2010.211
Evan, A.T. and Camargo, S.J., 2011. A climatology of Arabian Sea cyclonic storms. Journal of Climate 24(1), pp. 140-158.
Flesch, T.K. and Reuter, G.W., 2012. WRF Model Simulation of Two Alberta Flooding Events and the Impact of Topography. Journal of Hydrometeorology 13(2), pp. 695-708. doi:10.1175/jhm-d-11-035.1
Fowler, H.J., Blenkinsop, S. and Tebaldi, C., 2007. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology 27(12), pp. 1547-1578. doi: 10.1002/joc.1556
Fowler, H.J., Lenderink, G., Prein, A.F., Westra, S., Allan, R.P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H.X., Guerreiro, S., Haerter, J.O., Kendon, E.J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C. and Zhang, X., 2021. Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment 2(2), pp. 107-122. doi:10.1038/s43017-020-00128-6
Frank, W.M. and Ritchie, E.A., 2001. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly Weather Review 129(9), pp. 2249-2269.
Frank, W.M. and Roundy, P.E., 2006. The Role of Tropical Waves in Tropical Cyclogenesis. Monthly Weather Review 134(9), pp. 2397-2417. doi:10.1175/mwr3204.1


Fujita, M., Sato, T., Yamada, T.J., Kawazoe, S., Nakano, M. and Ito, K., 2019. Analyses of Extreme Precipitation Associated with the Kinugawa River Flood in September 2015 Using a Large Ensemble Downscaling Experiment. Journal of the Meteorological Society of Japan. Ser. II 97(2), pp. 387-401. doi:10.2151/jmsj.2019-022
Funk, C., Pedreros, D., Nicholson, S., Hoell, A., Korecha, D., Galu, G., Artan, G., Segele, Z., Tadege, A., Atheru, Z., Teshome, F., Hailermariam, K., Harrison, L. and Pomposi, C., 2019. Examining the Potential Contributions of Extreme “Western V” Sea Surface Temperatures to the 2017 March–June East African Drought. Bulletin of the American Meteorological Society 100(1), pp. S55-S60. doi:10.1175/bams-d-18-0108.1
Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros, D.H., Verdin, J.P., Rowland, J.D., Romero, B.E., Husak, G.J., Michaelsen, J.C. and Verdin, A.P., 2014. A quasi-global precipitation time series for drought monitoring. doi:10.3133/ds832
Gadgil, S., Joseph, P.V. and Joshi, N.V., 1984. Ocean–atmosphere coupling over monsoon regions. Nature 312(5990), pp. 141-143. doi:10.1038/312141a0
Gao, X., Shi, Y., Song, R., Giorgi, F., Wang, Y. and Zhang, D., 2008. Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorology and Atmospheric Physics 100(1-4), pp. 73-86. doi:10.1007/s00703-008-0296-5
Gerard, L., 2007. An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Quarterly Journal of the Royal Meteorological Society 133(624), pp. 711-730. doi:10.1002/qj.58
Gettelman, A., Seidel, D.J., Wheeler, M.C. and Ross, R.J., 2002. Multidecadal trends in tropical convective available potential energy. Journal of Geophysical Research: Atmospheres 107(D21), pp. ACL 17-11-ACL 17-18. doi:10.1029/2001jd001082
Gilliland, E.K. and Rowe, C.M., 2007. A comparison of cumulus parameterization schemes in the WRF model, In: 87th AMS Annual Meeting and 21th Conference on Hydrology, San Antonio, TX, USA, American Meteorological Society.
Gilmore, J.B., Evans, J.P., Sherwood, S.C., Ekström, M. and Ji, F., 2015. Extreme precipitation in WRF during the Newcastle East Coast Low of 2007. Theoretical and Applied Climatology 125(3-4), pp. 809-827. doi:10.1007/s00704-015-1551-6
Giorgi, F., Shields Brodeur, C. and Bates, G.T., 1994. Regional Climate Change Scenarios over the United States Produced with a Nested Regional Climate Model. Journal of Climate 7(3), pp. 375-399. doi:10.1175/1520-0442(1994)007<0375:rccsot>2.0.co;2
Goswami, B., 2005. South Asian monsoon, Intraseasonal variability in the atmosphere-ocean climate system. Springer, Praxis, pp. 19-61.
Goswami, B.N., Venugopal, V., Sengupta, D., Madhusoodanan, M.S. and Xavier, P.K., 2006. Increasing trend of extreme rain events over India in a warming environment. Science 314(5804), pp. 1442-1445. doi:10.1126/science.1132027
Gray, W.M., 1968. Global view of the origin of tropical disturbances and storms. Monthly Weather Review 96(10), pp. 669–700. doi:https://doi.org/10.1175/1520-0493(1968)096%3C0669:GVOTOO%3E2.0.CO;2
Gregory, J., Hartmann, D., Jansen, E., Kirtman, B., Knutti, R., Krishna, K., K. , Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G., Mokhov, I., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L., Vaughan, D. and Xie, S.P., 2013. Technical Summary, In: Stocker, T.F., D.Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Cambridge, United Kingdom, New York, USA.
Grimmond, S.U.E., 2007. Urbanization and global environmental change: local effects of urban warming. The Geographical Journal 173(1), pp. 83-88. doi:10.1111/j.1475-4959.2007.232_3.x
Groisman, P.Y., Karl, T.R., Easterling, D.R., Knight, R.W., Jamason, P.F., Hennessy, K.J., Suppiah, R., Page, C.M., Wibig, J., Fortuniak, K., Razuvaev, V.N., Douglas, A., Forland, E. and Zhai, P.M., 1999. Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change 42(1), pp. 243-283. doi:10.1023/A:1005432803188
Gunathilaka, S., 2018. The Impact of Natural Disasters on Micro, Small and Medium Enterprises (MSMEs): A Case Study on 2016 Flood Event in Western Sri Lanka. Procedia Engineering 212, pp. 744-751. doi:10.1016/j.proeng.2018.01.096
Guoxiong, W., Yue, G., TongMei, W., Yimin, L., Jinghui, Y. and Jiangyu, M., 2011. Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon. Science China-earth Sciences. doi:10.1007/s11430-010-4125-6
Gutmann, E.D., Rasmussen, R.M., Liu, C., Ikeda, K., Bruyere, C.L., Done, J.M., Garrè, L., Friis-Hansen, P. and Veldore, V., 2018. Changes in Hurricanes from a 13-Yr Convection-Permitting Pseudo–Global Warming Simulation. Journal of Climate 31(9), pp. 3643-3657. doi:10.1175/jcli-d-17-0391.1
Hall, A., 2014. Climate. Projecting regional change. Science 346(6216), pp. 1461-1462. doi:10.1126/science.aaa0629
Hay, L.E. and Clark, M.P., 2003. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. Journal of Hydrology 282(1-4), pp. 56-75. doi:10.1016/s0022-1694(03)00252-x
Heikkilä, U., Sandvik, A. and Sorteberg, A., 2010. Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dynamics 37(7-8), pp. 1551-1564. doi:10.1007/s00382-010-0928-6
Held, I.M. and Soden, B.J., 2000. Watervaporfeedback Andglobalwarming. Annual Review of Energy and the Environment 25(1), pp. 441-475. doi:10.1146/annurev.energy.25.1.441
Hewitson, B. and Crane, R., 1996. Climate downscaling: techniques and application. Climate Research 7(2), pp. 85-95. doi:10.3354/cr007085
Hibino, K., Takayabu, I., Wakazuki, Y. and Ogata, T., 2018. Physical Responses of Convective Heavy Rainfall to Future Warming Condition: Case Study of the Hiroshima Event. Frontiers in Earth Science 6. doi:10.3389/feart.2018.00035
Hill, K.A. and Lackmann, G.M., 2011. The Impact of Future Climate Change on TC Intensity and Structure: A Downscaling Approach. Journal of Climate 24(17), pp. 4644-4661. doi:10.1175/2011jcli3761.1
Holland, G.J., 1997. The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences 54(21), pp. 2519-2541. doi: 10.1175/1520-0469(1997)054<2519:Tmpiot>2.0.Co;2
Hong, S.-Y. and Lee, J.-W., 2009. Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmospheric Research 93(4), pp. 818-831. doi:10.1016/j.atmosres.2009.03.015
Hong, S.-Y., Noh, Y. and Dudhia, J., 2006. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review 134(9), pp. 2318-2341. doi:10.1175/mwr3199.1
Houze, R.A. and Churchill, D.D., 1987. Mesoscale Organization and Cloud Microphysics in a Bay of Bengal Depression. Journal of the Atmospheric Sciences 44(14), pp. 1845-1867. doi:10.1175/1520-0469(1987)044<1845:Moacmi>2.0.Co;2
IMD, 2016. Cyclonic Storm,’Roanu’ over the Bay of Bengal (17-22 May 2016) - A Report. Cyclone Warning Division, India Meteorological Department, New Delhi, India, p. 58.
IMD, 2020. Onset and Advance of Monsoon [Online]. India Meteorological Department, Ministry of Earth Sciences,, New Delhi, India, Available: https://mausam.imd.gov.in/imd_latest/contents/onset.php [Accessed 2020.08.01 2020].
IPCC, 2000. Emissions Scenarios. Cambridge University Press, UK.
IPCC, 2014a. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Cambridge, United Kingdom, New York, USA. doi:10.1017/cbo9781107415324
IPCC, 2014b. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
IPCC, 2015. Workshop Report of the Intergovernmental Panel on Climate Change Workshop on Regional Climate Projections and their Use in Impacts and Risk Analysis Studies, In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M. (Eds.). IPCC Working Group I Technical Support Unit, University of Bern,, Bern, Switzerland,, p. 171.
Islam, T., Srivastava, P.K., Rico-Ramirez, M.A., Dai, Q., Gupta, M. and Singh, S.K., 2014. Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics. Natural Hazards 76(3), pp. 1473-1495. doi:10.1007/s11069-014-1494-8
Ito, R., Takemi, T. and Arakawa, O., 2016. A Possible Reduction in the Severity of Typhoon Wind in the Northern Part of Japan under Global Warming: A Case Study. SOLA 12(0), pp. 100-105. doi:10.2151/sola.2016-023
JAXA-EORC, 2020. JAXA / EORC Tropical Cyclone Database (Ver. 1.5) [Online], Earth Observation Research and application Center, Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki, Japan, [Accessed 2020.03.16].
JAXA, 2017. ALOS World 3D dataset [Online], Japan Aerospace Exploration Agency (JAXA), Japan, [Accessed 2019.12.25].
Jayatillake, H., Chandrapala, L., Basnayake, B. and Dharmaratne, G., 2005. Water resources and climate change. World Water Assessment Programme (WWAP), Paris France.
Jayawardana, S., Darshika, D.W.T.T. and Herath, H.M.R.C., 2017. Observed Climate trends, future climate chnage projections and possible impacts for Sri Lanka, Neela Haritha. Climate Change Secretariat, Ministry of Mahaweli Development and Environment, Colombo, Sri Lanka.
Jayawardena, I.M.S.P., Darshika, D.W.T.T. and Herath, H.M.R.C., 2018. Recent Trends in Climate Extreme Indices over Sri Lanka. American Journal of Climate Change 07(04), pp. 586-599. doi:10.4236/ajcc.2018.74036
Jayawardene, H.K.W.I., Jayewardene, D.R. and Sonnadara, D.U.J., 2015. Interannual variability of precipitation in Sri Lanka. Journal of the National Science Foundation of Sri Lanka 43(1). doi:10.4038/jnsfsr.v43i1.7917
Jayawardene, H.K.W.I., Sonnadara, D.U.J. and Jayewardene, D.R., 2005. Trends of Rainfall in Sri Lanka over the Last Century. Sri Lankan Journal of Physics 6(0). doi:10.4038/sljp.v6i0.197
JTWC, 2020. Best Track Archive - Joint Typhoon Warning Center (JTWC) [Online], Naval Meteorology and Oceanography Command, United States Department of Defense, Mississippi, USA, Available: https://www.metoc.navy.mil/jtwc/jtwc.html [Accessed].
Juneng, L., Tangang, F.T. and Reason, C.J.C., 2007. Numerical case study of an extreme rainfall event during 9-11 December 2004 over the east coast of Peninsular Malaysia. Meteorology and Atmospheric Physics 98(1-2), pp. 81-98. doi:10.1007/s00703-006-0236-1
Kain, J.S., 2004. The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology 43(1), pp. 170-181. doi:10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2
Kanada, S., Aiki, H., Tsuboki, K. and Takayabu, I., 2019. Future changes in typhoon-related precipitation in eastern Hokkaido. SOLA.
Kanada, S., Takemi, T., Kato, M., Yamasaki, S., Fudeyasu, H., Tsuboki, K., Arakawa, O. and Takayabu, I., 2017. A Multimodel Intercomparison of an Intense Typhoon in Future, Warmer Climates by Four 5-km-Mesh Models. Journal of Climate 30(15), pp. 6017-6036. doi:10.1175/jcli-d-16-0715.1
Kanada, S., Tsuboki, K., Aiki, H., Tsujino, S. and Takayabu, I., 2017. Future Enhancement of Heavy Rainfall Events Associated with a Typhoon in the Midlatitude Regions. SOLA 13(0), pp. 246-251. doi:10.2151/sola.2017-045
Kang, X., Boqi, L., Yu, L., Weiqiang, W., Zhuoqi, H. and Zhuoqi, H., 2019. Effects of monsoon onset vortex on heat budget in the mixed layer of the Bay of Bengal. doi:10.1007/s00343-019-9061-5
Karunathilaka, K.L.A.A., Dabare, H.K.V. and Nandalal, K.D.W., 2017. Changes in Rainfall in Sri Lanka during 1966 – 2015. Engineer: Journal of the Institution of Engineers, Sri Lanka 50(2). doi:10.4038/engineer.v50i2.7251
Kawase, H., Yoshikane, T., Hara, M., Ailikun, B., Kimura, F. and Yasunari, T., 2008. Downscaling of the Climatic Change in the Mei-yu Rainband in East Asia by a Pseudo Climate Simulation Method. SOLA 4, pp. 73-76. doi:10.2151/sola.2008-019
Kikuchi, K., Wang, B. and Kajikawa, Y., 2011. Bimodal representation of the tropical intraseasonal oscillation. Climate Dynamics 38(9-10), pp. 1989-2000. doi:10.1007/s00382-011-1159-1
Kirtsaeng, S., Chantara, S. and Kreasuwun, J., 2010. Mesoscale Simulation of a Very Heavy Rainfall Event over Mumbai, Using the Weather Research and Forecasting (WRF) Model. Chiang Mai Journal of Science 37(3), pp. 429-442.
Kitoh, A., 2017. The Asian Monsoon and its Future Change in Climate Models: A Review. Journal of the Meteorological Society of Japan 95(1), pp. 7-33. doi:10.2151/jmsj.2017-002
Knutson, T.R. and Tuleya, R.E., 1999. Increased hurricane intensities with CO 2 -induced warming as simulated using the GFDL hurricane prediction system. Climate Dynamics 15(7), pp. 503-519. doi:10.1007/s003820050296
Knutson, T.R. and Tuleya, R.E., 2004. Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization. Journal of Climate 17(18), pp. 3477-3495. doi:10.1175/1520-0442(2004)017<3477:Iocwos>2.0.Co;2
Kolstad, E.W., Bracegirdle, T.J. and Zahn, M., 2016. Re-examining the roles of surface heat flux and latent heat release in a “hurricane-like” polar low over the Barents Sea. Journal of Geophysical Research: Atmospheres 121(13), pp. 7853-7867. doi:10.1002/2015jd024633
Koralegedara, S.B., Lin, C.-Y. and Sheng, Y.-F., 2019. Numerical Analysis of the Mesoscale Dynamics of an Extreme Rainfall and Flood Event in Sri Lanka in May 2016. Journal of the Meteorological Society of Japan 97(4). doi:10.2151/jmsj.2019-046
Koralegedara, S.B., Lin, C.Y., Sheng, Y.F. and Kuo, C.H., 2016. Estimation of anthropogenic heat emissions in urban Taiwan and their spatial patterns. Environmental Pollution 215, pp. 84-95. doi:10.1016/j.envpol.2016.04.055
Kossin, J.P., 2018. A global slowdown of tropical-cyclone translation speed. Nature 558(7708), pp. 104-107. doi:10.1038/s41586-018-0158-3
Kotal, S.D., Bhattacharya, S.K., Roy Bhowmik, S.K. and Kundu, P.K., 2013. The rapid growth and decay of severe cyclone JAL (2010) over the Bay of Bengal. Meteorology and Atmospheric Physics 121(3-4), pp. 161-179. doi:10.1007/s00703-013-0267-3
Krishnamurthy, V., 2012. Extreme Events and Trends in the Indian Summer Monsoon, In: Sharma, A.S., Bunde, A., Dimri, V.P., Baker, D.N. (Eds.), Extreme Events and Natural Hazards - The Complexity Perspective. American Geophysical Union, Washington, DC, USA, pp. 153-168. doi:10.1029/2011gm001122
Krishnamurti, T.N., Ardanuy, P., Ramanathan, Y. and Pasch, R., 1981. On the Onset Vortex of the Summer Monsoon. Monthly Weather Review 109(2), pp. 344-363. doi: 10.1175/1520-0493(1981)109<0344:Otovot>2.0.Co;2
Kröner, N., Kotlarski, S., Fischer, E., Lüthi, D., Zubler, E. and Schär, C., 2016. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Climate Dynamics 48(9-10), pp. 3425-3440. doi:10.1007/s00382-016-3276-3
Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D. and Mohanty, U.C., 2008. Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society 134(636), pp. 1897-1910. doi:10.1002/qj.325
Kusaka, H., Hara, M. and Takane, Y., 2012. Urban Climate Projection by the WRF Model at 3-km Horizontal Grid Increment: Dynamical Downscaling and Predicting Heat Stress in the 2070^|^rsquo;s August for Tokyo, Osaka, and Nagoya Metropolises. Journal of the Meteorological Society of Japan. Ser. II 90B(0), pp. 47-63. doi:10.2151/jmsj.2012-B04
Lackmann, G.M., 2013. The South-Central U.S. Flood of May 2010: Present and Future. Journal of Climate 26(13), pp. 4688-4709. doi:10.1175/jcli-d-12-00392.1
Lackmann, G.M., 2015. Hurricane Sandy before 1900 and after 2100. Bulletin of the American Meteorological Society 96(4), pp. 547-560. doi:10.1175/bams-d-14-00123.1
Lackmann, G.M. and Yablonsky, R.M., 2004. The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. Journal of the Atmospheric Sciences 61(14), pp. 1674-1692. doi: 10.1175/1520-0469(2004)061<1674:Tiotpm>2.0.Co;2
Lap, T.Q., 2019. Researching the Variation of Typhoon Intensities Under Climate Change in Vietnam: A Case Study of Typhoon Lekima, 2007. Hydrology 6(2). doi:10.3390/hydrology6020051
Li, K., Yu, W., Li, T., Murty, V., Khokiattiwong, S., Adi, T. and Budi, S., 2013. Structures and mechanisms of the first-branch northward-propagating intraseasonal oscillation over the tropical Indian Ocean. Climate Dynamics 40(7), pp. 1707-1720.
Li, Z., Yu, W.D., Li, T., Murty, V.S.N. and Tangang, F., 2013. Bimodal Character of Cyclone Climatology in the Bay of Bengal Modulated by Monsoon Seasonal Cycle. Journal of Climate 26(3), pp. 1033-1046. doi:10.1175/Jcli-D-11-00627.1
Liang, X.-Z., Kunkel, K.E., Meehl, G.A., Jones, R.G. and Wang, J.X.L., 2008. Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophysical Research Letters 35(8). doi: 10.1029/2007gl032849
Lin, C.-Y., Chen, F., Huang, J.C., Chen, W.C., Liou, Y.A., Chen, W.N. and Liu, S.-C., 2008. Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment 42(22), pp. 5635-5649. doi: 10.1016/j.atmosenv.2008.03.015
Lin, C.Y. and Chen, C.S., 2002. A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing. Meteorology and Atmospheric Physics 81(1-2), pp. 1-25. doi: 10.1007/s007030200028
Lin, C.Y., Hsu, H.M., Sheng, Y.F., Kuo, C.H. and Liou, Y.A., 2011. Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009) over Southern Taiwan. Atmospheric Chemistry and Physics 11(1), pp. 345-361. doi:10.5194/acp-11-345-2011
Lin, Y.L., Farley, R.D. and Orville, H.D., 1983. Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology 22(6), pp. 1065-1092. doi:10.1175/1520-0450(1983)022<1065:Bpotsf>2.0.Co;2
Liu, M., Yang, L., Smith, J.A. and Vecchi, G.A., 2020. Response of Extreme Rainfall for Landfalling Tropical Cyclones Undergoing Extratropical Transition to Projected Climate Change: Hurricane Irene (2011). Earths Future 8(3), p. e2019EF001360. doi:10.1029/2019EF001360
Liu, P., Tsimpidi, A.P., Hu, Y., Stone, B., Russell, A.G. and Nenes, A., 2012. Differences between downscaling with spectral and grid nudging using WRF. Atmospheric Chemistry and Physics 12(8), pp. 3601-3610. doi:10.5194/acp-12-3601-2012
Lo, J.C.-F., Yang, Z.-L. and Pielke, R.A., 2008. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. Journal of Geophysical Research 113(D9). doi:10.1029/2007jd009216
Lynch, P., 2008. The origins of computer weather prediction and climate modeling. Journal of Computational Physics 227(7), pp. 3431-3444. doi:10.1016/j.jcp.2007.02.034
Lynn, B.H., Healy, R. and Druyan, L.M., 2009. Investigation of Hurricane Katrina characteristics for future, warmer climates. Climate Research 39, pp. 75-86. doi:10.3354/cr00801
Lyon, B. and Camargo, S.J., 2009. The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dynamics 32(1), pp. 125-141.
Malmgren, B.A., Hulugalla, R., Hayashi, Y. and Mikami, T., 2003. Precipitation trends in Sri Lanka since the 1870s and relationships to El Niño-southern oscillation. International Journal of Climatology 23(10), pp. 1235-1252. doi:10.1002/joc.921
Mandal, M., Singh, K.S., Balaji, M. and Mohapatra, M., 2015. Performance of WRF-ARW model in real-time prediction of Bay of Bengal cyclone ‘Phailin’. Pure and Applied Geophysics 173(5), pp. 1783-1801. doi:10.1007/s00024-015-1206-7
Marambe, B., Punyawardena, R., Silva, P., Premalal, S., Rathnabharathie, V., Kekulandala, B., Nidumolu, U. and Howden, M., 2015. Climate, Climate Risk, and Food Security in Sri Lanka: The Need for Strengthening Adaptation Strategies, Handbook of Climate Change Adaptation, pp. 1759-1789. doi:10.1007/978-3-642-38670-1_120
Maraun, D., Wetterhall, F., Ireson, A.M., Chandler, R.E., Kendon, E.J., Widmann, M., Brienen, S., Rust, H.W., Sauter, T., Themeßl, M., Venema, V.K.C., Chun, K.P., Goodess, C.M., Jones, R.G., Onof, C., Vrac, M. and Thiele-Eich, I., 2010. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics 48(3). doi:10.1029/2009rg000314
Mbengue, C. and Schneider, T., 2013. Storm Track Shifts under Climate Change: What Can Be Learned from Large-Scale Dry Dynamics. Journal of Climate 26(24), pp. 9923-9930. doi:10.1175/jcli-d-13-00404.1
Mendelsohn, R., Emanuel, K., Chonabayashi, S. and Bakkensen, L., 2012. The impact of climate change on global tropical cyclone damage. Nature Climate Change 2(3), pp. 205-209. doi:10.1038/nclimate1357
Miguez-Macho, G., Stenchikov, G.L. and Robock, A., 2004. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. Journal of Geophysical Research: Atmospheres 109(D13), doi:10.1029/2003jd004495
Millar, R.J., Fuglestvedt, J.S., Friedlingstein, P., Rogelj, J., Grubb, M.J., Matthews, H.D., Skeie, R.B., Forster, P.M., Frame, D.J. and Allen, M.R., 2017. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience 10(10), pp. 741-747. doi:10.1038/ngeo3031
Mittal, R., Tewari, M., Radhakrishnan, C., Ray, P., Singh, T. and Nickerson, A.K., 2019. Response of tropical cyclone Phailin (2013) in the Bay of Bengal to climate perturbations. Climate Dynamics 53(3), pp. 2013-2030. doi:10.1007/s00382-019-04761-w
Mizuta, R., Arakawa, O., Ose, T., Kusunoki, S., Endo, H. and Kitoh, A., 2014. Classification of CMIP5 Future Climate Responses by the Tropical Sea Surface Temperature Changes. SOLA 10(0), pp. 167-171. doi:10.2151/sola.2014-035
Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A., 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research-Atmospheres 102(D14), pp. 16663-16682. doi:10.1029/97jd00237
Mohanty, U.C., Osuri, K.K., Routray, A., Mohapatra, M. and Pattanayak, S., 2010. Simulation of Bay of Bengal Tropical Cyclones with WRF Model: Impact of Initial and Boundary Conditions. Marine Geodesy 33(4), pp. 294-314. doi:10.1080/01490419.2010.518061
Mori, N. and Takemi, T., 2016. Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean. Weather and Climate Extremes 11, pp. 53-69. doi:10.1016/j.wace.2015.09.002
Murakami, H., Sugi, M. and Kitoh, A., 2012. Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Climate Dynamics 40(7-8), pp. 1949-1968. doi:10.1007/s00382-012-1407-z
Murugavel, P., Pawar, S.D. and Gopalakrishnan, V., 2012. Trends of Convective Available Potential Energy over the Indian region and its effect on rainfall. International Journal of Climatology 32(9), pp. 1362-1372. doi:10.1002/joc.2359
Nayak, S. and Takemi, T., 2019. Dynamical Downscaling of Typhoon Lionrock (2016) for Assessing the Resulting Hazards under Global Warming. Journal of the Meteorological Society of Japan. Ser. II 97(1), pp. 69-88. doi:10.2151/jmsj.2019-003
Nolan, D.S., 2007. What is the trigger for tropical cyclogenesis?, Australian Meteorological Magazine.
O′Gorman, P.A. and Schneider, T., 2009. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Natl Acad Sci U S A 106(35), pp. 14773-14777. doi:10.1073/pnas.0907610106
O’Gorman, P.A. and Byrne, M.P., 2013. Land–Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations. Journal of Climate 26(12), pp. 4000-4016. doi:10.1175/jcli-d-12-00262.1
Ogata, T., Ueda, H., Inoue, T., Hayasaki, M., Yoshida, A., Watanabe, S., Kira, M., Ooshiro, M. and Kumai, A., 2014. Projected Future Changes in the Asian Monsoon: A Comparison of CMIP3 and CMIP5 Model Results. Journal of the Meteorological Society of Japan 92(3), pp. 207-225. doi:10.2151/jmsj.2014-302
Oldenborgh, G.J.V., Otto, F.E.L., Haustein, K. and AchutaRao, K., 2016. The Heavy Precipitation Event of December 2015 in Chennai, India. Bulletin of the American Meteorological Society 97(12), pp. S87-S91. doi:10.1175/bams-d-16-0129.1
Pai, D.S. and Nair, R.M., 2009. Summer monsoon onset over Kerala: New definition and prediction. Journal of Earth System Science 118(2), pp. 123-135. doi:10.1007/s12040-009-0020-y
Pall, P., Allen, M.R. and Stone, D.A., 2006. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dynamics 28(4), pp. 351-363. doi:10.1007/s00382-006-0180-2
Park, D.R., Ho, C.H., Chan, J.C., Ha, K.J., Kim, H.S., Kim, J. and Kim, J.H., 2017. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections. Sci Rep 7, p. 41354. doi:https://doi.org/10.1038/srep41354
Pattanaik, D.R. and Mohapatra, M., 2016. Seasonal forecasting of tropical cyclogenesis over the North Indian Ocean. Journal of Earth System Science 125(2), pp. 231-250. doi:10.1007/s12040-016-0663-4
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F. and Nordbeck, O., 2012. Global trends in tropical cyclone risk. Nature Climate Change 2(4), pp. 289-294. doi:10.1038/nclimate1410
Peng, S., Qian, Y.K., Lai, Z., Hao, S., Chen, S., Xu, H., Wang, D., Xu, X., Chan, J.C., Zhou, H. and Liu, D., 2014. On the mechanisms of the recurvature of super typhoon Megi. Sci Rep 4, p. 4451. doi:10.1038/srep04451
Pielke, R.A. and Wilby, R.L., 2012. Regional climate downscaling: What′s the point? Eos, Transactions American Geophysical Union 93(5), pp. 52-53. doi: 10.1029/2012eo050008
Prein, A.F., Rasmussen, R.M., Ikeda, K., Liu, C., Clark, M.P. and Holland, G.J., 2016. The future intensification of hourly precipitation extremes. Nature Climate Change 7, p. 48. doi:10.1038/nclimate3168
Premalal, K.H.M.S., Niranjan, F., Uddika, N.P.C., Bantilan, C.S. and Singh, N.P., 2013. Vulnerability to Climate Change: Adaptation Strategies and Layers of Resilience: Climatic trends in Sri Lanka Agro-climatic Analysis, Research Report No. 15. ICRISAT, Patancheru, Telangana, India.
Premalal, K.H.M.S., Warnasooriya, A.R. and Rodrigo, A.C.M., 2015. Synoptic Analysis of Catastrophe Heavy Rain and Strong winds over Sri Lanka on 01st June 2014. Sri Lanka Journal of Meteorology 1, pp. 50 - 63.
Promchote, P., Wang, S.Y.S. and Johnson, P.G., 2016. The 2011 Great Flood in Thailand: Climate Diagnostics and Implications from Climate Change. Journal of Climate 29(1), pp. 367-379. doi:10.1175/Jcli-D-15-0310.1
Rajasree, V.P.M., Kesarkar, A.P., Bhate, J.N., Singh, V., Umakanth, U. and Varma, T.H., 2016. A comparative study on the genesis of North Indian Ocean tropical cyclone Madi (2013) and Atlantic Ocean tropical cyclone Florence (2006). Journal of Geophysical Research: Atmospheres 121(23), pp. 13,826-813,858. doi:10.1002/2016jd025412
Rajasree, V.P.M., Kesarkar, A.P., Bhate, J.N., Umakanth, U., Singh, V. and Harish Varma, T., 2016. Appraisal of recent theories to understand cyclogenesis pathways of tropical cyclone Madi (2013). Journal of Geophysical Research: Atmospheres 121(15), pp. 8949-8982. doi:10.1002/2016jd025188
Rajeevan, M., Bhate, J. and Jaswal, A.K., 2008. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters 35(18). doi:10.1029/2008gl035143
Rajeevan, M., Kesarkar, A., Thampi, S.B., Rao, T.N., Radhakrishna, B. and Rajasekhar, M., 2010. Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India. Annales Geophysicae 28(2), pp. 603-619. doi: 10.5194/angeo-28-603-2010

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J. and Srinivasan, J., 2007. Climate models and their evaluation, Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge University Press, pp. 589-662.
Rao, Y.P., 1976. Southwest monsoon, meteorological monograph. India Meteorological Department, New Delhi 366.
Rasmussen, K.L., Prein, A.F., Rasmussen, R.M., Ikeda, K. and Liu, C., 2017. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dynamics 55(1-2), pp. 383-408. doi:10.1007/s00382-017-4000-7
Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann, E., Dudhia, J., Chen, F., Barlage, M., Yates, D. and Zhang, G., 2014. Climate Change Impacts on the Water Balance of the Colorado Headwaters: High-Resolution Regional Climate Model Simulations. Journal of Hydrometeorology 15(3), pp. 1091-1116. doi:10.1175/jhm-d-13-0118.1
Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., Miller, K., Arsenault, K., Grubišić, V., Thompson, G. and Gutmann, E., 2011. High-Resolution Coupled Climate Runoff Simulations of Seasonal Snowfall over Colorado: A Process Study of Current and Warmer Climate. Journal of Climate 24(12), pp. 3015-3048. doi:10.1175/2010jcli3985.1
Rasmusson, E.M., Chelliah, M. and Ropelewski, C.F., 1999. The observed Climate of the 20th century, In: W.R., H., S., J., F., D. (Eds.), Modeling the Earth’s Climate and its Variability. Elsevier Science, pp. 1–138.
Rathnayake, D.D.H., 2015. Trend Analysis Of Rainfall In The Major Climatic Regions Of Sri Lanka, PGIS,. University of Peradeniya, Kandy, Sri Lanka.
Remesan, R., Bellerby, T., Holman, I. and Frostick, L., 2014. WRF model sensitivity to choice of parameterization: a study of the ‘York Flood 1999’. Theoretical and Applied Climatology 122(1-2), pp. 229-247. doi:10.1007/s00704-014-1282-0
Ritchie, E.A., 2002. Topic 1.2: Environmental effects,Topic Chairman and Rapporteur Report WMO Tech. Doc.: The 5th WMO International Workshop on Tropical Cyclones IWTC-V.
Romatschke, U., Medina, S. and Houze, R.A., 2010. Regional, Seasonal, and Diurnal Variations of Extreme Convection in the South Asian Region. Journal of Climate 23(2), pp. 419-439. doi:10.1175/2009jcli3140.1

Safeeq, M., Shukla, S., Arismendi, I., Grant, G.E., Lewis, S.L. and Nolin, A., 2016. Influence of winter season climate variability on snow-precipitation ratio in the western United States. International Journal of Climatology 36(9), pp. 3175-3190. doi:10.1002/joc.4545
Saha, K., 2010. Tropical Circulation Systems and Monsoons. Springer-Verlag, Berlin, Heidelberg.
Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y., Chuang, H., Juang, H.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G. and Goldberg, M., 2010. NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010 [Online], National Center for Atmospheric Research, Boulder, Colorado, USA, [Accessed 2016.01.05].
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.P., van den Dool, H., Zhang, Q., Wang, W., Chen, M. and Becker, E., 2011. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, USA. doi:10.5065/D61C1TXF
Saha, S., Moorthi, S., Wu, X.R., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.T., Chuang, H.Y., Iredell, M., Ek, M., Meng, J., Yang, R.Q., Mendez, M.P., Van Den Dool, H., Zhang, Q., Wang, W.Q., Chen, M.Y. and Becker, E., 2014. The NCEP Climate Forecast System Version 2. Journal of Climate 27(6), pp. 2185-2208. doi:10.1175/Jcli-D-12-00823.1
Sahoo, B. and Bhaskaran, P.K., 2016. Assessment on historical cyclone tracks in the Bay of Bengal, east coast of India. International Journal of Climatology 36(1), pp. 95-109. doi:10.1002/joc.4331
Schultz, D.M., Schumacher, P.N. and Doswell, C.A., 2000. The intricacies of instabilities. Monthly Weather Review 128(12), pp. 4143-4148. doi:10.1175/1520-0493(2000)129<4143:Tioi>2.0.Co;2
Seeley, J.T. and Romps, D.M., 2015. Why does tropical convective available potential energy (CAPE) increase with warming? Geophysical Research Letters 42(23). doi:10.1002/2015gl066199
Senanayake, I.P., Welivitiya, W.D.D.P. and Nadeeka, P.M., 2013. Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Climate 5, pp. 19-35. doi:10.1016/j.uclim.2013.07.004
Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K. and Rahimi, M., 2012. Changes in climate extremes and their impacts on the natural physical environment.
Sengupta, D., Ray, P.K. and Bhat, G.S., 2002. Spring Warming of the Eastern Arabian Sea and Bay of Bengal from Buoy Data. Geophysical Research Letters 29(15), pp. 24-21-24-24. doi:10.1029/2002gl015340
Shaffrey, L.C., Stevens, I., Norton, W.A., Roberts, M.J., Vidale, P.L., Harle, J.D., Jrrar, A., Stevens, D.P., Woodage, M.J., Demory, M.E., Donners, J., Clark, D.B., Clayton, A., Cole, J.W., Wilson, S.S., Connolley, W.M., Davies, T.M., Iwi, A.M., Johns, T.C., King, J.C., New, A.L., Slingo, J.M., Slingo, A., Steenman-Clark, L. and Martin, G.M., 2009. U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model Description and Basic Evaluation. Journal of Climate 22(8), pp. 1861-1896. doi:10.1175/2008jcli2508.1
Shen, W., Tuleya, R.E. and Ginis, I., 2000. A Sensitivity Study of the Thermodynamic Environment on GFDL Model Hurricane Intensity: Implications for Global Warming. Journal of Climate 13(1), pp. 109-121. doi:10.1175/1520-0442(2000)013<0109:Assott>2.0.Co;2
Shepherd, T.G., 2014. Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience 7(10), pp. 703-708. doi:10.1038/ngeo2253
Silva, J.D. and J Sonnadara, D.U., 2016. Century scale climate change in the central highlands of Sri Lanka. Journal of Earth System Science 125(1), pp. 75-84. doi:10.1007/s12040-015-0652-z
Singh, M.S., Kuang, Z., Maloney, E.D., Hannah, W.M. and Wolding, B.O., 2017. Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proc Natl Acad Sci U S A 114(44), pp. 11657-11662. doi:10.1073/pnas.1707603114
Singh, O.P., Ali Khan, T.M. and Rahman, M.S., 2000. Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorology and Atmospheric Physics 75(1-2), pp. 11-20. doi:10.1007/s007030070011
Skamarock, W.C. and Klemp, J.B., 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics 227(7), pp. 3465-3485. doi:10.1016/j.jcp.2007.01.037
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W. and Powers, J.G., 2008a. A Description of the Advanced Research WRF Version 3, NCAR Technical Note. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G., 2008b. A description of the Advanced Research WRF Version 3, NCAR Tech. Note. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA, p. 88. doi:http://dx.doi.org/10.5065/D6DZ069
Skliris, N., Zika, J.D., Nurser, G., Josey, S.A. and Marsh, R., 2016. Global water cycle amplifying at less than the Clausius-Clapeyron rate. Sci Rep 6, p. 38752. doi:10.1038/srep38752
Small, R.J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J., Dennis, J., Gent, P., Hsu, H.m., Jochum, M., Lawrence, D., Muñoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.h. and Vertenstein, M., 2014. A new synoptic scale resolving global climate simulation using the Community Earth System Model. Journal of Advances in Modeling Earth Systems 6(4), pp. 1065-1094. doi:10.1002/2014ms000363
Smith, J.A., Baeck, M.L., Villarini, G., Wright, D.B. and Krajewski, W., 2013. Extreme Flood Response: The June 2008 Flooding in Iowa. Journal of Hydrometeorology 14(6), pp. 1810-1825. doi:10.1175/jhm-d-12-0191.1
Soden, B.J., Jackson, D.L., Ramaswamy, V., Schwarzkopf, M.D. and Huang, X., 2005. The radiative signature of upper tropospheric moistening. Science 310(5749), pp. 841-844. doi:10.1126/science.1115602
Sonnadara, U., 2015. Spatial and temporal variations of thunderstorm activities over Sri Lanka. Theoretical and Applied Climatology 124(3-4), pp. 621-628. doi:10.1007/s00704-015-1442-x
Sooraj, K.P., Terray, P. and Mujumdar, M., 2015. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Climate Dynamics 45(1), pp. 233-252. doi:10.1007/s00382-014-2257-7
SPC, 2017. CAPE for Instability Descriptors [Online]. Storm Prediction Center, National Centers for Environmental Prediction, NOAA / National Weather Service, Norman, OK, U.S.A., Available: http://www.spc.noaa.gov/misc/tables/capetext.htm [Accessed 2017.06.25 2017].
Staid, A., Guikema, S.D., Nateghi, R., Quiring, S.M. and Gao, M.Z., 2014. Simulation of tropical cyclone impacts to the U.S. power system under climate change scenarios. Climatic Change 127(3-4), pp. 535-546. doi:10.1007/s10584-014-1272-3
Statistics, D.o.C.a., 2012. Census of Population and Housing 2012 - Final Report, 2012 ed. Department of Census and Statistics, Colombo, Sri Lanka.
Subasinghe, S.I.S., 2016. Urban Process and Future Development of Colombo Metropolitan Area,Sri Lanka: An Application of Geospatial Techniques, Graduate School of Life and Environmental Sciences. University of Tsukuba, Tsukuba, Japan.
Suppiah, R. and Yoshino, M.M., 1984. Rainfall variations of Sri Lanka Part 1: Spatial and temporal patterns. Archives for meteorology, geophysics, and bioclimatology, Series B 34(4), pp. 329-340. doi:10.1007/bf02269446
Takemi, T., 2019. Impacts of Global Warming on Extreme Rainfall of a Slow-Moving Typhoon: A Case Study for Typhoon Talas (2011). SOLA 15(0), pp. 125-131. doi:10.2151/sola.2019-023
Takemi, T., Ito, R. and Arakawa, O., 2016a. Effects of global warming on the impacts of Typhoon Mireille (1991) in the Kyushu and Tohoku regions. Hydrological Research Letters 10(3), pp. 81-87. doi:10.3178/hrl.10.81
Takemi, T., Ito, R. and Arakawa, O., 2016b. Robustness and uncertainty of projected changes in the impacts of Typhoon Vera (1959) under global warming. Hydrological Research Letters 10(3), pp. 88-94. doi:10.3178/hrl.10.81
Takemi, T., Nomura, S., Oku, Y. and Ishikawa, H., 2012. A Regional-Scale Evaluation of Changes in Environmental Stability for Summertime Afternoon Precipitation under Global Warming from Super-High-Resolution GCM Simulations: A Study for the Case in the Kanto Plain. Journal of the Meteorological Society of Japan 90A(0), pp. 189-212. doi:10.2151/jmsj.2012-A10
Takemi, T., Okada, Y., Ito, R., Ishikawa, H. and Nakakita, E., 2016. Assessing the impacts of global warming on meteorological hazards and risks in Japan: Philosophy and achievements of the SOUSEI program. Hydrological Research Letters 10(4), pp. 119-125. doi:10.3178/hrl.10.119
Tanaka, H.L., Ishizaki, N. and Nohara, D., 2005. Intercomparison of the Intensities and Trends of Hadley, Walker and Monsoon Circulations in the Global Warming Projections. SOLA 1, pp. 77-80. doi:10.2151/sola.2005-021
Tang, X.-D., Yang, M.-J. and Tan, Z.-M., 2012. A modeling study of orographic convection and mountain waves in the landfalling typhoon Nari (2001). Quarterly Journal of the Royal Meteorological Society 138(663), pp. 419-438. doi:10.1002/qj.933
Taniguchi, K. and Sho, K., 2015. Application of the Pseudo Global Warming Dynamic Downscaling Method to the Tokai Heavy Rain in 2000. Journal of the Meteorological Society of Japan. Ser. II 93(5), pp. 551-570. doi:10.2151/jmsj.2015-043


Tao, W.-K., Shi, J.J., Lin, P.-L., Chen, J., Lang, S., Chang, M.-Y., Yang, M.-J., Wu, C.-C., Peters-Lidard, C., Sui, C.-H. and Jou, B.J.-D., 2011. High-Resolution Numerical Simulation of the Extreme Rainfall Associated with Typhoon Morakot. Part I: Comparing the Impact of Microphysics and PBL Parameterizations with Observations. Terrestrial, Atmospheric and Oceanic Sciences 22(6), pp. 673-696. doi:10.3319/tao.2011.08.26.01(tm)
Tett, S.F.B., Mitchell, J.F.B., Parker, D.E. and Allen, M.R., 1996. Human Influence on the Atmospheric Vertical Temperature Structure: Detection and Observations. Science 274(5290), pp. 1170-1173. doi:10.1126/science.274.5290.1170
Tewari, M., Chen, F., Kusaka, H. and Miao, S., 2008. Coupled WRF/Unified Noah/urban-canopy modelling system, NCAR WRF Documentation. NCAR, Boulder,, Boulder, USA., pp. 1-20.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M.A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J. and Cuenca, R.H., 2004. Implementation and verification of the unified NOAH land surface model in the WRF model, In: 20th conference on weather analysis and forecasting /16th conference on numerical weather prediction, Seattle, Washington, USA, pp. 11–15.
Tian, J., Liu, J., Wang, J., Li, C., Yu, F. and Chu, Z., 2017. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China. Atmospheric Research 191, pp. 141-155. doi:10.1016/j.atmosres.2017.03.012
Trapp, R.J. and Hoogewind, K.A., 2016. The Realization of Extreme Tornadic Storm Events under Future Anthropogenic Climate Change. Journal of Climate 29(14), pp. 5251-5265. doi:10.1175/jcli-d-15-0623.1
Trenberth, K.E., Dai, A., Rasmussen, R.M. and Parsons, D.B., 2003. The changing character of precipitation. Bulletin of the American Meteorological Society 84(9), pp. 1205-1217. doi:10.1175/Bams-84-9-1205
Ueda, H., Iwai, A., Kuwako, K. and Hori, M.E., 2006. Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophysical Research Letters 33(6). doi:10.1029/2005gl025336
UN-DESA, 2018. World Urbanization Prospects: The 2018 Revision. Population Division, Department of Economic and Social Affairs, United Nations, New York, USA.
UN-OCHA, 2016. Sri Lanka - Floods and landslides Situation Report No. 2. United Nations Office for the Coordination of Humanitarian Affairs (OCHA), Colombo, Sri Lanka, pp. 1-5.

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. and Rose, S.K., 2011. The representative concentration pathways: an overview. Climatic Change 109(1-2), pp. 5-31. doi:10.1007/s10584-011-0148-z
Vidale, P.L., Strachan, J., Hodges, K., Roberts, M. and Demory, M.-E., 2013. Investigating Global Tropical Cyclone Activity with a Hierarchy of AGCMs: The Role of Model Resolution. Journal of Climate 26(1), pp. 133-152. doi:https://doi.org/10.1175/JCLI-D-12-00012.1
Vincent, C.L. and Hahmann, A.N., 2015. The Impact of Grid and Spectral Nudging on the Variance of the Near-Surface Wind Speed. Journal of Applied Meteorology and Climatology 54(5), pp. 1021-1038. doi:10.1175/jamc-d-14-0047.1
Walsh, K.J.E., McBride, J.L., Klotzbach, P.J., Balachandran, S., Camargo, S.J., Holland, G., Knutson, T.R., Kossin, J.P., Lee, T.-c., Sobel, A. and Sugi, M., 2016. Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change 7(1), pp. 65-89. doi:10.1002/wcc.371
Wang, S.Y., Buckley, B.M., Yoon, J.H. and Fosu, B., 2013. Intensification of premonsoon tropical cyclones in the Bay of Bengal and its impacts on Myanmar. Journal of Geophysical Research-Atmospheres 118(10), pp. 4373-4384. doi:10.1002/jgrd.50396
Wang, W., Bruyère, C.L., Duda, M.G., Dudhia, J., Gill, D.O., Kavulich, M., Keene, K., Chen, M., Lin, H.C., Michalakes, J., Rizvi, S., Zhang, X., Berner, J., Ha, S. and Fossell, K., 2017. WRF-ARW Version 3.8 Modeling System User’s Guide. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA.
Wang, Y., Huang, Y. and Cui, X., 2018. Impact of Mid- and Upper-Level Dry Air on Tropical Cyclone Genesis and Intensification: A Modeling Study of Durian (2001). Advances in Atmospheric Sciences 35(12), pp. 1505-1521. doi:10.1007/s00376-018-8039-0
Wang, Y., Leung, L.R., McGregor, J.L., Lee, D.-K., Wang, W.-C., Ding, Y. and Kimura, F., 2004. Regional Climate Modeling: Progress, Challenges, and Prospects. Journal of the Meteorological Society of Japan 82(6), pp. 1599-1628. doi:10.2151/jmsj.82.1599
Warnasooriya, A.R., Rodrigo, A.C.M. and Premalal, K.H.M.S., 2016. Case Study of Flash Flood Event on 14th November 2014 in Colombo due to Short Period High Intense Rainfall, In: Rivero, A.L., Pradhan, B., Routray, J.K. (Eds.), Climate Events and Disaster Mitigation from Policy to Practice.
Warner, T.T., 2011. Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge, UK.
Weatherford, C.L. and Gray, W.M., 1988. Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Monthly Weather Review 116(5), pp. 1032-1043.
Webb, M.J., Tselioudis, G., Soden, B.J., Randall, D.A., Ingram, W., Holland, M.M., Hallegatte, S., Hall, A., Dufresne, J.-L., Bretherton, C.S., Allan, R.P., Kattsov, V.M., Colman, R. and Bony, S., 2006. How Well Do We Understand and Evaluate Climate Change Feedback Processes? Journal of Climate 19(15), pp. 3445-3482. doi:10.1175/jcli3819.1
Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M. and Yasunari, T., 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research-Oceans 103(C7), pp. 14451-14510. doi:10.1029/97jc02719
Westra, S., Alexander, L.V. and Zwiers, F.W., 2013. Global Increasing Trends in Annual Maximum Daily Precipitation. Journal of Climate 26(11), pp. 3904-3918. doi:10.1175/Jcli-D-12-00502.1
Westra, S., Fowler, H.J., Evans, J.P., Alexander, L.V., Berg, P., Johnson, F., Kendon, E.J., Lenderink, G. and Roberts, N.M., 2014. Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics 52(3), pp. 522-555. doi:10.1002/2014rg000464
Wickramagamage, P., 2015. Spatial and temporal variation of rainfall trends of Sri Lanka. Theoretical and Applied Climatology 125(3-4), pp. 427-438. doi:10.1007/s00704-015-1492-0
Wong, M.L. and Chan, J.C.L., 2004. Tropical Cyclone Intensity in Vertical Wind Shear. Journal of the Atmospheric Sciences 61(15), pp. 1859–1876. doi:https://doi.org/10.1175/1520-0469(2004)061%3C1859:TCIIVW%3E2.0.CO;2
Wood, A.W., Leung, L.R., Sridhar, V. and Lettenmaier, D.P., 2004. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic Change 62(1-3), pp. 189-216. doi:10.1023/B:CLIM.0000013685.99609.9e
Woodruff, J.D., Irish, J.L. and Camargo, S.J., 2013. Coastal flooding by tropical cyclones and sea-level rise. Nature 504(7478), pp. 44-52. doi:10.1038/nature12855
Wu, G., Guan, Y., Wang, T., Liu, Y., Yan, J. and Mao, J., 2010. Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon. Science in China, Series D: Earth Sciences 54(1), pp. 1-9. doi:10.1007/s11430-010-4125-6
Xu, K.-M. and Emmanuel, K.A., 1989. Is the Tropical Atmosphere Conditionally Unstable? Monthly Weather Review 117(7), pp. 1471–1479. doi:https://doi.org/10.1175/1520-0493(1989)117%3C1471:ITTACU%3E2.0.CO;2
Xu, Z. and Yang, Z.-L., 2012. An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations. Journal of Climate 25(18), pp. 6271-6286. doi:10.1175/jcli-d-12-00005.1
Yang, B., Zhang, Y. and Qian, Y., 2012. Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia-Pacific Journal of Atmospheric Sciences 48(3), pp. 227-241. doi:10.1007/s13143-012-0023-5
Yang, M.-J., Zhang, D.-L. and Huang, H.-L., 2008. A Modeling Study of Typhoon Nari (2001) at Landfall. Part I: Topographic Effects. 65(10), pp. 3095-3115. doi:10.1175/2008jas2453.1
Yang, T., Li, H., Wang, W., Xu, C.-Y. and Yu, Z., 2012. Statistical downscaling of extreme daily precipitation, evaporation, and temperature and construction of future scenarios. Hydrological Processes 26(23), pp. 3510-3523. doi:10.1002/hyp.8427
Ying, M., Knutson, T.R., Kamahori, H. and Lee, T.C., 2012. Impacts of Climate Change on Tropical Cyclones in the Western North Pacific Basin. Part II: Late Twenty-First Century Projections. Tropical Cyclone Research and Review 1(2), pp. 2225-6032. doi:https://doi.org/10.6057/2012TCRR02.09
Yu, C.-K. and Cheng, L.-W., 2019. Investigation of Orographic Precipitation over an Isolated, Three-Dimensional Complex Topography with a Dense Gauge Network, Radar Observations, and Upslope Model. Journal of the Atmospheric Sciences 76(11), pp. 3387-3409. doi:10.1175/jas-d-19-0005.1
Yu, C.-K. and Tsai, C.-L., 2017. Structural changes of an outer tropical cyclone rain band encountering the topography of northern Taiwan. Quarterly Journal of the Royal Meteorological Society 143(703), pp. 1107-1122. doi:10.1002/qj.2994
Zubair, L., 2002. El Niño-southern oscillation influences on rice production in Sri Lanka. International Journal of Climatology 22(2), pp. 249-260. doi:10.1002/joc.714
Zubair, L., 2003. Sensitivity of Kelani streamflow in Sri Lanka to ENSO. Hydrological Processes 17(12), pp. 2439-2448. doi:https://doi.org/10.1002/hyp.1252
Zubair, L., 2004. May 2003 disaster in Sri Lanka and cyclone 01-B in the Bay of Bengal. Natural Hazards 33(3), pp. 303-318. doi: 10.1023/B:NHAZ.0000048462.21938.d6
Zubair, L., Siriwardhana, M., Chandimala, J. and Yahiya, Z., 2008. Predictability of Sri Lankan rainfall based on ENSO. International Journal of Climatology 28(1), pp. 91-101. doi:https://doi.org/10.1002/joc.1514
指導教授 林傳堯(Chuan-Yao Lin) 審核日期 2021-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明